
HAL Id: ensl-00000007
https://ens-lyon.hal.science/ensl-00000007v2

Submitted on 24 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and correctly rounded logarithms in double
precision

Jean-Michel Muller, Florent de Dinechin, Christoph Lauter

To cite this version:
Jean-Michel Muller, Florent de Dinechin, Christoph Lauter. Fast and correctly rounded logarithms
in double precision. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), 2007, 41 (1),
pp.85-102. �10.1051/ita:2007003�. �ensl-00000007v2�

https://ens-lyon.hal.science/ensl-00000007v2
https://hal.archives-ouvertes.fr

RAIRO-Inf. Theor. Appl. 41 (2007) 85–102

DOI: 10.1051/ita:2007003

FAST AND CORRECTLY ROUNDED LOGARITHMS
IN DOUBLE-PRECISION

Florent de Dinechin
1
, Christoph Lauter

1

and Jean-Michel Muller
1

Abstract. This article is a case study in the implementation of a
portable, proven and efficient correctly rounded elementary function in
double-precision. We describe the methodology used to achieve these
goals in the crlibm library. There are two novel aspects to this ap-
proach. The first is the proof framework, and in general the tech-
niques used to balance performance and provability. The second is
the introduction of processor-specific optimization to get performance
equivalent to the best current mathematical libraries, while trying to
minimize the proof work. The implementation of the natural logarithm
is detailed to illustrate these questions.

Mathematics Subject Classification. 26-04, 65D15, 65Y99.

1. Introduction

1.1. Correct rounding and floating-point elementary functions

Floating-point is the most used machine representation of the real numbers,
and is being used in many applications, from scientific or financial computations
to games. The basic building blocks of floating-point code are the operators
+,−,×,÷ and √ which are implemented in hardware (or with specific hard-
ware assistance) on most workstation processors. Embedded processors usually
require less floating-point performance and have tighter power constraints, and

Keywords and phrases. Floating-point, elementary functions, logarithm, correct rounding.

1 LIP, projet Arénaire, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex
07, France; florent.de.dinechin@ens-lyon.fr; christoph.lauter@ens-lyon.fr;

Jean-Michel.Muller@ens-lyon.fr

c© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2007003

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2007003

86 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

may therefore provide only software floating point emulation. On top of these ba-
sic operators, other building blocks are usually provided by the operating system or
specific libraries: elementary functions (exponential and logarithm, trigonometric
functions, etc.), operators on complex numbers, linear algebra, etc.

The IEEE-754 standard for floating-point arithmetic [2] defines the usual
floating-point formats (single and double precision) and precisely specifies the
behavior of the basic operators +,−,×,÷ and √ . The standard defines four
rounding modes (to the nearest, towards +∞, towards −∞ and towards 0) and
demands that these operators return the correctly rounded result according to
the selected rounding mode. Its adoption and widespread use have increased the
numerical quality of, and confidence in floating-point code. In particular, it has
improved portability of such code and allowed construction of proofs of numerical
behavior [18]. Directed rounding modes (towards +∞, −∞ and 0) are also the
key to enable efficient interval arithmetic [21, 28].

However, the IEEE-754 standard specifies nothing about elementary functions,
which limits these advances to code excluding such functions. Currently, several
options exist: on one hand, one can use today’s mathematical libraries, which are
efficient but without any warranty on the accuracy of the results. These imple-
mentations use combinations of large tables [16, 17, 31] and polynomial approxi-
mations (see the books by Muller [30] or Markstein [27]). Most modern libraries
are accurate-faithful : trying to round to nearest, they return a number that is one
of the two FP numbers surrounding the exact mathematical result, and indeed
return the correctly rounded result most of the time. This behavior is sometimes
described using phrases like 99% correct rounding or 0.501 ulp accuracy (where
ulp stands for unit in the last place). However, it is not enough when strict porta-
bility is needed, as was recently the case for the LHC@Home project: this project
distributes a very large computation on a wide, heterogeneous network of comput-
ers, and requires strict floating-point determinism when checking the consistency
of this distribution, due to the chaotic nature of the phenomenon being simulated.
Default libraries on different systems would sometimes return slightly different
results.

When such stricter guarantees are needed, some multiple-precision packages like
MPFR [29] offer correct rounding in all rounding modes, but are several orders of
magnitude slower than the usual mathematical libraries (or libms) for the same
precision. Therefore, there are currently three attempts to develop a correctly-
rounded libm. The first was IBM’s libultim [26] which is both portable and fast,
if bulky, but lacks directed rounding modes needed for interval arithmetic. This
project is no longer supported by IBM, but derivatives of the source code are now
part of the GNU C library glibc. The second is crlibm by the Arénaire team
at ENS-Lyon, first distributed in 2003. The third is Sun Microsystems’ correctly-
rounded mathematical library called libmcr, whose first beta version appeared in
late 2004. Although very different, these libraries should return exactly the same
values for all possible inputs, an improvement on current default situation.

This article deals with the implementation of a fast, proven correctly rounded
elementary functions. The method used to provide efficient correct rounding has

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 87

been described by Abraham Ziv [33]. It is summarized in Section 1.2. The present
article improves Ziv’s work in two important aspects. First, it proves the cor-
rect rounding property. Second, the performance is greatly improved, especially
in terms of worst-case execution time and memory consumption. These improve-
ments are illustrated by a detailed description of the logarithm function.

