
HAL Id: ensl-00000002
https://ens-lyon.hal.science/ensl-00000002v1

Submitted on 27 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Speed Function Approximation using a Minimax
Quadratic Interpolator

Jean-Michel Muller, Stuart Oberman, Jose-Alejandro Pineiro, Javier Bruguera

To cite this version:
Jean-Michel Muller, Stuart Oberman, Jose-Alejandro Pineiro, Javier Bruguera. High-Speed Function
Approximation using a Minimax Quadratic Interpolator. IEEE Transactions on Computers, 2005, 54
(3), pp.304-318. �10.1109/TC.2005.52�. �ensl-00000002�

https://ens-lyon.hal.science/ensl-00000002v1
https://hal.archives-ouvertes.fr

High-Speed Function Approximation
Using a Minimax Quadratic Interpolator

Jose-Alejandro Piñeiro, Stuart F. Oberman, Member, IEEE Computer Society,

Jean-Michel Muller, Senior Member, IEEE, and Javier D. Bruguera, Member, IEEE

Abstract—A table-based method for high-speed function approximation in single-precision floating-point format is presented in this

paper. Our focus is the approximation of reciprocal, square root, square root reciprocal, exponentials, logarithms, trigonometric

functions, powering (with a fixed exponent p), or special functions. The algorithm presented here combines table look-up, an enhanced

minimax quadratic approximation, and an efficient evaluation of the second-degree polynomial (using a specialized squaring unit,

redundant arithmetic, and multioperand addition). The execution times and area costs of an architecture implementing our method are

estimated, showing the achievement of the fast execution times of linear approximation methods and the reduced area requirements of

other second-degree interpolation algorithms. Moreover, the use of an enhanced minimax approximation which, through an iterative

process, takes into account the effect of rounding the polynomial coefficients to a finite size allows for a further reduction in the size of

the look-up tables to be used, making our method very suitable for the implementation of an elementary function generator in state-of-

the-art DSPs or graphics processing units (GPUs).

Index Terms—Table-based methods, reciprocal, square root, elementary functions, minimax polynomial approximation, single-

precision computations, computer arithmetic.

�

1 INTRODUCTION

THE increasing speed and performance constraints of
computer 3D graphics, animation, digital signal proces-

sing (DSP), computer-assisted design (CAD), and virtual
reality [7], [12], [14], [26], have led to the development of
hardware-oriented methods for high-speed function ap-
proximation. An accurate and fast computation of division,
square root, and, in some cases, exponential, logarithm, and
trigonometric functions has therefore become mandatory in
platforms such as graphics processing units (GPUs), digital
signal processors (DSPs), floating-point units of general-
purpose processors (FPUs), or application-specific circuits
(ASICs) [18], [19], [27], [39].

The method presented in this paper is a table-driven

algorithm based on an enhanced minimax quadratic

approximation which allows such high-speed computations

in single-precision (SP) floating-point format. High-fidelity

audio and high-quality 3D graphics or speech recognition,

among other applications, require the use of single-

precision FP computations [7]. Thus, while 10-16 bit

approximations were accurate enough in early graphics

cards, with the evolution of graphics applications, higher-
precision computations have become mandatory.

For instance, a frequent operation in 3D rendering is the
interpolation of attribute values across a primitive, colors
and texture coordinates being common attributes requiring
such interpolation. To obtain perspective correct results, it is
necessary to interpolate a function of the attributes, rather
than the attributes directly, and the interpolated result is
later transformed by the inverse function to get the final
value at a desired point in screen space [11]. Thus, the
attributes at the primitive’s vertices must first be divided
through by the homogeneous coordinate w (the coordinate
w itself is replaced by 1=w) and these modified attributes are
then linearly interpolated to determine the correct value at a
given pixel within the primitive. At each pixel, the newly
interpolated value is then divided by the interpolated 1=w,
via multiplication by w, to obtain the correct final value.
This set of operations requires that, per-pixel, the newly
interpolated inverse homogeneous coordinate 1=w must be
reciprocated to reform w. The precision of this reciprocal
operation must be as close as possible to the working precision of
the attributes being interpolated to guarantee correct results. In
the case of per-pixel texture coordinate interpolation, the
coordinates in modern GPUs are computed and stored as
single-precision floating-point values. The reciprocal opera-
tion itself, therefore, must return a value close to the
exactly-rounded single-precision floating-point result. In
practice, an error in the computation near 1 ulp for single-
precision is sufficient, while errors greater than this can
result in visible seams between textured-primitives.

Other transcendental functions are frequently used in
modern vertex and pixel shading programs. Normalizing
vectors using the reciprocal square root operator is a
common function in lighting shaders. The instruction sets

304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

. J.-A. Piñeiro is with the Intel Barcelona Research Center, Intel Labs-UPC,
Edif. Nexus II, c) Jordi Girona 29-3�, 08034 Barcelona, Spain.
E-mail: alex@dec.usc.es.

. S.F. Oberman is with NVIDIA Corporation, USA, Santa Clara, CA 95050.
E-mail: soberman@nvidia.com.

. J.-M. Muller is with CNRS, LIP, Ecole Normale Superieure de Lyon, 46
Allee d’Italie, 69364 Lyon Cedex 07, France.
E-mail: Jean-Michel.Muller@inria.fr.

. J.D. Bruguera is with the Departamento de Electronica e Computacion,
Universidade de Santiago de Compostela, 15782 Santiago de Compostela,
Spain. E-mail: bruguera@dec.usc.es.

Manuscript received 27 Nov. 2003; revised 30 June 2004; accepted 16 Sept.
2004; published online 18 Jan. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0230-1103.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

of modern GPUs and APIs, such as Microsoft’s DirectX9
[22], also incorporate exp 2, log 2, sin , and cos . These
operations are important to many classes of shading
programs and they are all required to produce results as
close as possible to the processor’s working precision.

The proposed method is suitable for approximating any
function fðXÞ and, therefore, can be applied to the
computation of reciprocal, square root, square root recipro-
cal, logarithms, exponentials, trigonometric functions,
powering1 (with a fixed exponent p), or special functions.
Furthermore, this method can be used for fixed-point
DSP applications with a target precision of 16 to 32 bits as
well or to obtain initial approximations (seed values) for
higher precision computations (as done in [30] for double-
precision computation of reciprocal, division, square root,
and square root reciprocal).

The input operand X is split into two parts, the most and
least significant fields: X ¼ X1 þX2, X1 being 6-7 bits wide,
and the function fðXÞ is approximated as a quadratic
polynomial C2X

2
2 þ C1X2 þ C0. For each input subinterval,

the coefficients of the minimax approximation C2, C1, and
C0, which only depend on X1, are obtained through an
iterative process that takes into account the effect of
rounding such coefficients to a finite wordlength and are
then stored in look-up tables. The evaluation of the
polynomial is performed using redundant arithmetic and
multioperand addition, while X2

2 is generated by a
specialized squaring unit with reduced size and delay
regarding a standard squarer. The multioperand addition is
carried out by a fused accumulation tree, which accumulates
the partial products of C2X

2
2 and C1X2, together with C0,

and requires less area than a ðn� nÞ-bit standard multiplier
while having about the same delay. The rounding scheme is
an enhancement of rounding to the nearest and consists of
injecting a function-specific rounding-bias before truncating
the intermediate result to the target precision. The output
results can be guaranteed accurate to 1 ulp, 2 ulps, or 4 ulps,
depending on the accuracy constraints of a specific
application for any of the functions fðXÞ considered.

The organization of this paper is the following: Back-
ground information about hardware-oriented methods is
given in Section 2; the main features of our method, error
computation, iterative method for selecting the polynomial
coefficients, and efficient polynomial evaluation, are de-
scribed in Section 3; an architecture for the computation of
reciprocal, square root, exponential, and logarithm, together
with delay and area cost estimates, is shown in Section 4; in
Section 5, a comparison with bipartite tables methods and
linear and quadratic approximations is presented; finally,
the main contributions made in this work are summarized
in Section 6.

2 BACKGROUND

Hardware-orientedmethods for function approximation can
be separated into twomain groups: iterative andnoniterative
methods. In the first group belong digit-recurrence and

online algorithms [8], [9], based on the subtraction opera-
tion and with linear convergence, and hardware imple-
mentations of functional iteration methods, such as
Newton-Raphson and Goldschmidt algorithms [10], [27],
which are multiplicative-based and quadratically conver-
gent. This type of method can be used for both low-
precision and high-precision computations. On the other
hand, we have direct table look-up, polynomial and rational
approximations [17], [23], and table-based methods [2], [5],
[6], [15], [34], [40], [42], suitable only for low-precision
operations and usually employed for computing the seed
values in functional iteration methods.

