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Abstract

We introduce an algorithm for multiplying a floating-
point number x by a constant C that is not exactly repre-
sentable in floating-point arithmetic. Our algorithm uses a
multiplication and a fused multiply and add instruction. We
give methods for checking whether, for a given value of C
and a given floating-point format, our algorithm returns a
correctly rounded result for any x. When it does not, our
methods give the values x for which it does not.

Introduction

Many numerical algorithms require multiplications by
constants that are not exactly representable in floating-point
(FP) arithmetic. Typical constants that are used [1, 4]
are π, 1/π, ln(2), e, Bk/k! (Euler-McLaurin summa-
tion), cos(kπ/N) and sin(kπ/N) (Fast Fourier Trans-
forms). Some numerical integration formulas also naturally
involve multiplications by constants.

For approximating Cx, where C is an infinite-precision
constant and x is an FP number, the desirable result would
be the best possible one, namely ◦(Cx), where ◦(u) is u
rounded to the nearest FP number. In practice one usually
defines a constant Ch, equal to the FP number that is closest
to C, and actually computes Chx (i.e., what is returned is
◦(Chx)). The obtained result is frequently different from
◦(Cx) (see Section 1 for some statistics).

Our goal here is to be able – at least for some constants
and some FP formats – to return ◦(Cx) for all input FP
numbers x (provided no overflow or underflow occur), and
at a low cost (i.e., using a very few arithmetic operations
only). To do that, we will use fused multiply and add in-
structions. The fused multiply and add instruction (FMA

for short) is available on some current processors such as
the IBM Power PC or the Intel/HP Itanium. It evaluates an
expression ax + b with one final rounding error only. This
makes it possible to perform correctly rounded division us-
ing Newton-Raphson division [9, 3, 8]. Also, this makes
evaluation of scalar products and polynomials faster and,
generally, more accurate than with conventional (addition
and multiplication) floating-point operations.

1 Some statistics

Let n be the number of mantissa bits of the considered
FP format (usual values of n are 24, 53, 64, 113). For small
values of n, one can compute ◦(Chx) and ◦(Cx) for all
possible values of the mantissa of x. The obtained results
are given in Table 1, for C = π. They show that the “naive”
method that consists in computing ◦(Chx) often returns an
incorrectly rounded result (in around 41% of the cases for
n = 7).

2 The algorithm

We want to compute Cx with correct rounding (assum-
ing rounding to nearest even), where C is a constant (i.e.,
C is known at compile time). C is not an FP number (oth-
erwise the problem would be straightforward). We assume
that a FMA instruction is available. We assume that the
operands are stored in a binary FP format with n-bit man-
tissas. We also assume that the two following FP numbers
are pre-computed:

{
Ch = ◦(C),
C� = ◦(C − Ch), (1)

where ◦(t) stands for t rounded to the nearest FP number.
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n
Proportion of

correctly rounded
results

5 0.93750
6 0.78125
7 0.59375

· · · · · ·
16 0.86765
17 0.73558
· · · · · ·
24 0.66805

Table 1. Proportion of input values x for which
◦(Chx) = ◦(Cx) for C = π and various values of
the number n of mantissa bits.

In the sequel of the paper, we analyze the behavior of
the following algorithm. We aim at being able to know for
which values of C and n it will return a correctly rounded
result for any x. When it does not, we wish to know for
which values of x it does not.

Algorithm 1 (Multiplication by C with a multiplication
and a FMA). From x, compute

{
u1 = ◦(C�x),
u2 = ◦(Chx + u1).

(2)

The result to be returned is u2.

When C is the exact reciprocal of an FP number, this algo-
rithm coincides with an algorithm for division by a constant
given in [2]. Obviously (provided no overflow/underflow
occur) if Algorithm 1 gives a correct result with a given
constant C and a given input variable x, it will work as well
with a constant 2pC and an input variable 2qx, where p and
q are integers. Also, if x is a power of 2 or if C is exactly
representable (i.e., C� = 0), or if C − Ch is a power of 2
(so that u1 is exactly (C − Ch)x), it is straightforward to
show that u2 = ◦(Cx). Hence, without loss of generality,
we assume in the following that 1 < x < 2 and 1 < C < 2,
that C is not exactly representable, and that C − Ch is not
a power of 2.

In Section 4, we give three methods. The first two ones
either certify that Algorithm 1 always returns a correctly
rounded result, or give a “bad case” (i.e., a number x for
which u2 �= ◦(Cx)), or are not able to infer anything. The
third one is able to return all “bad cases”, or certify that
there are none. These methods use the following property,
that bounds the maximum possible distance between u2 and
Cx in Algorithm 1. Of course, Algorithm 1 works for a

given constant C and precision n if all floating-point values
of x are such that |u2 − Cx| < 1/2 ulp (u2). It is worth be-
ing noticed that without the use of a FMA instruction (that
is, if Algorithm 1 was executed using ordinary FMUL and
FADD), except for a few very simple values of the constant
C – e.g., powers of 2 –, Algorithm 1 would fail to return a
correctly rounded result for all values of x.

Property 1
Define xcut = 2/C and

ε1 = |C − (Ch + C�)| (3)

• If x < xcut then |u2 − Cx| < 1/2 ulp (u2) + η,

• If x ≥ xcut then |u2 − Cx| < 1/2 ulp (u2) + η′,

where {
η = 1

2 ulp (C�xcut) + ε1xcut,
η′ = ulp (C�) + 2ε1.

Proof.
From 1 < C < 2 and Ch = ◦(C), we deduce |C−Ch| <

2−n, which gives (since C − Ch is not a power of 2),

|ε1| ≤ 1
2

ulp (C − Ch) ≤ 2−2n−1.