1.2. The table maker’s dilemma and Ziv’s onion peeling strategy

With a few exceptions, the image ŷ of a floating-point number x by a transcen-
dental function f is a transcendental number, and can therefore not be represented
exactly in standard number systems. The correctly rounded result (to the nearest,
towards +∞ or towards −∞) is the floating-point number that is closest to ŷ (or
immediately above or immediately below respectively).

A computer may evaluate an approximation y to the real number ŷ with relative
accuracy ε. This means that the real value ŷ belongs to the interval [y(1−ε), y(1+
ε)]. Sometimes however, this information is not enough to decide correct rounding.
For example, if [y(1− ε), y(1 + ε)] contains the midpoint between two consecutive
floating-point numbers, it is impossible to decide which of these two numbers is
the correct round-to-nearest of ŷ. This is known as the table maker’s dilemma
(TMD) [30].

Ziv’s technique is to improve the accuracy ε of the approximation until the
correctly rounded value can be decided. Given a function f and an argument x,
the value of f(x) is first evaluated using a quick approximation of accuracy ε1.
Knowing ε1, it is possible to decide if correct rounding is possible, or if more
accuracy is required, in which case the computation is restarted using a slower,
more accurate approximation (of accuracy ε2), and so on. This approach leads to
good average performance, as the slower steps are rarely taken.

1.3. Improving on Ziv’s approach

However there was until recently no practical bound on the termination time
of Ziv’s iteration: it may be proven to terminate for most transcendental func-
tions, but the actual maximal accuracy required in the worst case is unknown.
In libultim, the measured worst-case execution time is indeed three orders of
magnitude larger than that of usual libms (see Tab. 2 below). This might prevent
using this library in critical applications. A related problem is memory require-
ment, which is, for the same reason, unbounded in theory, and much higher than
usual libms in practice.

Probably for this reason, Ziv’s implementation doesn’t provide a proof of the
correct rounding property, and indeed several functions fail to return the correctly
rounded result for some input values (although most of these errors have been
corrected in the version which is part of the GNU glibc). Sun’s library doesn’t
provide a proof, either.

88 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

Finally, IBM’s library lacks the directed rounding modes (Sun’s library does
provide them). These rounding modes might be the most useful: indeed, in round-
to-nearest mode, correct rounding provides an accuracy improvement over usual
libms of only a fraction of a unit in the last place (ulp), since the values difficult
to round were close to the middle of two consecutive floating-point numbers. This
may be felt of little practical significance. However, the three other rounding
modes are needed to guarantee intervals in interval arithmetic. Without correct
rounding in these directed rounding modes, interval arithmetic may loose up to
two ulps of precision in each computation. Actually, current interval elementary
function libraries are even less accurate than that, because they sacrifice accuracy
to a very strict proof [19].

The goal of the crlibm (correctly rounded libm) project is therefore a library
which is

• correctly rounded in the four IEEE-754 rounding modes;
• proven;
• and sufficiently efficient in terms of performance (both average and worst-

case) and resources (in particular we try to limit the table sizes to 4KB
per function [6], although this bound may be relaxed for some functions
or on some architectures)

to enable the standardization of correct rounding for elementary functions.

1.4. Organisation of this article

Section 2 describes the general principles of the crlibm library, from the theoret-
ical aspects to an implementation framework which makes optimal use of current
processor technology, and a proof framework which is currently a distinctive fea-
ture of this library. Section 3 is an in-depth example of using these frameworks
to implement an efficient, proven correctly-rounded natural logarithm. Section 4
gives measures of performance and memory consumption and shows that this im-
plementation compares favorably to the best available accurate-faithful libms on
most architectures.

2. The correctly rounded mathematical library

2.1. Worst cases for correct rounding

Lefèvre and Muller [23, 25] computed the worst-case ε required for correctly
rounding several functions in double-precision over selected intervals in the four
IEEE-754 rounding modes. For example, they proved that 158 bits are enough to
ensure correct rounding of the exponential function on all of its domain for the four
IEEE-754 rounding modes, and 118 bits for the logarithm. Up-to-date information
about this quest for worst cases (which functions are covered on which interval)
is available in the documentation of crlibm [1]. A discussion of the possible
strategies in the absence of worst cases is also available in this document.

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 89

2.2. Two steps are enough

Thanks to such results, we are able to guarantee correct rounding in two steps
only, which we may then optimize separately. The first quick step is as fast as
current libm, and provides an accuracy between 2−60 and 2−80 (depending on the
function), which is sufficient to round correctly to the 53 bits of double precision
in most cases. The second accurate step is dedicated to challenging cases. It is
slower but has a reasonably bounded execution time, being tightly targeted at
Lefèvre/Muller worst cases (contrary to Sun’s and IBM’s libraries).

2.3. On portability and performance

crlibm was initially a strictly portable library, relying only on two widespread
standards: IEEE-754 (also IEC 60559) [2] for floating-point, and C99 [20] for the C
language. This meant preventing the compiler/processor combination from using
advanced floating-point features available in recent mainstream processors, and
as a consequence accepting a much lower average performance than the default,
accurate-faithful libm, typically by a factor 2 [11, 14].