When aiming at single-precision (SP) computations,
table-based methods have inherent advantages over other
types of algorithms. First of all, they are halfway between
direct table look-up, whose enormous memory require-
ments make them inefficient for SP computations, and
polynomial/rational approximations, which involve a high
number of multiplications and additions, resulting in long
execution times. Table-driven methods combine the use of
smaller tables with the evaluation of a low-degree poly-
nomial, achieving both a reduction in size regarding direct
table look-up and significant speed-ups regarding pure
polynomial approximations. The fact of being noniterative
makes table-based algorithms also preferable regarding
digit-recurrence methods, due to the linear convergence of
these conventional shift-and-add implementations, which
usually leads to long execution times. Something similar
happens to functional iteration methods, despite being
quadratically convergent, since, for each iteration, a number
of multiplications are involved, resulting again in long
execution times. Moreover, functional iteration methods are
oriented to division and square root computations only and
do not allow computation of logarithm, exponential or
trigonometric functions.

Table-based methods can be further subdivided, de-
pending on the size of the tables employed and the amount
of computations involved, into compute-bound methods [41],
[42], table-bound methods [6], [24], [34], [35], [38], and in-
between methods [1], [2], [5], [15], [40].

. Compute-bound methods use table look-up in a very-
small table to obtain parameters which are used
afterward in cubic or higher-degree polynomial
approximations [41], [42]. The polynomial is usually
evaluated using Horner’s rule and an important
amount of additions and multiplications is involved.
This type of method is favored with the availability
of a fused multiply-add unit, as happens in
architectures such as PowerPC and Intel IA64 (now
IPF) [7], [20], [21].

. Table-bound methods use large tables and just one or
possibly a few additions. Examples of this type of
method are Partial Product Arrays [38] (PPAs) and
bipartite tables methods. Among the bipartite tables
methods there are those consisting of just two-tables
and addition, such as bipartite table methods (BTM)
[6] and symmetric BTM (SBTM) [34], and their
generalizations, multipartite table methods [24], [35],
which employ more than two tables and a few
(possibly redundant) additions. These methods are

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 305

1. Note that the computation of powering (Xp) implies the computation
of reciprocal (X�1), square root (X1=2), square root reciprocal (X�1=2),
reciprocal square (X�2), and cube root (X1=3) among other functions, just by
adjusting the parameter p to the desired value.

fast, but their use is limited to computations accurate
up to 16-bits (maybe 20-bits) with current VLSI
technology, due to the growth in the size of the
tables with the accuracy of the result.2

. In-between methods use medium size tables and a
significant yet reduced amount of computation (e.g.,
one or two multiplications or several small/rectan-
gular multiplications). This type of method can be
further subdivided into linear approximations [5],
[40] and second-degree interpolation methods [1],
[2], [15], [31], [36], depending on the degree of the
polynomial approximation employed. The inter-
mediate size of the look-up tables employed makes
them suitable for performing single-precision com-
putations, achieving fast execution times with
reasonable hardware requirements.

As explained above, the best alternative when aiming at
SP computations are in-between methods (compute-bound
methods may be preferable if the area constraints of a
specific application are really tight). Within this group, the
main advantage of linear approximations is their speed
since they consist of a table look-up and the computation of
a multiply-add operation [5] (or a single multiplication, if a
slight modification of the input operand is performed [40]),
while the main advantage of quadratic approximations is
the reduced size of the look-up tables (around 12-15Kbits
per function [1], [2], [15], [36] versus 50-75Kb [5], [40] in
linear approximations).

The synthesis of the main advantages of both linear and
conventional quadratic approximations can be reached by
using the small tables of a quadratic interpolator and by
emulating the behavior of linear approximations, computing
the second-degree polynomial with a similar delay to that of
an SP multiply operation. Such acceleration can be achieved
[29], [31], [36] by combining the use of redundant
arithmetic, a specialized squaring unit, and the accumula-
tion of all partial products in a multioperand adder.

3 MINIMAX QUADRATIC INTERPOLATOR

In this section, we propose a table-based method for high-
speed function approximation in single-precision floating-
point format. We consider, in this paper, the computation of
reciprocal, square root, square root reciprocal, exponential
(2X), logarithm (log2 X), and sine/cosine operations,
although the proposed method could be used for the
computation of other trigonometric functions (tan , arctan ,
. . .), powering (with a fixed exponent p), or special functions.
The results can be guaranteed accurate to 1 ulp, 2 ulps, or
4 ulps for any of these operations, depending on the accuracy
constraints of a specific application. This algorithm is a
generalization and optimization of those previously pro-
posed by Piñeiro et al. [29], [31] and by Muller [25].

3.1 Range Reduction and Notation

Three steps are usually carried out when approximating a
function [17], [42]: 1) range reduction of the argument to a
predetermined input interval, 2) function approximation of

the reduced argument, and 3) reconstruction, normaliza-
tion, and rounding of the final result. Thus, the approxima-
tion is performed in an input interval ½a; bÞ and range
reduction is used for values outside this interval. For the
elementary functions there are natural selections of the
intervals ½a; bÞ which simplify both the steps of range
reduction and function approximation, leading to smaller
tables and faster execution times, and also allow avoidance
of singular points in the function domain [4], [13], [36].

Our method deals with the step of function approxima-
tion within a reduced input interval and standard techni-
ques are applied for the range reduction and reconstruction
steps. A summary of these well-known range reduction
schemes is shown in Fig. 1, where the following notation is
used: An IEEE single-precision floating-point number Mx is
composed of a sign bit sx, an 8-bit biased exponent Ex, and
a 24-bit significand X, and represents the value:

Mx ¼ ð�1ÞsxX2Ex ; ð1Þ

where 1 � X < 2, with an implicit leading 1 (only the
fractional 23-bits are stored). Leading zeros may appear
when approximating the logarithm if Ex ¼ 0, causing a loss
of precision. In that case, 1 � log2ðXÞ=ðX � 1Þ < 2 is
computed instead since it eliminates the leading zeros and
the result is later multiplied by ðX � 1Þ, processing the
exponent of the result to account for this normalization [36].

3.2 Overview of the Method

As explained in Section 2, a thorough analysis of the design
space of hardware-oriented methods for function approx-
imation shows that, when aiming at single-precision
computations, the best trade off between area and speed
is obtained by using a quadratic interpolator, provided that
the degree-2 polynomial is efficiently computed [29], [31],

306 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

2. The size of the tables required for SP computations with the SBTM
method is over 1; 300Kbits per function [34].

Fig. 1. Range reduction schemes and approximation intervals for some

functions.

[36]. Therefore, our method for high-speed function
approximation consists of a quadratic polynomial approx-
imation, followed by a fast evaluation of the polynomial. A
specialized squaring unit, redundant arithmetic, and a
multioperand adder are employed to carry out with such
evaluation. On the other hand, the high accuracy of an
enhanced minimax approximation, which takes into account
the effect of rounding the coefficients to a finite wordlength,
allows for a significant reduction in the size of the tables
required to store the polynomial coefficients regarding
similar quadratic interpolators.

As shown in Fig. 2, in our method, the n-bit binary
significand of the input operand X is split into an upper
part, X1, and a lower part, X2:

X1 ¼ ½:x1x2 . . .xm�
X2 ¼ ½:xmþ1 . . .xn� � 2�m:

ð2Þ

An approximation to fðXÞ in the range X1 � X <
X1 þ 2�m can be performed by evaluating the expression

fðXÞ � C0 þ C1X2 þ C2X
2
2 ; ð3Þ

where the coefficients C0, C1, and C2 are obtained for each
input subinterval using the computer algebra systemMaple

[43]. The method for obtaining those coefficients, corre-
sponding to an enhanced minimax approximation, will be
explained in Section 3.4 and is one of the fundamental
contributions of this work.

