Coloring tournaments: From local to global - Laboratoire de l'Informatique du Parallélisme
Article Dans Une Revue Journal of Combinatorial Theory, Series B Année : 2019

Coloring tournaments: From local to global

Résumé

The chromatic number of a directed graph D is the minimum number of colors needed to color the vertices of D such that each color class of D induces an acyclic subdigraph. Thus, the chromatic number of a tournament T is the minimum number of transitive subtournaments which cover the vertex set of T. We show in this note that tournaments are significantly simpler than graphs with respect to coloring. Indeed, while undirected graphs can be altogether “locally simple” (every neighborhood is a stable set) and have large chromatic number, we show that locally simple tournaments are indeed simple. In particular, there is a function f such that if the out-neighborhood of every vertex in a tournament T has chromatic number at most c, then T has chromatic number at most f(c). This answers a question of Berger et al.
Fichier principal
Vignette du fichier
Coloring_tournaments.pdf (93.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02181518 , version 1 (26-11-2019)

Identifiants

Citer

Ararat Harutyunyan, Tien-Nam Le, Stéphan Thomassé, Hehui Wu. Coloring tournaments: From local to global. Journal of Combinatorial Theory, Series B, 2019, 138, pp.166-171. ⟨10.1016/j.jctb.2019.01.005⟩. ⟨hal-02181518⟩
122 Consultations
116 Téléchargements

Altmetric

Partager

More