Among these advanced features, the most relevant to the implementation of
elementary functions are:

• hardware double-extended (DE) precision, which provides 64 bits of man-
tissa instead of the 53 bits of the IEEE-754 double format;

• hardware fused multiply-and-add (FMA), which performs the operation
x × y + z in one instruction, with only one rounding.

It was suggested that a factor two in performance would be an obstacle to the
generalization of correct rounding, therefore our recent research has focussed on
exploiting these features. The logarithm is the first function which has been com-
pleted using this approach: in versions of crlibm strictly greater than 0.8, there
is a compile-time selection between two implementations:

• the first exploits double-extended precision if available (for IA32 and IA64
processors), and is referred to as the “DE” version in the following;

• the second relies on double-precision only, and is referred to in the following
as the “portable” version.

Both versions exploit an FMA if available (on Power/PowerPC essentially for the
portable version, on Itanium for the DE version). In the absence of an FMA,
the portable version is strictly portable in the IEEE-754/C99 sense. This choice
provides optimized versions (as Sect. 4 will show) for the overwhelming majority
of current mainstream processors.

2.4. Fast first step

The DE version of the first step is very simple: as double-extended numbers
have a 64-bit mantissa, it is easy to design algorithms that compute a function to
an accuracy better than 2−60 using only DE arithmetic [27].

90 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

For the portable version, we only have double-precision at our disposal. We
classically represent a number requiring higher precision (such as y1, the result of
the first step) as the sum of two floating-point numbers, also called a double-double
number. There are well-known algorithms for computing on double-doubles [15].

In both versions, we also make heavy use of classical, well proven results like
Sterbenz’ lemma [18] which gives conditions for a floating-point subtraction to
entail no rounding error.

2.5. Rounding test

At the end of the fast step, a sequence of simple tests on y1 either returns a
correctly rounded value, or launches the second step. We call such a sequence a
rounding test. The property that a rounding test must ensure is the following:
a value will be returned only if it can be proven to be the correctly rounded value
of ŷ, otherwise (in doubt) the second step will be launched.

A rounding test depends on a bound ε1 on the overall relative error of the
first step. This bound is usually computed statically, although in some case it
can be refined at runtime (IBM’s code has such dynamic rounding tests, but
for an explained and proven example see crlibm’s tangent [1]). Techniques for
computing ε1, as well as techniques for proving the validity of a rounding test, will
be detailed in Section 2.9.

The implementation of a rounding tests depends on the rounding mode and
the nature of y1 (a double-extended for the DE version, or a double-double for
the portable version). Besides, in each case, there are several sequences which
are acceptable as rounding tests. Some use only floating point but require pre-
computing on ε1 [11], others first extract the mantissa of y1 and perform bit
mask operations on the bits after the 53rd [1]. All these possible tests are cleanly
encapsulated in C macros.

2.6. Accurate second step

For the second step, correct rounding needs an accuracy of 2−120 to 2−150,
depending on the function. We are now using three different approaches depending
on the processor’s capabilities.

• We have designed an ad-hoc multiple-precision library called scslib which
is lightweight, very easy to use in the context of crlibm, and more effi-
cient than all other available comparable libraries [7, 13]. It allows quick
development of the second step, and has been used for the initial imple-
mentation of all the functions. It is based on integer arithmetic.

• For the DE version of the second step, it has been proven that double-
double-extended intermediate computations are always enough to ensure
correct rounding, even when worst cases have been found requiring more
than the 128 bits of precision offered by this representation [8]. Using
double-double-extended is not as simple as using scslib, however the
algorithms are those already used and proven for double-double. And it is

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 91

much more efficient than scslib: we measure a factor 10 in the worst-case
execution time [9].

• Finally, we are developping portable second steps based on triple-double
arithmetic [22]. This approach is also much more efficient than scslib, but
it is also much more difficult to use and to prove. The logarithm presented
below was the first function to be implemented using this technology. Since
then we also implemented exponential and arcsine, and others are on the
way.

The main reason for the performance improvement over scslib is that each com-
putation step can use the required precision, no more. Typically for instance we
start a Horner polynomial evaluation in double, continue in double-double, and
perform only the last few iterations in triple-double. The scslib format doesn’t
offer this flexibility. Another advantage is that the accurate step can use table-
based methods [16, 17, 31] because triple-double is much less memory-consuming
than the scslib format, all the more as these tables can be shared with the first
step, as will be seen in Section 3.

The main advantage of using scslib is that it leads to very easy error compu-
tations. However, being based on integer arithmetic, scslib is also interesting for
architectures without floating-point hardware.

2.7. Final rounding

The result of the accurate step will be either a triple-double number, or a double-
double-extended number, or a number represented in scslib’s special format.
This result must finally be rounded to a double-precision number in the selected
rounding mode. This operation is peculiar to each of the three representations
mentioned.

• The functions provided by scslib for this purpose are very straightfor-
ward, but quite slow.

• Processors which support double-extended precision are all able to round
the sum of two double-extended numbers to a double, in an atomic op-
eration. Fortunately, this is even easy to express in C [20] as return
(double)(yh+yl); where yh and yl are double-extended numbers. Note
however that more care must be taken for functions whose worst cases
may require more than 128 bits [8].

• The most difficult case is that of the triple-double representation, because
it is a redundant representation, and because there is no hardware for doing
a ternary addition with only a final rounding [12]. Again, we have designed
sequences of operations for this final rounding in the four rounding modes.
These sequences involve a dozen of floating-point operations and nested
tests, and their full proof is several pages long [1].