The values ofC0,C1, andC2 for each function fðXÞdepend
only onX1, themmost significant bits ofX. Therefore, these
polynomial coefficients can be stored in look-up tables of
2m entries.3 Theexactvalueofmdependson the function tobe
computed and on the target precision. For instance, it will be

shown in Section 3.4 that, for approximating the square root

and exponential, with an accuracy of 1 ulp in a single-

precision format,m ¼ 6 suffices, whilem ¼ 7 is necessary for

computing the reciprocal, logarithm, and reciprocal square

root. Note that minimizing m is crucial to the area require-

ments of an interpolator since ahigh-accuracy approximation

that allows for using m0 ¼ m� 1 would require look-up

tables with 2m�1 entries, that is, half the number of entries in

the table, and, therefore, tables with roughly half the size of the

original ones.
The main features of our method can be summarized as:

. An enhancedminimax approximation is computed to
obtain the sets of coefficients of a quadratic interpola-
tion for the considered function, within the error
bounds set by a specific application. Such an approx-
imation consists of 3-passes of the minimax approx-
imation in order to compensate for the rounding
errors introduced by having finite-size coefficients.
This enhanced minimax approximation is performed
with the computer algebra system Maple.

- The value of m is minimized to allow for a
significant reduction in the size of the look-up
tables storing the coefficients.

- The wordlengths of the polynomial coefficients
are also minimized, after m has been set, to
allow for a further reduction in the table size
and also in the size of the logic blocks to be used
in the polynomial evaluation.

- The range of the coefficients is noted in order to
safely remove, if possible, some initial bits from
the stored coefficients. These bits are treated as
implicit bits and can be concatenated at the
output of the look-up tables, allowing for a
further slight reduction in their size.

. A high-speed evaluation of the degree-2 polynomial
is carried out in order to obtain execution times
similar to those of linear interpolation methods,
which only require the computation of one multi-
plication (and, possibly, one addition).

- A specialized squaring unit is used for generat-
ing X2

2 . Since this value is used as a multiplier
operand in the generation of the partial products
of C2X

2
2 , its assimilation to nonredundant

representation (which would increase the over-
all delay of the polynomial evaluation) is
avoided by using CS to SD recoding instead.

- SD radix-4 recoding of the multipliers is used in
the generation of the partial products of C2X

2
2

and C1X2, which allows the reduction by half of
the number of partial products to be accumu-
lated. The alternative of using SD radix-8
recoding instead is discussed in Section 3.5.

- The accumulation of all partial products of C2X
2
2

and C1X2, together with the degree-0 term C0, is
carried out by a multioperand adder.

- Assimilation into nonredundant representation
is performed just once, by a fast adder (a CPA),
at the output of the fused accumulation tree. If

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 307

3. In some cases, a bigger range is covered for ease of implementation
and some extra bit(s) may be necessary for addressing the tables. For
instance, when approximating the square root or square root reciprocal, the
least significant bit of the exponent is employed to select between the tables
covering the intervals ð1; 2Þ and ð2; 4Þ.

Fig. 2. Block diagram of the proposed table-based method.

two multiplications and two additions were
performed, several sequential assimilations
would be necessary, slowing down the poly-
nomial computation significantly.

. Rounding is performed by injecting a function-specific
rounding bias before performing truncation of the
result to the target precision. This is an enhancement
of rounding to the nearest since it subsumes the
former, but also allows for reducing the maximum
absolute error for each specific function and compen-
sating for the effect of truncation errors in the
polynomial evaluation, such as using finite
wordlength in the computation ofX2

2 . This rounding
scheme is not suitable for higher-precision computa-
tions since exhaustive simulation is required for the
choice of the rounding bias.

The results of the function approximation obtained with
our quadratic interpolator can be guaranteed accurate to
1 ulp, which allows faithful rounding for the computation
of reciprocal, square root, square root reciprocal, and
exponential.4 For many applications, guaranteeing faithful
rounding suffices and speeds up the computations, while
significantly reducing the hardware requirements of the
circuit. For instance, it is a common practice in computer
graphics applications not to perform exact rounding since
the inherent loss of precision does not lead to degradation
in the quality of the results, usually employed only for
displaying purposes [14], [18].

3.3 Error Computation

The total error in the final result of the function approxima-
tion step can be expressed as the accumulation of the error
in the result before rounding, "interm, and the rounding
error, "round:

"total ¼ "interm þ "round < 2�r; ð4Þ

where r depends on the input and output ranges of the
function to be approximated and on the target accuracy and
defines a specific bound on the final error.

The error on the intermediate result comes from two
sources: the error in the minimax quadratic approximation
itself, "approx, and the error due to the use of finite arithmetic
in the evaluation of the degree-2 polynomial:

"interm � "approx þ "C0
þ "C1

X2 þ "C2
X2

2 þ jC1j"X2
þ jC2j"X2

2
:

ð5Þ

The error of the approximation, "approx, depends on the
value of m and on the function to be interpolated. As
pointed out in Section 3.2, the minimum value of m
compatible with the error constraints must be used in order
to allow for reduced size look-up tables storing the
polynomial coefficients.

The Maple program we use for obtaining the coefficients
(see Section 3.4) gives the contribution to the intermediate
error of the minimax approximation performed with
rounded coefficients and, therefore, we can define:

"0approx ¼ "approx þ "C0
þ "C1

X2 þ "C2
X2

2 ð6Þ

and, since "X2
¼ 0, in this case:

"interm � "0approx þ "squaring; ð7Þ

with "squaring ¼ jC2j"X2
2
.

On the other hand, "round depends on how the rounding
is carried out. Conventional rounding schemes are trunca-
tion and rounding to the nearest. If using truncation of the
intermediate result at position 2�r, the associated error
would be bounded by "round � 2�r, while, if performing
rounding to the nearest by adding a one at position 2�r�1

before such truncation, the rounding error would be
bounded by 2�r�1 instead.

The rounding scheme employed in our minimax quad-
ratic interpolator is an enhancement of rounding to the
nearest, made possible by exhaustive simulation, and
consists of adding a function-specific rounding bias before
performing the truncation of the intermediate result at
position 2�r. A judicious choice of the bias, based on the
error distribution of the intermediate result for each specific
function, allows reduction of the maximum absolute error
in the final result while compensating for the truncation
carried out in the squaring unit. The injection of such a bias
constant can be easily performed within the accumulation
tree, as will be explained in Section 3.5.

Summarizing, the total error in the final result can be
expressed as:

"total ¼ "0approx þ jC2j"X2
2
� "round < 2�r; ð8Þ

with �"round instead of þ"round due to the ability of our
rounding scheme to compensate in some cases for the
truncation errors in both the squaring computation and the
enhanced minimax approximation.

3.4 Enhanced Minimax Approximation

In this section, we describe the algorithm for obtaining the
coefficients of the quadratic polynomial to be stored in the
look-up tables. This algorithm consists of three passes of the
minimax approximation in order to compensate for the errors
introducedby roundingeachof thepolynomial coefficients to
a finite precision. More information about the minimax
approximation can be found in [23], [25], [29], [31], [33].

Fig. 3 describes the heuristic employed to obtain the
minimum value of m which guarantees results accurate to
the target precision, the set of coefficients C0; C1; C2 with
minimum wordlengths ðt; p; qÞ, and the function-specific
rounding bias. As Step 2 in our heuristic, a 3-passes hybrid
algorithm is computed by using Maple, as shown in Fig. 4.
This hybrid algorithm will be explained in detail below. As
Step 3, exhaustive simulation across the approximation
interval is performed using a C program which describes
the hardware functionality of our quadratic interpolator.
Note that exhaustive simulation is possible due to the fact of
dealing with single-precision computations.

When the configuration which leads to a lower table size
has been obtained (optimal configuration), the binary
representation of the coefficients is generated to be used
in the synthesis process. All coefficients are kept in fixed-
point form and the range of the coefficients is noted in order

308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

4. Faithful rounding means that the returned value is guaranteed to be
one of the two floating-point numbers that surround the exact value and
such a condition leads, in many cases, to producing the exactly rounded
result.

to safely remove some bits from the stored coefficients (to
be dealt with as implicit initial bits, which are later
concatenated at the output of the tables), allowing a slight
further reduction in the table sizes.

The parameter � has been introduced in the heuristic
described in Fig. 3 in order to be aggressive in the
minimization of m and ðt; p; qÞ since it prevents early
discarding of configurations which might be allowed later
in combination with a specific rounding bias. A value of �
which allows obtaining a good degree of optimization is
� ¼ 2�r�2.