92 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

2.8. Error analysis and the accuracy/performance tradeoff

The probability p2 of launching the second (slower) step is the probability that
the interval [y(1 − ε), y(1 + ε)] contains the midpoint between two consecutive
floating-point numbers (or a floating-point number in directed rounding modes).
Therefore, it is expected to be proportional to the error bound ε1 computed for
the first step.

This defines the main performance tradeoff one has to manage when designing
a correctly-rounded function: the average evaluation time will be

Tavg = T1 + p2T2 (1)

where T1 and T2 are the execution time of the first and second phase respectively
(with T2 ≈ 100T1 in crlibm using scslib, and T2 ≈ 10T1 in crlibm using DE or
triple-double), and p2 is the probability of launching the second phase.

Typically we aim at chosing (T1, p2, T2) such that the average cost of the second
step is negligible: this will mean that the cost of correct rounding is negligible.
The second step is built to minimize T2, there is no tradeoff there. Then, as p2 is
almost proportional to ε1, to minimize the average time, we have to

• balance T1 and p2: this is a performance/precision tradeoff (the more
accurate the first step, the slower);

• and compute a tight bound on the overall error ε1.

Computing this tight bound is the most time-consuming part in the design of a
correctly-rounded elementary function. The proof of the correct rounding property
only needs a proven bound, but a loose bound will mean a larger p2 than strictly
required, which directly impacts average performance. Compare p2 = 1/1000
and p2 = 1/500 for T2 = 100T1, for instance. As a consequence, when there are
multiple computation paths in the algorithm, it may make sense to precompute
different values of ε1 on these different paths [11].

2.9. Proving correct rounding

Now we may formalize what we mean by proven correct rounding. The theorem
we intend to prove is the following.

Theorem 1. Under the following assumptions:

• the worst-case relative accuracy needed to decide correct rounding to
double-precision of the logarithm of a double-precision number is 2−118;

• the code was compiled by a C99-compliant compiler;
• by default, floating-point operations in the system are double-precision

(resp double-extended precision) IEEE-754-compliant;

then for any double-precision number x, a call to the portable (resp DE) crlibm
function log(x) returns the correctly rounded logarithm of x.

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 93

Note that the first assumption has been proven by Lefèvre/Muller worst-case
search. This effort should be reproduced for more confidence. The second and
third assumptions are actually quite demanding, and ensuring them may require
some effort at the compiler and operating system level, but this is outside the
scope of this article.

With the two-step approach, proving this theorem resumes to two tasks:

• computing a bound on the overall error of the second step, and checking
that this bound is less than 2−118;

• proving that the first step returns a value only if this value is correctly
rounded, which also requires a proven (and tight) bound on the evaluation
error of the first step.

One difficulty is that the smallest change in the code (for optimization, and even
for a bug fix) will affect the proof. We therefore strive to factorize our code
in a way compatible with proof-writing. For example, elementary function are
typically implemented using polynomial approximation techniques. The latter can
finally be based on addition and multiplication for the different formats. For proof
purposes, we want to consider e.g. an addition of two triple-double numbers just
like a floating point addition with its respective “machine epsilon”. The challenge
here is the tradeoff between efficiency and provability.

Therefore we structure our code and proof as follows. Our basic procedures
(including addition and multiplication for various combinations of double, double-
double and triple-double arguments and results, but also rounding tests, final
rounding, etc.) are implemented as C macros. These macros may have different
processor-specific implementations, for example to use an FMA when available, so
this solution provides both flexibility and efficiency. A non-exhaustive list of some
properties of these procedures is given in Table 1.

Each macro has a published proof [1,22] covering all its implementations. What
we prove is actually a theorem with hypotheses (validity conditions for the macro
to work), and a conclusion (the relative error of the operator is smaller than some
epsilon, for example). The proof of a function invoking such a macro will then
have to check the hypotheses, and may then use the conclusion.

2.10. Using automated error analysis tools

We strive to automate the error computation to make proofs easier and increase
confidence in the result. A first approach is to rely on clean Maple scripts to com-
pute the numerical constants, output the C header files containing these constants,
and implement the error computation out of them. Of course, these scripts are
part of the crlibm distribution.

More recently, we have been making increasing use of Gappa, a tool which
manages ranges and errors in numerical code using interval arithmetic [5,10]. This
tool takes a code fragment, information on the inputs (typically their ranges and
bounds on their approximation errors), and computes and propagates roundoff

94 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

Table 1. Some basic procedures encapsulated in C-Macros.

Name Operation Property

Add12 xh + xl = a + b exact (Fast2Sum)

Mul12 xh + xl = a · b exact (Dekker)

Add22 xh + xl = ((ah + al) + (bh + bl)) (1 + ε) ε ≤ 2−103.5

Mul22 xh + xl = ((ah + al) · (bh + bl)) (1 + ε) ε ≤ 2−102

Add33 xh + xm + xl = ε depends on

((ah + am + al) + (bh + bm + bl)) (1 + ε) overlap

Add233 xh + xm + xl = ε depends on

((ah + al) + (bh + bm + bl)) (1 + ε) overlap

Mul23 xh + xl = ((ah + al) · (bh + bl)) (1 + ε) ε ≤ 2−149

Mul233 xh + xl = ε depends on

((ah + al) · (bh + bm + bl)) (1 + ε) overlap

Renormalize3 xh + xm + xl = ah + am + al no overlap in result

RoundToNearest3 x′ = ◦ (xh + xm + xl) (Round-to-nearest)

RoundUp3 x′ =� (xh + xm + xl) (Round-upwards)

TEST AND RETURN RN
return ◦ (xh + xl) if rounding is safe knowing ε
continue otherwise

errors. It is far from being automatic: the user has to provide almost all the
knowledge that would go in a paper proof, but does so in an interactive and very
safe way, increasing the confidence that all the contributions to the total error
are taken properly into account. Besides, this tool relies on a library of theorems
which take into account subnormal numbers, exceptional cases, etc, which ensures
that theses exceptional cases are considered. This tool outputs a proof in the
Coq language [3], and this proof can be machine-checked provided all the support
theorems have been proven in Coq. Obviously, our divide-and-conquer approach
matches this framework nicely, although we currently don’t have Coq proofs of all
the previous theorems.

Ultimately, we hope that the “paper” part of the proof will be reduced to an
explanation of the algorithms and of the structure of the proof. One of the current
weakest point is the evaluation of infinite norms (between an approximation poly-
nomial and the function), which we do in Maple. As we approximate elementary
functions on domains where they are regular and well-behaved, we can probably
trust Maple here, but a current research project aims at designing a validated in-
finite norm. Another approach is to rely on Taylor approximations with carefully
rounded coefficients, such that mathematical bounds on the approximation error
can be computed [19]. The main drawback is that it typically leads to polynomials
of higher degree for the same approximation error, which results in larger delays,
larger memory consumption, and possibly larger rounding errors.

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 95

3. crlibm’s correctly rounded logarithm function

This section is a detailed example of the previous approach and framework.

3.1. Overview

The worst-case accuracy required to compute the natural logarithm correctly
rounded in double precision is 118 bits according to Lefèvre and Muller [24]. The
first step is accurate to 2−61, and the second step to 2−119.5, for all the implemen-
tations.

For the quick phase we now use a different algorithm as the one presented in
[11]. This choice is motivated by two main reasons:

• the algorithm is slightly more complex, but faster;
• it can be used for all our different implementations (portable or DE).

Special cases are handled in all implementations as suggested by the C99 stan-
dard [20]. The natural logarithm is defined over positive floating point numbers.
If x = 0, then log(x) should return −∞ and raise the “divide-by-zero” exception.
If x < 0, then log(x) should return NaN and raise the “invalid” exception. If
x = +∞, then log(x) should return +∞. This is true in all rounding modes.

Concerning subnormals, the smallest exponent for a non-zero logarithm of a
double-precision input number is −53 (for the input values log(1 + 2−52) and
log(1 − 2−52), as log(1 + ε) ≈ ε when ε → 0). As the result is never subnormal,
we may safely ignore the accuracy problems entailed by subnormal numbers.

The common algorithm is inspired by the hardware based algorithm proposed
by Wong and Goto [32] and discussed further in [30]. After handling of special
cases, consider the argument x written as x = 2E′ · m, where E′ is the exponent
of x and m its mantissa, 1 ≤ m < 2. This decomposition of x into E′ and
m can be done simply by some integer operations. In consequence, one gets
log (x) = E′ · log(2) + log(m). Using this decomposition directly would lead to
catastrophic cancellation in the case where E′ = −1 and m ≈ 2. Therefore, if m
is greater than approximately

√
2, we adjust m and E as follows:

E =
{

E′ if m ≤ √
2

E′ + 1 if m >
√

2
y =

{
m if m ≤ √

2
m
2 if m >

√
2.

All of the operations needed for this adjustment can be performed exactly. We see
that y is now bounded by

√
2

2 ≤ y ≤ √
2 leading to a symmetric bound for log(y).

The magnitude of y being still too big for polynomial approximation, a further
argument reduction is performed. It is inspired by an algorithm developed at
Intel for the Itanium processor family [4]. It uses the high magnitude bits of the
mantissa of y as an index i, and uses this index to look up in a table a value ri

which approximates 1
y relatively well (the Itanium version of this algorithm uses

the frcpa instruction). Defining z = y · ri − 1, we obtain for the reconstruction

log (x) = E · log (2) + log (1 + z) − log (ri) .

96 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

Now z is small enough (typically |z| < 2−7) for approximating log (1 + z) by a
Remez polynomial p (z). The values for log(2) and log (ri) are also tabulated.

One crucial point here is the operation sequence for calculating z out of y and
ri: z = y · ri −1. In the DE code, the ri are chosen as floating-point numbers with
at most 10 non-zero consecutive bits in their mantissa (they are actually tabulated
as single-precision numbers). As y is a double-precision number, the product y · ri

fits in a double-extended number, and is therefore computed exactly in double-
extended arithmetic. The subtraction of 1 is then also exact thanks to Sterbenz’
lemma: y · ri is very close to 1 by construction of ri. To sum up, the whole range
reduction involves no roundoff error, which will of course ease the proof of the
algorithm.

In the portable version, there is unfortunately no choice of ri that will guarantee
that y · ri − 1 fits in one double-precision number. Therefore we perform this
computation in double-double, which is slower, but still with the guarantee that z
as a double-double is exactly z = y · ri − 1.