Note that, at the end of Step 2 in Fig. 3, there may be
several combinations of ðt; p; qÞ which are candidates to be

the optimal configuration. In such a case, priority could be
given to those combinations which minimize ðpþ qÞ,
allowing a higher value for t since the coefficient C0 is not
involved in any partial product generation and, therefore, it
has a slightly lower impact on the size of the structures used
within the accumulator tree. Alternatively, the bit-patterns
of the coefficients for each configuration (in binary
representation) can be analyzed to see if there is any
configuration which allows treating a higher number of bits
as implicit, thus saving some extra bits of storage.

An interesting artifact can occur for some configurations
with specific functions: All values of a coefficient share
some initial common bits (this may include the sign bit as
well) except the one corresponding to the first subinterval.
In such a case, the conflictive value can be speculatively
substituted by the closest binary number sharing those
initial common bits and the exhaustive simulation must be
performed again, assuming this new value, to check
whether the maximum absolute error has not increased.
This trick allows the saving of extra storage of implicit bits
in the look-up tables without affecting the accuracy of the
approximation. In order to illustrate this artifact, the
implicit bits for the optimal configurations obtained with
1 ulp accuracy for some elementary functions are shown in
Table 1. It happens that the value of the coefficient C0 in the
first subinterval for sinðXÞ, with m ¼ 6 and configuration
(27; 18; 13), is �2:235 � 10�8, while all other values of C0 are
positive and belong to the interval ½0; 1Þ. Keeping such a
value for the first interval would make storage of both the
sign and the integer bits for all C0 coefficients in the
corresponding look-up table necessary. However, this value
can be safely substituted by 0 and, since the maximum error
of the approximation does not belong in that first sub-
interval, a pattern þ0:xxxxx can be assumed for C0 in that
case. Thus, the initial þ0: need not be stored since it can be

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 309

Fig. 3. Heuristic for obtaining sets of coefficients.

Fig. 4. Maple program for obtaining the coefficients (square root,m ¼ 6).

concatenated at the output of the table with the stored
:xxxxx bits.

3.4.1 Three-Passes Hybrid Algorithm

A minimax approximation with polynomial coefficients (a0,
a1, a2) of unrestricted wordlength yields very accurate
results. However, the coefficients must be rounded to a
finite size to be stored in look-up tables and such rounding
may significantly affect the precision of the original
approximation. Let us illustrate this with an example:
Consider the computation of the function 1=

ffiffiffiffiffi

X
p

on the
interval ð1; 2Þ, for a random value of m, say 8. At address i
in the table, we will find the coefficients of the approxima-
tion for the interval ½1þ i=256; 1þ ðiþ 1Þ=256Þ. Let us see
how to compute coefficients for i ¼ 37.

The Maple input line

> minimax(1/sqrt(1+37/256+x),

x=0..1/256,[2,0],1,’err’);

asks for the minimax approximation in that domain (the
variable x represents X2, the lower part of the input
operand X). We get the approximation

> 0.93472998018 +

(- 0.40834453917 + 0.26644775593 x) x,

with an error "approx ¼ 3:61� 10�9. However, if the linear
coefficient a1 is rounded to p ¼ 14 bits to become C1 and the
quadratic coefficient a2 is rounded to q ¼ 6 bits to form C2,
the approximation error using C1 and C2 turns out to be
"0approx ¼ 5:58� 10�8, which is much larger than "approx, the
error of the approximation using a1 and a2.

Asecondpassof theminimaxapproximationallowsfor the
computation of the best approximation among the polyno-
mials with p-bit C1 coefficients (this new polynomial has
coefficients a00 and a02). After rounding the newly obtained
coefficient a02 to q ¼ 6 bits to formC2, the approximation error
has been reduced to "0approx ¼ 5:01� 10�8.

A third pass of the minimax approximation is necessary
to take into account the effect of this rounding as well. The
idea is now obtaining the best polynomial among those
polynomials whose order-1 coefficient is C1 and whose
order-2 coefficient is C2. This is done as follows:

> minimax(1/sqrt(1+37/256+x)-C1*x -

C2*x^2,x=0..1/256,[0,0],1,’err’);

By doing this, a coefficient a000 ¼ 0:934730008279251 is

obtained. The error of this final approximation is

"0approx ¼ 2:77� 10�8, which is half the error of the original

approximation with a single pass of minimax, when the

effect of rounding the coefficients to finite wordlengths was

not taken into account. Finally, in both cases, the degree-0

coefficient must also be rounded to t bits to be stored in the

look-up table corresponding to C0.

In Piñeiro et al. [29], [31], an algorithm was proposed

consisting of performing these 3-passes of the minimax

approximation. However, some numerical problems arose

in such an algorithm when considering specific configura-

tions and/or specific functions, originated by the minimax

approximation performed as second step.5 In such a step, an

approximation a00 þ a02�
2 to ða1 � C1Þ� is computed, which,

defining L ¼ �2, is equivalent to performing an order-1

approximation to ða1 � C1Þ
ffiffiffiffi

L
p

. The conclusion is that

certain functions are not readily amenable to being

approximated by automated methods since the function

needs to be expressable in a particularly simple form.

Those numerical problems referred to were later ad-

dressed by Muller [25] by showing that the degree-1

minimax approximation to
ffiffiffiffi

L
p

in the interval ½0; 2�2d�
corresponds to

2�d�3 þ 2dL; ð9Þ

with an error in the approximation of 2�d�3, which makes
available an analytical expression for performing the second
pass. The algorithm proposed in [25], however, does not
provide a higher overall accuracy since it performs only
2-passes of the minimax approximation instead of three.

Summarizing, we propose here a hybrid algorithm
consisting of 3-passes of the minimax approximation, with
the second pass performed by making use of the analytical
expressions introduced in [25]:

1. Using minimax to find the original approximation,
with nontruncated coefficients, and rounding the
degree-1 coefficient to p bits to obtain C1.

310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

TABLE 1
Implicit Bits in the Polynomial Coefficients for Some Functions (1 ulp)

5. For instance, when trying to compute an approximation to the
reciprocal with m ¼ 7 and a configuration (26; 16; 10) or to the logarithm
with m ¼ 7 and (26; 15; 10), Maple gives the following error message: Error,
(in numapprox/remez) error curve fails to oscillate sufficiently; try different
degrees.

2. Computing a02 using the analytical expression

a02 :¼ a2 þ ða1 � C1Þ � 2m; ð10Þ

where a1, a2 are the degree-1 and degree-2 coeffi-

cients of the original approximation, and rounding

a02 to q bits to obtain C2.
3. Using minimax to compute the degree-0 coefficient,

based on C1 and C2 above, and then rounding it to t
bits to obtain C0.

Fig. 4 shows a Maple program which implements our
method, for the computation of square root, with m ¼ 6,

within the interval ð1; 2Þ. The number of correct bits are

obtained as goodbits and the error of the approximation,

"0approx, is shown as errmax.

3.4.2 Table Sizes Obtained with Our Algorithm

Table 2 shows a summary of the parameters to be employed

for the approximation of some elementary functions with

our method, with an accuracy of 1 ulp. The error bounds in
the prenormalized result are shown, together with the

minimum values of m for each function, the number of

fractional bits of the polynomial coefficients in the optimal

configurations, the accuracies yielded by such optimal

configurations, and the corresponding look-up table sizes

for each function.
Remember that the number of fractional bits of the

coefficients (configuration) is not coincident in all cases with

the number of stored bits since the ranges of some
coefficients allow removal of some initial bits, which are

left as implicit bits, while, in other cases, it is necessary to

store an integer bit as well, as shown in Table 1.
Smaller tables couldbe employed for approximationswith

looser accuracy constraints, as shown in Table 3 for the cases

of 2ulps and4ulps.Note that,whenadecrement byone in the

value of parameter m is made possible by lower accuracy
constraints, a reduction by a factor of about 2 can be achieved
in the sizeof the look-up tables. This happens, for instance, for
reciprocal computationswhengoing from2ulps to 4ulps and
for exponential (2X) or reciprocal square root approximation
when moving from 1 ulp to 2 ulps.

3.5 Fast Evaluation of the Quadratic Polynomial

As explained in Section 2, many quadratic interpolators [1],
[2], [15] have, as a main drawback, their long execution
times, in spite of the advantage of using small tables for
storing the polynomial coefficients. In order to emulate the
behavior of linear approximations, the polynomial evalua-
tion must be carried out in an efficient manner. For that
purpose, we use a specialized squaring unit, redundant
arithmetic, and multioperand addition, as shown in Fig. 2.