This algorithm allows for sharing the tables between the first and the second
step: in the portable version, these tables are normalized triple-double, the first
step using only two of the three values. In the DE version, the tables are double-
double-extended, and the first step uses only one of the two values. Such sharing
brings a huge performance improvement over the previous approach [11] where
the two steps were using two distinct algorithms and different tables. This im-
provement has two causes. First, the second step does not need to restart the
computation from the beginning. As the argument reduction is exact, the sec-
ond step doesn’t need to refine it. Second, the table cost of the second step is
much reduced, which allows more entries to the table, leading to a smaller poly-
nomial (especially for the second step). Here, tables are composed of 128 entries
(ri, log (ri)).

3.2. A double-extended logarithm

The double-extended version is a straightforward implementation of the pre-
vious ideas: the argument reduction and the first step use only double-extended
arithmetic, the second step uses a polynomial of degree 14, evaluated in Horner
form, with the 8 lower degrees implemented in double-double-extended arithmetic.

The most novel feature of this implementation is the proof of a tight error
bound for the Estrin parallel evaluation [30] of the polynomial of the first step,
given below.

z2=z*z; p67=c6+z*c7; p45=c4+z*c5; p23=c2+z*c3; p01=logirh+z;

z4=z2*z2; p47=p45+z2*p67; p03=p01+z2*p23;

p07=p03+z4*p47;

log=p07+E*log2h;

Here we have written on one line the operations that can be computed in parallel:
Such an evaluation scheme is increasingly relevant to superscalar, deeply pipelined
processors (see [4] for some quantitative aspects).

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 97

However it is much more difficult to compute a tight error bound on such code
than on a more classical Horner evaluation. We show that the overall relative error
is smaller than 2−61 in all cases. As soon as |E| is larger than 2, this bound is
relatively easy to prove by computing a bound on the absolute error, and dividing
by the minimum value of the final logarithm. However, for the cases where the log
comes close to zero, the proof is much more complex: the error computation has
to combine relative errors only, and has to use the knowledge that log(1 + x) ≈ x.
It would probably not have been possible without machine assistance.

The full proof is available in the crlibm distribution.

3.3. A portable logarithm

The quick phase uses a modified minimax polynomial of degree 7. The poly-
nomial q consisting of its monomials of degrees 3 to 7 is evaluated using Horner’s
scheme. The full polynomial, to be evaluated as a double-double ph + pl, is given
by the following expression:

p (z) ≈ z − 1
2
· z2 + z3 · q (z) (2)

where z stands for the double-double zh + zl. The different summands are com-
puted as follows:

(1) We approximate z2 by

z2 = (zh + zl)
2 ≈ z2

h + 2 · zh ⊗ zl

(here ⊗ denotes the machine operation);
(2) z2

h is computed exactly using a Mul12macro, and multiplied exactly by 1/2.
An Add22 then adds this result to the first-order term zh + zl;

(3) the term 1/2 · 2 · zh ⊗ zl is computed as a single double precision multipli-
cation, and will actually be added to z3 · q(z) at step (5);

(4) for the less significant terms, q(z) is approximated as q(zh), and z3 is also
approximated:

z3 ≈ (zh ⊗ zh) ⊗ zh

where zh ⊗ zh has already been computed in the previous Mul12;
(5) the result for z3 · q (zh) will be in double precision. An Add12 builds a

double-double approximating z3 · q (zh) − zh · zl;
(6) finally, the double-doubles obtained at steps (2) and (5) are added together

using an Add22.
The double-double ph + pl thus obtained is then added to the tabulated values
lrh + lrm ≈ log (ri) and l2h + l2m ≈ log(2), the latter being multiplied by E.
Again in this multiplication we use the fact that E is a small integer requiring
no more than 12 bits to implement an accurate multiplication without resorting
to heavier higher precision arithmetic: l2h is tabulated with a mantissa of 40 bits
only.

98 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

The final error of of about 2−60 bits is mainly due to the relative approximation
error which is about 2−62 and the roundoff errors, about 2−61. The latter are
dominated by the omission of zl in the higher degree monomials. Further analysis
on these issues and the proof of the function can be found in [1].

The polynomial for accurate phase is of degree 14. It is evaluated for degree 3
through 14 using Horner’s scheme. Double-precision arithmetic is used for de-
gree 10 through 14 omitting zl. Double-double arithmetic – taking into account
also zl – takes over for degrees 3 to 9. The lower degree monomials are evaluated
in an ad hoc scheme. We can so limit the use of costly triple-double arithmetic to
the absolute minimum. For example we never have to multiply two triple-doubles.

The reconstruction phase uses here all three of the values in the tables. It
consists in 3 full triple-double additions. Special care is needed in the proof for
the final addition of the value representing E ·log (2), because we compute E ·log (2)
as an overlapping triple-double (again because l2h and l2l have 40-bit mantissa
to allow for a fast computation of E · log (2)). The final rounding uses the macro
already presented.

Notwithstanding its portability, the triple-double based implementation can be
accelerated by the optional use of FMA-instructions; the gain in performance will
be analyzed in Section 4. This decision is made at compile time.

4. Analysis of the logarithm performance

The input numbers for the performance tests given here are random positive
double-precision numbers with a normal distribution on the exponents. More pre-
cisely, we take random 63-bit integers and cast them into double-precision numbers.