3.5.1 Specialized Squaring Unit

Rather than having a multiplier to compute X2
2 , two

techniques can be used to design a unit with significantly
reduced area and delay [16], [37]: rearranging the partial
product matrix and considering the leading zeros ofX2. The
former is well-known and we refer the reader to [3], [29],
[36] for more information. In the latter, advantage is taken
of the fact that X2 ¼ ½:xmþ1 . . .xn� � 2�m (i.e., X2 has
m leading zeros) and, therefore, X2

2 will have at least
2m leading zeros. Truncation can be employed in the partial
product matrix of the squaring unit under a certain error
bound, which is dependent on the function to be computed.
When m ¼ 6, truncating at position 2�28 results in a
maximum error of 1:0 � 2�25, while the maximum value of
"X2

2
is 0:94 � 2�25 for m ¼ 7 and does not affect the accuracy

of the final result due to the injection of a function-specific
bias in the rounding scheme. Truncation at position 2�28

when m ¼ 6 results in a wordlength of 16 bits for X2
2 , while

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 311

TABLE 2
Summary of Design Parameters for Some Functions (1 ulp)

TABLE 3
Size of the Tables to Be Employed for Target Accuracies of 2 ulps and 4 ulps

14 bits must be kept for the square with m ¼ 7. Only two
levels of 4:2 adders, plus an initial and stage (xij ¼ xi � xj),
are required to generate the CS representation of X2

2 , which
is directly recoded to SD-4, to be used as multiplier operand
in the fused accumulation tree.

When sharing the squaring unit for the approximation of
several functions with different values of m, the squarer
must be designed for the lowest m since all other cases are
subsumed just by inserting leading zeros, as will be shown
in Section 4.

3.5.2 Fused Accumulation Tree

Apart from the squaring evaluation, the other main
problem to be overcome in order to guarantee high-speed
function approximations is the computation of the quad-
ratic polynomial once the values of C0, C1, and C2 have been
read from the look-up tables and X2

2 has been calculated in
parallel using the specialized squaring unit.

Following [36], we propose employing a unified tree to
accumulate the partial products of both C1X2 and C2X

2
2 ,

plus the coefficient C0. The use of redundant arithmetic can
help to significantly reduce the number of partial products
to be accumulated: SD radix-4 reduces such a number by
half, while SD radix-8 may do it by a factor of 2/3.

The total number of partial products to be accumulated
is the sum of the number of partial products of C1X2

(generated by X2), the number of partial products of C2X
2
2

(generated byX2
2), plus 1 (the degree-0 coefficient C0). Thus,

if the total number of partial products goes from 10 to 12, a
first level of 3:2 adders, plus two levels of 4:2 adders are
necessary. If the range is 13 to 16 pps, three levels of 4:2 CSA
adders are necessary and, for higher values, at least four
levels of adders must be employed in the accumulation tree.

Table 4 shows different combinations of SD-4 and SD-8
representation for X2 and X2

2 which may be considered.
When m ¼ 7, the best alternative consists of using SD-4 for
both X2 and X2

2 since their wordlengths of 16 and 14 bits,
respectively, lead to the generation of 8þ 7þ 1 ¼ 16 partial
products to be accumulated. No speed-up can be obtained
from using SD-8 unless it is employed for both X2 and X2

2 ,
which would increase the table sizes significantly since the
multiples ð3�Þ for C1 andC2 must be also stored in order not
to increase thedelayof thepartial productgeneration scheme.

When m ¼ 6, X2 has 17 significant bits and X2
2 has

12 leading zeros, with a wordlength of 16 bits if truncation
at position 2�28 is performed in the specialized squaring
unit. The first alternative, following [29], [31], consists of
again using SD-4 representation for both X2 and X2

2 , which

results in the generation of nine partial products to compute
C1X2 and eight partial products to compute C2X

2
2 . The

number of operands to be accumulated is, therefore, 18
(9þ 8þ 1, the last one being the coefficient C0) and,
therefore, four levels of adders are required, but a minimum
size for the look-up tables is guaranteed. The second
alternative consists of using SD-8 representation for X2

2 ,
reducing the contribution of C2X

2
2 from eight to six partial

products, which leads to a total number of 16 pps to be
accumulated and helps to reduce the delay of the
accumulation tree by adjusting to just three levels of
4:2 adders. The selection between both alternatives depends
on implementation and technology constraints.

In our method, the first alternative is employed because it
allows a minimum table size, while the accumulation of
partial products can be arranged so that the effective delay
corresponds to only three levels of 4:2 adders. Note that, as
will be shown in Section 4, the generation of the partial
products of C2X

2
2 usually takes longer than the generation of

those corresponding to C1X2, due to the computation of the
squaring and later recoding into SD-4 representation. Thus, a
first level of three 3:2 CSA adders can reduce the nine partial
products ofC1X2 into six pps, in parallel with the recoding of
X2

2 and generation of C2X
2
2 , and, therefore, out of the critical

path of the interpolator. Note also that, in the resulting
accumulation tree, only the leftmost carry-save adders in
levels second to fourth (see Fig. 6) must have full single-
precisionwordlength, while all other adders benefit from the
reduced wordlength of the polynomial coefficients.

By using this strategy, the effective delay of the
accumulation tree for m ¼ 6 is exactly the same as that for
m ¼ 7, that is:

taccum tree ¼ tpp gen þ 3� t4:2 CSA; ð11Þ

with tpp gen the delay of the partial products generation
stage, while the delay of a standard ð24� 24Þ-bit multiplier
corresponds to

tstd mult ¼ tpp gen þ t3:2 CSA þ 2� t4:2 CSA: ð12Þ

Therefore, the proposed fused accumulation tree is only
about 0:5� slower than a standard single-precision multi-
plier (� is the delay of a full-adder), with less area because
of the reduced wordlengths of C2 and C1, the coefficients of
our enhanced minimax polynomial approximation.

Fig. 5 shows the arrangement of the matrix of partial
products to be accumulated for m ¼ 6 and gives an idea of
the effect of reducing the wordlengths of these two
coefficients on the total area of the accumulation tree (C2

312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

TABLE 4
Use of Redundant Arithmetic in the Generation of the Partial Products

affects eight partial products, while C1 is involved in the
generation of nine). Sign extension of the operands [28] is
performed as shown in Fig. 5, with the circles at the
beginning of each word meaning a complement of the sign
bit. Bits ci and dj correspond to the LSB to be added to
partial products i or j when multiples �1 and �2 are
generated. cis correspond to the partial products of C1X2,
while djs are related to the partial products of C2X

2
2 .

The injection of the function-specific rounding bias can be
easily accomodated within the accumulation tree by a
variety of techniques. As shown in Fig. 5, we have chosen to
split such bias into upper and lower fields, adding the upper
field to C0 before storing it in the corresponding look-up
table and appending to it the lower field within the
accumulation tree.

4 ARCHITECTURE

In this section, an architecture for the computation of
reciprocal, square root, exponential, and logarithm, in
single-precision floating-point format is proposed. The
block diagram of such an unfolded architecture,6 which
implements our table-based method for function approx-
imation, is shown in Fig. 6. Sign, exponent, and exception
logic are not shown.

When implementing a single unit approximating several
functions, only the look-up tables storing the polynomial
coefficients must be replicated since the squaring unit,
recoders, CPA, and multioperand adder can be shared for
the different computations. Some kind of selection logic
must be inserted to distinguish among the polynomial
coefficients corresponding to different functions or, alter-
natively, a single ROM structure could be employed to store
all coefficients, with the addressing acting as the multi-
plexing scheme.

Since m ¼ 6 for square root and exponential and m ¼ 7
for reciprocal and logarithm, the input operand X is split
into X1 and X2 as follows:

X1 ¼ :x1 . . .x6x7; ð13Þ

with x7 not affecting the coefficient selection for square root
and exponential, and

X2 ¼ :x7x8 . . .x23 � 2�6; ð14Þ

with x7 set to 0 when approximating reciprocal and
logarithm.

The size of the buses, the squaring unit, and the
accumulation tree have been set according to the error
computation in order to guarantee an accuracy of 1 ulp for
all functions considered: 27 bits for C0 (one integer and
26 fractional bits, with an implicit positive sign), 18 bits for
C1 (one sign, one integer, and 16 fractional bits), and 13 bits
for C2 (one sign, one integer, and 11 fractional bits), as
shown in Fig. 6. On the other hand, the squaring unit and
accumulation tree employed are those corresponding to
m ¼ 6 since the case m ¼ 7 is thus subsumed.