On average, the second step is taken less than 1% of the calls in all the implemen-
tations, which ensures negligible average overhead of the second step, considering
the respective costs of the first and second steps (see the tables below).

4.1. Speed

Table 2 compares the absolute timings of logarithm implementations from a
variety of libraries on a Pentium 4.

Table 3 compares timings for a variety of processors, all on a recent Linux with
gcc3.3 compiler. This table clearly shows that our correctly-rounded logarithm has
average performance comparable to the default libm. Note that the default library
on the Power/PowerPC architecture on Linux is derived from IBM’s libultim,
and offers correct rounding, although unproven.

These tables also show the benefit of having a second step specifically written
to match the worst case required accuracy: we have a worst case execution time
almost two orders of magnitude better than the other correctly rounded libraries
libmcr and libultim.

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 99

Table 2. Comparisons of double-precision logarithm implemen-
tations from a range of libraries (times in cycles on a Pentium 4
Xeon / Linux Debian 3.1 / gcc 3.3).

Library avg time max time

Sun’s libmcr 1055 831476
IBM’s libultim 677 463488
crlibm portable using scslib 706 55804
crlibm portable using triple-double 634 5140
crlibm using double-extended 339 4824
default libm (without correct rounding) 323 8424

Table 3. crlibm versus default libm on a range of processors.

Opteron (cycles) avg time max time
crlibm using double-extended 118 862
default libm (without correct rounding) 189 8050

Pentium 4 (cycles) avg time max time
crlibm using double-extended 339 4824
default libm (without correct rounding) 323 8424

Pentium 3 (cycles) avg time max time
crlibm using double-extended 150 891
default libm (without correct rounding) 172 1286

Power5 (arbitrary units) avg time max time
crlibm (without FMA) 50 259
crlibm (using FMA) 42 204
default libm (IBM’s libultim) 52 28881

Itanium 1 (cycles) avg time max time
crlibm using double-extended and FMA 73 2150
default libm (without correct rounding) 54 8077

4.2. Memory requirements

In both the double-extended and the portable versions, we have a 128-entry ta-
ble, each entry consisting of a float (on 4 bytes) and either a triple-double (24 bytes)
or a double-double-extended (20 bytes). Table sizes are therefore

• 128 × (4 + 3 × 8) = 3584 bytes for the portable version;
• 128 × (4 + 2 × 10) = 3072 bytes for the double-extended version.

100 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

Polynomial coefficient values and rounding constants are directly compiled into
the code. Note that the actual memory usage may be larger on 64-bit processors,
due to memory alignment constraints. The most wasteful is the Itanium, where
each floating-point number must be aligned on a 64-bit (or 8 bytes) boundary.
Therefore a single-precision number consumes 8 bytes, and a double-extended
consumes 16 bytes, leading to a table of actual size 128×(8 + 2 × 16) = 5120 bytes.
This is not so much of a a problem, thanks to the huge caches of Itanium processors.

The previous version of the portable logarithm, using scslib, used 1KB of
tables for the first step and 2KB for the second step. Note however that the scslib
format was quite wasteful in terms of code size. For instance, on a Pentium, the
total code size was about 5KB whereas it is about 2KB for the DE version. In
both cases, the first step is compiled in about 500 bytes of code. These numbers
are provided by the Unix objdump command, and similar numbers are obtained
for other architectures.

On this respect we should mention to be fair that the log from the default libm
on x86 architectures consumes very little memory (40 bytes altogether!) since it
uses the machine instructions specifically designed for the evaluation of logarithms:
fyl2xp1 and fyl2x. These instructions consume silicon in the processor, but no
additional memory. With current technology, as already mentionned, it makes
more sense to use this silicon to accelerate more general computations, and delegate
elementary functions to software. This explains why modern instruction sets do
not offer the equivalent of fyl2xp1 and fyl2x. As an illustration, on two x86
processors out of three, our implementation of the logarithm is faster than the
one using these machine instructions, probably because it may use large amounts
(4KB) of tables in inexpensive memory.

5. Conclusion and perspectives

This article presents an implementation of the natural logarithm in double
precision which has a unique combination of ambitious features:

• it offers correct rounding, the best accuracy that is mathematically possi-
ble considering the finite nature of double-precision;

• it is portably optimized, exploiting processor-specific features through a
high-level language, relying only to compliance to the C99 standard. Its
performance matches that of the best available standard mathematical
libraries;

• it was designed to be proven with the help of state-of-the-art tools for
machine-assisted automatic theorem proving.

In these respects, this function is the most advanced among the current distribution
of crlibm (version 0.10), which counts 10 functions developed over two years.
Short-term efforts include writing new functions, but also improving the quality of
the other functions, in particular improving and machine-checking the proofs and
writing triple-double second steps to replace the current code based on scslib.
A longer-term research goal is to keep increasing confidence in the proofs. The

FAST AND CORRECTLY ROUNDED LOGARITHMS IN DOUBLE-PRECISION 101

crlibm framework is also well suited to the implementation of “perfect” interval
functions (efficient, as tight as mathematically possible, and proven).

The complete code with a more detailed proof, including the Maple programs
and the Gappa proofs mentioned above, is available from [1], with a warning: some
of it may be only in the CVS repository which is also publicly accessible.