The look-up tables storing the polynomial coefficients
are addressed using X1, two control bits (op) which select
among the four functions to be approximated, and, for
square root computations, also the least significant bit of the
input exponent Ex, which determines whether the exponent
is even or odd. In parallel, X2 is recoded from binary
representation to SD-4 and the computation of X2

2 is carried
out in carry-save form and then recoded to SD-4 representa-
tion. The sign, exponent, and exception logic also operate in
parallel with the table look-up. The total table size is about
22:2Kb, with a contribution of 2� 3:0625KB for the square
root, 3:1875Kb for the exponential, 6:375Kb for the
reciprocal, and 6:5Kb for the logarithm, as shown in Table 2.

All partial products are accumulated together using the
multioperand adder, with a first level of 3:2 adders
reducing the number of partial products of C1X2 from nine
to six, and then three levels of 4:2 adders. Such a structure,
as explained in Section 3.5, accomodates the delay of the
required extra level of 3:2 adders and compensates for the
delay of the path consisting of squaring computation and
recoding. A function-specific compensation constant (round-
ing bias) is injected within the accumulation tree in order to
perform the rounding while minimizing the maximum

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 313

6. Note that pipelining this architecture into a three-stage structure is
straightforward, as shown in [29], [31].

Fig. 5. Accumulation of the partial products (when m ¼ 6).

absolute error for each function. Finally, the assimilation

from CS into nonredundant representation and normal-

ization of the result are carried out by a fast adder.

4.1 Evaluation

Estimates of the cycle time and area costs of the proposed

architecture are presented now, based on an approximate

technology-independent model for the cost and delay of the

main logic blocks employed. In this model, whose descrip-

tion can be found in [29], [30], the unit employed for the

delay estimates is � , while the area estimates are expressed

as a multiple of fa, the delay and area, respectively, of a

full-adder. Table 5 shows the area and delay estimates for

the main logic blocks in our architecture, together with

those corresponding to the logic blocks employed in the

methods included in the comparison performed in Section 5.

The delay estimates for the look-up tables already include

an extra 0:5� to account for the selection scheme required

when several functions are approximated.
The critical path in our architecture is the slowest

between two main candidates:

tpath A ¼ ttable C1
ð3:5�Þ þ tpp genð1�Þ þ t3:2 CSAð1�Þ

þ 3� t4:2 CSAð4:5�Þ þ tCPAð3�Þ þ tregð1�Þ ¼ 14�;

ð15Þ

tpath B ¼ tsquaringð3:5�Þ þ trecodingð1:5�Þ þ tpp genð1�Þ
þ 3� t4:2 CSAð4:5�Þ þ tCPAð3�Þ þ tregð1�Þ ¼ 14:5�:

ð16Þ

According to the delay estimates of the individual
components shown in Table 5, the critical path in our
architecture corresponds to path B and the cycle time can
be estimated as tpath B ¼ 14:5� .

According to the area estimates of the individual compo-
nents shown in Table 5, the total area can be estimated as
1; 291fa, with a contribution of 776fa from the 22:2Kbit look-
up tables and of 515fa from the combinational logic blocks
employed: a specialized squaring unit with m ¼ 6 (52fa), a
recoder fromCS to SD-4 (25fa), a recoder frombinary to SD-4
(5fa), the fused accumulation tree corresponding to m ¼ 6
(400fa), aCPA (21fa), and registers (12fa). The exponent and
sign logic, and the range reduction schemes, are not included
in the evaluation.

5 COMPARISON

A comparison of the minimax quadratic interpolator with
existing methods for function approximation is presented in
this section. The area and delay estimates have been
obtained using the same technology-independent model
used for the evaluation of our architecture [29], [30], and are
explained in detail in [32]. Table 5 shows the estimates for
the main logic blocks employed in the compared methods.

314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

Fig. 6. Implementation of our minimax quadratic interpolator.

All considered interpolators employ similar tables and
multipliers and, therefore, comparison results are technol-
ogy-independent, with the relative values expressing trends
among the different designs and making good first-order
approximations to the actual execution times and area costs.

The comparison is organized in two parts. On the one
hand, we compare the minimax quadratic interpolator with
an optimized bipartite table method (SBTM) [34] and two
linear approximation algorithms (DM97 and Tak98) [5],
[40], when computing a single operation: reciprocal. This is
due to the fact that DM97 [5] has been proposed only for
performing such an operation and that Tak98 [40] has been
proposed for powering computation with a fixed exponent
(Xp, thus including the reciprocal when p is set to �1), but
neither one is a general method for elementary function
approximation. On the other hand, we compare the
minimax interpolator with other quadratic methods
(CW97, CWCh01, JWL93, and SS94) [1], [2], [15], [36] when
employed as an elementary function generator, that is,
when computing several operations (in this case, four
operations) with the combinational logic shared for the
different computations and a replicated set of look-up
tables. In JWL93 [15] the functions approximated are
reciprocal, square root, arctangent, and sine/cosine, CW97
[1] and CWCh01 [2] approximate reciprocal, square root,
sin/cos and 2X, and, in both SS94 [36] and our quadratic
minimax interpolator, the functions computed are recipro-
cal, square root, exponential (2X), and logarithm. We have
chosen to conform to the original methods in order to obtain

the area and delay estimates based on the table sizes
reported by their respective authors.

Table 6 shows the table sizes, estimated area costs, and
execution times of the minimax quadratic interpolator for
the computation of the reciprocal when compared with
those corresponding to SBTM [34], DM97 [5], and Tak98
[40]. Some assumptions have been made to allow for a fair
comparison: Table sizes correspond to a final result accurate
to 1 ulp and exponent and exception logic are not included
in the area estimates.

The main conclusion to be drawn from this comparison
is that bipartite table methods are simply unfeasible for
single-precision computation due to the huge size of the
tables to be employed. It is also noticeable that fast
execution times can be obtained with linear approximation
methods, but their hardware requirements are two to three
times higher per function than those corresponding to the
minimax quadratic interpolator, which, on the other hand,
allows for similar execution times. When several functions
must be approximated, the look-up tables storing the
coefficients need to be replicated and the benefits of a fast
quadratic interpolator regarding bipartite tables and linear
approximation methods are significantly increased.

In order to compare the minimax quadratic interpolator
with other second-degree approximation methods, when
used as an elementary function generator, the total table
size, execution time, and area costs, both from the look-up
tables and from the combinational logic, are shown in
Table 7. To allow for a fair comparison, table sizes
correspond in all cases to final results accurate to 1 ulp.
Note also that exponent and exception logic are not
included in the area estimates and that execution times
correspond to reciprocal and square root computation (for
exponential, logarithm, or trigonometric functions, the
delay of the range reduction and/or reconstruction steps
should be added).

The analysis of approximations with Chebyshev poly-
nomials of various degrees performed in [36] shows that a
cubic approximation allows some area savings for 24-bits of
precision and exactly rounded results. However, when results
accurate to 1 ulp are allowed, a quadratic approximation is
preferable in terms of both area and speed (see [36, Fig. 14]).
Therefore, we have included in our comparison their
quadratic interpolator (SS94) for the approximation of
reciprocal, square root, exponential (2X), and logarithm,with
the table sizes reported in [36, Fig. 18], which correspond to a
target precision of 24-bits, with 1 ulp accuracy.

The analysis of the estimates shown in Table 7 points out
some interesting trends. Regarding execution time, JWL93,

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 315

TABLE 5
Area and Delay Estimates of Logic Blocks Used in the

Compared Interpolators

TABLE 6
Architecture Comparison (Reciprocal Computation, 1 ulp Accuracy)

CW97, and CWCh01 show the main drawback of quadratic
interpolators when the degree-2 polynomial is evaluated
using a conventional scheme consisting of performing two
serial multiplications and additions: low speed. Conversely,
SS94 and the minimax quadratic interpolator use optimized
schemes to deal with the polynomial evaluation, resulting
in execution times similar to those achieved by linear
approximation methods (about 14�). In SS94, the two
multiplications and additions are concurrently computed
and the final result is obtained by using a 3-input multi-
operand adder, while, in our minimax quadratic interpo-
lator, all partial products of the multiplications are added
together using merged arithmetic and a final CPA assim-
ilates the output of the fused accumulation tree into binary
representation.