References

[1] CR-Libm, a library of correctly rounded elementary functions in double-precision.
http://lipforge.ens-lyon.fr/www/crlibm/.

[2] ANSI/IEEE. Standard 754-1985 for Binary Floating-Point Arithmetic (also IEC 60559).
1985.

[3] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program Development.
Coq’Art: the Calculus of Inductive Constructions. Texts in Theoretical Computer Science,
Springer Verlag (2004).

[4] M. Cornea, J. Harrison and P.T.P. Tang, Scientific Computing on Itanium-based Systems.
Intel Press (2002).

[5] M. Daumas and G. Melquiond, Generating formally certified bounds on values and round-off
errors, in 6th Conference on Real Numbers and Computers (2004).

[6] D. Defour, Cache-optimised methods for the evaluation of elementary functions. Technical

Report 2002-38, LIP, École normale supérieure de Lyon (2002).
[7] F. de Dinechin and D. Defour, Software carry-save: A case study for instruction-level paral-

lelism, in Seventh International Conference on Parallel Computing Technologies (September
2003).

[8] F. de Dinechin, D. Defour and Ch.Q. Lauter, Fast correct rounding of elementary functions

in double precision using double-extended arithmetic. Technical Report 2004-10, LIP, École
normale supérieure de Lyon (March 2004).

[9] F. de Dinechin, A. Ershov and N. Gast, Towards the post-ultimate libm, in 17th Symposium
on Computer Arithmetic. IEEE Computer Society Press (June 2005).

[10] F. de Dinechin, Ch.Q. Lauter and G. Melquiond, Assisted verification of elementary func-
tions using Gappa, in ACM Symposium on Applied Computing (2006).

[11] F. de Dinechin, C. Loirat and J.-M. Muller, A proven correctly rounded logarithm in double-
precision, in RNC6, Real Numbers and Computers (November 2004).

[12] D. Defour, Collapsing dependent floating point operations. Technical report, DALI Research
Team, LP2A, University of Perpignan, France (December 2004).

[13] D. Defour and F. de Dinechin, Software carry-save for fast multiple-precision algorithms, in
35th International Congress of Mathematical Software (2002).

[14] D. Defour, F. de Dinechin and J.-M. Muller, Correctly rounded exponential function in
double precision arithmetic, in Advanced Signal Processing Algorithms, Architectures, and
Implementations X (SPIE’2000) (August 2001).

[15] T.J. Dekker, A floating point technique for extending the available precision. Numerische
Mathematik 18 (1971) 224–242.

[16] P.M. Farmwald, High bandwidth evaluation of elementary functions, in Proceedings of the
5th IEEE Symposium on Computer Arithmetic. IEEE (1981).

[17] S. Gal, Computing elementary functions: A new approach for achieving high accuracy and
good performance, in Accurate Scientific Computations, Lect. Notes Comput. Sci. 235
(1986) 1–16.

[18] D. Goldberg, What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys 23 (1991) 5–47.

[19] W. Hofschuster and W. Krämer, FI LIB, eine schnelle und portable Funktionsbibliothek
für reelle Argumente und reelle Intervalle im IEEE-double-Format. Technical Report Nr.

102 F. DE DINECHIN, C. LAUTER AND J.-M. MULLER

98/7, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Univer-
sität Karlsruhe (1998).

[20] ISO/IEC. International Standard ISO/IEC 9899:1999(E). Programming languages – C.
1999.

[21] R. Klatte, U. Kulisch, C. Lawo, M. Rauch and A. Wiethoff, C-XSC a C++ class library for
extended scientific computing. Springer Verlag (1993).

[22] Ch.Q. Lauter, Basic building blocks for a triple-double intermediate format. Technical Re-

port 2005-38, LIP, École normale supérieure de Lyon (September 2005).

[23] V. Lefèvre, Moyens arithmétiques pour un calcul fiable. Ph.D. Thesis, École normale
supérieure de Lyon, Lyon, France (2000).

[24] V. Lefèvre and J.-M. Muller, Worst cases for correct rounding of the elementary functions
in double precision, http://perso.ens-lyon.fr/jean-michel.muller/Intro-to-TMD.htm

(2004).
[25] V. Lefèvre, J.M. Muller and A. Tisserand, Towards correctly rounded transcendentals. IEEE

Transactions on Computers 47 (1998) 1235–1243.
[26] IBM Accurate Portable MathLib, http://oss.software.ibm.com/mathlib/.
[27] P. Markstein, IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard Pro-

fessional Books, Prentice Hall (2000).
[28] R.E. Moore, Interval analysis. Prentice Hall (1966).
[29] MPFR, http://www.mpfr.org/.
[30] J.-M. Muller, Elementary Functions, Algorithms and Implementation. Birkhauser, Boston

(1997/2005).
[31] P.T.P. Tang, Table lookup algorithms for elementary functions and their error analysis, in

10th IEEE Symposium on Computer Arithmetic. IEEE (June 1991).
[32] W.F. Wong and E. Goto, Fast hardware-based algorithms for elementary function compu-

tations using rectangular multipliers. IEEE Transactions on Computers 43 (1994) 278–294.
[33] A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last

bit. ACM Transactions on Mathematical Software 17 (1991) 410–423.

To access this journal online:
www.edpsciences.org