In terms of area, CW97 and CWCh01 methods show
reduced hardware requirements (around 1; 400fa). This is
due to the fact that those methods use a hybrid scheme
where some function values are stored in the look-up tables
instead of the polynomial coefficients, which allows a
reduction in the total table size. However, such a reduction
comes at the expense of computing the coefficients on-the-
fly, which adds extra delay to the critical path and results in
long execution times. The SS94 and JWL93 methods require
bigger tables per function and, therefore, their hardware
requirements are significantly larger.

The main difference between SS94 and the minimax
quadratic interpolator is subtle, but important, and explains
the different table size required for each method. While
both methods rely on accurate mathematical approxima-
tions which outperform Taylor approximations (although,
as shown by Piñeiro et al. [29], [31] and Muller [23], [25], the
use of minimax yields slightly better accuracy than Cheby-
shev), the approximation in SS94 is computed without
accounting for the effect of rounding the polynomial
coefficients to a finite wordlength. However, three passes
of the minimax approximation are performed in our
algorithm, which allows compensating in each pass for
the effect of rounding a coefficient to a finite wordlength
(see Section 3.4). This property, combined with the intrinsic
higher accuracy of the minimax approximation, results in a
more accurate departing polynomial approximation, and
makes feasible a reduction by one of the value ofm for most
functions. Note that a decrement in m by one results in a
reduction by half in the size of the look-up tables to be
employed, which grow exponentially with m (each table
has 2m entries), and, therefore, has a strong impact on the
hardware requirements of the architecture. The final step of
performing exhaustive simulation in order to minimize the

width of the coefficients to be employed, which is common
to both methods, has a much lower impact on the table size
since marginal improvements can be achieved at that stage.
Such a step is necessary, however, since any reduction in
the wordlength of the coefficients may also help in reducing
the size of the accumulation tree to be employed for the
polynomial evaluation.

We can conclude, therefore, that our enhanced minimax
interpolator shows the lowest overall area requirements
(about 1; 291fa), similar to those of the best quadratic
interpolators, which, on the other hand, have execution
times over two times longer than those of our method. Such
an area reduction, made possible by the high accuracy of
the minimax approximation and to the 3-passes iterative
algorithm employed to compute the polynomial coeffi-
cients, can be achieved without compromising speed since
similar execution times to those of the linear approxima-
tions have been obtained. Moreover, when implementing
an interpolator for the computation of different operations,
the impact of reducing the table size in the overall area
increases significantly since one set of look-up tables storing
C0, C1, and C2 must be used per function.

6 CONCLUSION

A table-based method for high-speed function approxima-
tion in single-precision floating-point format has been
presented in this paper. Our method combines the use of
an enhanced minimax quadratic approximation, which
allows the use of reduced size look-up tables, and a fast
evaluation of the degree-2 polynomial, which allows us to
obtain execution times similar to those of linear approxima-
tions. An architecture implementing our method has been
proposed for the computation of reciprocal, square root,
exponential, and logarithm, with an accuracy of 1 ulp.

The significandof the input operand is split into two fields,
X1 and X2, and an iterative algorithm which consists of
3-passes of theminimaxapproximation to compensate for the
effect of rounding each coefficient to a finite wordlength is
performed for each input subinterval. The coefficients of such
quadratic approximation, C0, C1, and C2, are stored in look-
up tables addressed by the m-bit word X1 (m being 6 for
square root and exponential, while m ¼ 7 for reciprocal and
logarithm computation). In parallel with the table look-up, a
specialized squaring unit with low area cost and delay
performs the calculation of X2

2 . The values X2 and X2
2 are

recoded into SD radix-4 representation in order to reduce the
number of partial products of C1X2 and C2X

2
2 , which are

accumulated together using a multioperand adder. Such an

316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

TABLE 7
Architecture Comparison (Computation of Four Operations, 1 ulp Accuracy)

accumulation tree has less area and a similar delay as a

standard ð24� 24Þ-bitmultiplier.
Estimates of the execution times and area costs for the

proposed architecture have been obtained and a compar-

ison with other quadratic interpolators, linear approxima-

tions, and bipartite tables methods has been shown, based

on a technology-independent model for the area and delay

of the main logic blocks employed. The conclusion to such a

comparison is that our method combines the main

advantage of linear approximations, the speed, and the

main advantage of the second-degree approximations, the

reduced size of the circuit, achieving the best trade off

between area and performance.
The proposed method can be applied not only to the

computation of reciprocal, square root, exponentials, and

logarithms, but also for square root reciprocal, trigono-

metric functions, powering, or special functions, in single-

precision format with an accuracy of 1 ulp, 2 ulps, or 4 ulps.

It can also be employed for fixed-point computations or to

obtain high-accuracy seeds for functional iteration methods

such as Newton-Raphson or Goldschmidt, allowing sig-

nificant latency reductions for those algorithms. All these

features make our quadratic interpolator very suitable for

implementing an elementary function generator in state-of-

the-art DSPs or GPUs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their useful suggestions and contributions. J.-A. Piñeiro

and J.D. Bruguera were supported by the Spanish Ministry

of Science and Technology (MCyT-FEDER) under contract

TIC2001-3694-C02. J.-A. Piñeiro was with the University of

Santiago de Compostela when this work was performed.

REFERENCES

[1] J. Cao and B. Wei, “High-Performance Hardware for Function
Generation,” Proc. 13th Int’l Symp. Computer Arithmetic (ARITH13),
pp. 184-188, 1997.

[2] J. Cao, B. Wei, and J. Cheng, “High-Performance Architectures for
Elementary Function Generation,” Proc. 15th Int’l Symp. Computer
Arithmetic (ARITH15), pp. 136-144, 2001.

[3] T.C. Chen, “A Binary Multiplication Scheme Based on Squaring,”
IEEE Trans. Computers, vol. 20, pp. 678-680, 1971.

[4] W. Cody and W. Waite, Software Manual for the Elementary
Functions. Prentice-Hall, 1980.

[5] D. DasSarma and D.W. Matula, “Faithful Interpolation in
Reciprocal Tables,” Proc. 13th Symp. Computer Arithmetic
(ARITH13), pp. 82-91, 1997.

[6] D. DasSarma and D.W. Matula, “Faithful Bipartite ROM Recipro-
cal Tables,” IEEE Trans. Computers, vol. 47, no. 11, pp. 1216-1222,
Nov. 1998.

[7] K. Diefendorff, P.K. Dubey, R. Hochprung, and H. Scales, “Altivec
Extension to PowerPC Accelerates Media Processing,” IEEE Micro,
pp. 85-95, Mar./Apr. 2000.

[8] M.D. Ercegovac and T. Lang, “On-Line Arithmetic: A Design
Methodology and Applications,” VLSI Signal Processing, III,
chapter 24, IEEE Press, 1988.

[9] M.D. Ercegovac and T. Lang, Division and Square Root: Digit
Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[10] M.J. Flynn, “On Division by Functional Iteration,” IEEE Trans.
Computers, vol. 19, pp. 702-706, 1970.

[11] J. Foley, A. vanDam, S. Feiner, and J. Hughes, Computer Graphics:
Principles and Practice in C, second ed. Addison-Wesley, 1995.

[12] D. Harris, “A Powering Unit for an OpenGL Lighting Engine,”
Proc. 35th Asilomar Conf. Signals, Systems, and Computers, pp. 1641-
1645, 2001.

[13] J.F. Hart, E.W. Cheney, C.L. Lawson, H.J. Maehly, C.K. Mesztenyi,
J.R. Rice, H.G. Thacher, and C. Witzgall, Computer Approximations.
New York: Wiley, 1968.

[14] N. Ide et al. (Sony Playstation2), “2. 44-GFLOPS 300-MHz
Floating-Point Vector-Processing Unit for High-Performance 3D
Graphics Computing,” IEEE J. Solid-State Circuits, vol. 35, no. 7,
pp. 1025-1033, July 2000.

[15] V.K. Jain, S.A. Wadecar, and L. Lin, “A Universal Nonlinear
Component and Its Application to WSI,” IEEE Trans. Components,
Hybrids, and Manufacturing Technology, vol. 16, no. 7, pp. 656-664,
1993.

[16] T. Jayarshee and D. Basu, “On Binary Multiplication Using the
Quarter Square Algorithm,” Proc. Spring Joint Computer Conf.,
pp. 957-960, 1974.

[17] I. Koren, “Evaluating Elementary Functions in a Numerical
Coprocessor Based on Rational Approximations,” IEEE Trans.
Computers, vol. 40, pp. 1030-1037, 1990.

[18] A. Kunimatsu et al. (Sony Playstation2), “Vector Unit Architecture
for Emotion Synthesis,” IEEE Micro, vol. 20, no. 2, pp. 40-47, Mar./
Apr. 2000.

[19] D.M. Lewis, “114 MFLOPS Logarithmic Number System Arith-
metic Unit for DSP Applications,” IEEE J. Solid-State Circuits,
vol. 30, no. 12, pp. 1547-1553, 1995.

[20] P. Markstein, IA-64 and Elementary Functions. Hewlett-Packard
Professional Books, 2000.

[21] C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC
Architecture: A Specification for a New Family of RISC Processors. San
Francisco: Morgan Kaufman, 1994.

[22] Microsoft Corp.,Microsoft DirectX Technology Review, 2004, http://
www.microsoft.com/windows/directx/default.aspx.

[23] J.-M. Muller, Elementary Functions. Algorithms and Implementation.
Birkhauser, 1997.

[24] J.-M. Muller, “A Few Results on Table-Based Methods,” Reliable
Computing, vol. 5, no. 3, 1999.

[25] J.-M. Muller, “Partially Rounded Small-Order Approximations for
Accurate, Hardware-Oriented, Table-Based Methods,” Proc. IEEE
16th Int’l Symp. Computer Arithmetic (ARITH16), pp. 114-121, 2003.

[26] S. Oberman, G. Favor, and F. Weber, “AMD-3DNow! Technology:
Architecture and Implementations,” IEEE Micro, vol. 19, no. 2,
pp. 37-48, Mar./Apr. 1999.

[27] S.F. Oberman, “Floating Point Division and Square Root Algo-
rithms and Implementation in the AMD-K7 Microprocessor,”
Proc. 14th Symp. Computer Arithmetic (ARITH14), pp. 106-115, Apr.
1999.

[28] A.R. Omondi, Computer Arithmetic Systems. Algorithms, Architecture
and Implementations. Prentice Hall, 1994.

[29] J.-A. Piñeiro, “Algorithms and Architectures for Elementary
Function Computation,” PhD dissertation, Univ. of Santiago de
Compostela, 2003.

[30] J.-A. Piñeiro and J.D. Bruguera, “High-Speed Double-Precision
Computation of Reciprocal, Division, Square Root and Inverse
Square Root,” IEEE Trans. Computers, vol. 51, no. 12, pp. 1377-1388,
Dec. 2002.

[31] J.A. Piñeiro, J.D. Bruguera, and J.-M. Muller, “Faithful Powering
Computation Using Table Look-Up and Fused Accumulation
Tree,” Proc. IEEE 15th Int’l Symp. Computer Arithmetic, pp. 40-47,
2001.

[32] J.-A. Piñeiro, S. Oberman, J.-M. Muller, and J.D. Bruguera, “High-
Speed Function Approximation Using a Minimax Quadratic
Interpolator,” technical report, Univ. of Santiago de Compostela,
Spain, June 2004, http://www.ac.usc.es/publications.

[33] J.R. Rice, The Approximation of Functions. Reading, Mass.: Addison
Wesley, 1964.

[34] M.J. Schulte and J.E. Stine, “Approximating Elementary Functions
with Symmetric Bipartite Tables,” IEEE Trans. Computers, vol. 48,
no. 8, pp. 842-847, Aug. 1999.

[35] M.J. Schulte and J.E. Stine, “The Symmetric Table Addition
Method for Accurate Function Approximation,” J. VLSI Signal
Processing, vol. 21, no. 2, pp. 167-177, 1999.

[36] M.J. Schulte and E.E. Swartzlander, “Hardware Designs for
Exactly Rounded Elementary Functions,” IEEE Trans. Computers,
vol. 43, no. 8, pp. 964-973, Aug. 1994.

PI~NNEIRO ET AL.: HIGH-SPEED FUNCTION APPROXIMATION USING A MINIMAX QUADRATIC INTERPOLATOR 317

[37] M.J. Schulte and K.E. Wires, “High-Speed Inverse Square Roots,”
Proc. 14th Int’l Symp. Computer Arithmetic (ARITH14), pp. 124-131,
Apr. 1999.

[38] E.M. Schwarz and M.J. Flynn“Hardware, Starting Approximation
for the Square Root Operation“ Proc. 11th Symp. Computer
Arithmetic (ARITH11), pp. 103-111, 1993.

[39] H.C. Shin, J.A. Lee, and L.S. Kim, “A Minimized Hardware
Architecture of Fast Phong Shader Using Taylor Series Approx-
imation in 3D Graphics,” Proc. Int’l Conf. Computer Design, VLSI in
Computers and Processors, pp. 286-291, 1998.

[40] N. Takagi, “Powering by a Table Look-Up and a Multiplication
with Operand Modification,” IEEE Trans. Computers, vol. 47,
no. 11, pp. 1216-1222, Nov. 1998.

[41] P.T.P. Tang, “Table-Driven Implementation of the Logarithm
Function in IEEE Floating-Point Arithmetic,” ACM Trans. Math.
Software, vol. 4, no. 16, pp. 378-400, Dec. 1990.

[42] P.T.P. Tang, “Table Look-Up Algorithms for Elementary Func-
tions and Their Error Analysis,” Proc. IEEE 10th Int’l Symp.
Computer Arithmetic (ARITH10), pp. 232-236, 1991.

[43] Waterloo Maple Inc., Maple 8 Programming Guide, 2002.

Jose-Alejandro Piñeiro received the BSc
degree (1998) and the MSc degree (1999) in
physics (electronics) and the PhD degree in
computer engineering in 2003 from the Univer-
sity of Santiago de Compostela, Spain. Since
2004, he has been with Intel Barcelona Re-
search Center (IBRC), Intel Labs-UPC, whose
research focuses on new microarchitectural
paradigms and code generation techniques for
the IA-32, EM64T, and IPF families. His re-

search interests are also in the area of computer arithmetic, VLSI
design, computer graphics, and numerical processors.

Stuart F. Oberman received the BS degree in
electrical engineering from the University of
Iowa, Iowa City, in 1992 and the MS and PhD
degrees in electrical engineering from Stanford
University, Palo Alto, California, in 1994 and
1997, respectively. He has participated in the
design of several commercial microprocessors
and floating-point units. From 1995-1999, he
worked at Advanced Micro Devices, Sunnyvale,
California, where he coarchitected the 3DNow!

multimedia instruction-set extensions, designed floating-point units for
the K6 derivatives, and was the architect of the Athlon floating-point unit.
Since 2002, he has been a principal engineer at NVIDIA, Santa Clara,
California, where he designs Graphics Processing Units. He has
coauthored one book and more than 20 technical papers. He holds
more than 30 granted US patents. He is a Tau Beta Pi Fellowship
recipient and a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi, and
the IEEE Computer Society.

Jean-Michel Muller received the PhD degree
from the Institut National Polytechnique de
Grenoble in 1985 and became a full-time
researcher in the Centre National de la Re-
cherche Scientifique in 1986. He is now chair-
man of LIP, which is a common computer
science laboratory of the Ecole Normale Supér-
ieure de Lyon, INRIA, CNRS, and Universite
Claude Bernard. He served as coprogram chair
of the 13th IEEE Symposium on Computer

Arithmetic (ARITH-14, Asilomar, California) in 1997, as general chair
of ARITH-15 (Adelaide, Australia) in 1999, and as an associate editor of
the IEEE Transactions on Computers from 1996 to 2000. He is a senior
member of the IEEE.

Javier D. Bruguera received the BS degree in
physics and the PhD degree from the Uni-
versity of Santiago de Compostela, Spain, in
1984 and 1989, respectively. Currently, he is a
professor in the Department of Electronic and
Computer Engineering at the University of
Santiago de Compostela. Previously, he was
an assistant professor in the Department of
Electrical, Electronic, and Computer Engineer-
ing at the University of Oviedo, Spain, and an

assistant professor in the Department of Electronic Engineering at the
University of A Coruña, Spain. He was a visiting researcher in the
Application Center of Microelectronics at Siemens in Munich,
Germany, and in the Department of Electrical Engineering and
Computer Science at the University of California, Irvine. His primary
research interests are in the area of computer arithmetic, processor
design, digital design for signal and image processing, and parallel
architectures. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