Now, we have,

|u2 − Cx| ≤ |u2 − (Chx + u1)|
+ |(Chx + u1) − (Chx + C�x)|
+ |(Ch + C�)x − Cx|

≤ 1
2 ulp (u2) + |u1 − C�x| + ε1|x|

≤ 1
2 ulp (u2) + 1

2 ulp (C�x) + ε1|x|.

(4)

and 1
2 ulp (C�x)+ε1|x| is less than 1

2 ulp (C�xcut)+ε1|xcut|
if |x| < xcut and less than ulp (C�)+2ε1 if xcut ≤ x < 2. �

If |u2 − Cx| is less than 1/2 ulp (u2), then u2 is the FP
number that is closest to Cx. Hence our problem is to know
if Cx can be at a distance larger than or equal to 1

2 ulp (u2)
from u2. From (4), this would imply that Cx would be at a
distance less than 1

2 ulp (C�x) + ε1|x| < 2−2n+1 from the
midpoint of two consecutive FP numbers (see Figure 1).

If x < xcut then Cx < 2, then the midpoint of two con-
secutive FP numbers around Cx is of the form A/2n, where
A is an odd integer between 2n+1 and 2n+1−1. If x ≥ xcut,
then the midpoint of two consecutive FP numbers around
Cx is of the form A/2n−1. For the sake of clarity of the
proofs we assume that xcut is not an FP number (if xcut is an
FP number, it suffices to separately check Algorithm 1 with
x = xcut).
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u2

FP numbers

Domain where
Cx can be
located

Can Cx be here?

If Cx is here, then ◦(Cx) = u2

1
2

ulp (u2)

Figure 1. From (4), we know that Cx is within
1/2 ulp (u2)+η (or η′) from the FP number u2, where
η is less than 2−2n+1. If we can show that Cx cannot
be at a distance less than or equal to η (or η′) from
the midpoint of two consecutive floating-point num-
bers, then u2 will be the FP number that is closest to
Cx.

3 A reminder on continued fractions

We just recall here the elementary results that we need in
the following. For more information on continued fractions,
see [5, 11, 10, 6].

Let α be a real number. From α, consider the two se-
quences (ai) and (ri) defined by:




r0 = α,

ai = �ri� ,

ri+1 =
1

ri − ai
.

(5)

If α is irrational, then these sequences are defined for any
i (i.e., ri is never equal to ai), and the rational number

pi

qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

ai

is called the ith convergent to α. If α is rational, then these
sequences finish for some k, and pk/qk = α exactly. The

pis and the qis can be deduced from the ai using the follow-
ing recurrences,


p0 = a0,
p1 = a1a0 + 1,
q0 = 1.




q1 = a1,
pn = pn−1an + pn−2,
qn = qn−1an + qn−2.

The major interest of the continued fractions lies in the fact
that pi/qi is the best rational approximation to α among all
rational numbers of denominator less than or equal to qi.

We will use the following two results [5]

Theorem 1 Let (pj/qj)j≥1 be the convergents of α. For
any (p, q) ∈ Z × N

∗, with q < qn+1, we have

|p − αq| ≥ |pn − αqn|.
Theorem 2 Let p, q be nonzero integers, with gcd(p, q) =
1. If ∣∣∣∣pq − α

∣∣∣∣ <
1

2q2

then p/q is a convergent of α.

4 Three methods for analyzing Algorithm 1

4.1 Method 1: use of Theorem 1

Define X = 2n−1x and Xcut =
⌊
2n−1xcut

⌋
. X and Xcut

are integers between 2n−1 + 1 and 2n − 1. We separate the
cases x < xcut and x > xcut.

4.1.1 If x < xcut

We want to know if there is an integer A between 2n + 1
and 2n+1 − 1 such that∣∣∣∣Cx − A

2n

∣∣∣∣ < η (6)

where η is defined in Property 1. (6) is equivalent to

|2CX − A| < 2nη (7)

Define (pi/qi)i≥1 as the convergents of 2C. Let k be the
smallest integer such that qk+1 > Xcut, and define δ =
|pk − 2Cqk| . Theorem 1 implies that for any A, X ∈ Z,
with 0 < X ≤ Xcut, |2CX − A| ≥ δ. Therefore

1. if δ ≥ 2nη then |Cx−A/2n| < η is impossible. In that
case, Algorithm 1 returns a correctly rounded result
for any x < xcut;

2. if δ < 2nη then we try Algorithm 1 with y = qk2−n+1.
If the obtained result is not ◦(yC), then we know that
Algorithm 1 fails for at least one value1. Otherwise,
we cannot infer anything.

1It is possible that y be not between 1 and xcut. It will anyway be a
counterexample, i.e., an n-bit number for which Algorithm 1 fails.
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4.1.2 If x > xcut

We want to know if there is an integer A between 2n + 1
and 2n+1 − 1 such that

∣∣∣∣Cx − A

2n−1

∣∣∣∣ < η′ (8)

where η′ is defined in Property 1. (8) is equivalent to

|CX − A| < 2n−1η′ (9)

Define (p′i/q′i)i≥1 as the convergents of C. Let k′ be the
smallest integer such that q′k′+1 ≥ 2n, and define δ′ =
|p′k′ − Cq′k′ | . Theorem 1 implies that for any A, X ∈ Z,
with Xcut ≤ X < 2n, |CX − A| ≥ δ′. Therefore

1. if δ′ ≥ 2n−1η′ then |Cx−A/2n−1| < η′ is impossible.
In that case, Algorithm 1 returns a correctly rounded
result for any x > xcut;

2. if δ′ < 2n−1η′ then we try Algorithm 1 with y =
q′k′2−n+1. If the obtained result is not ◦(yC), then
we know that Algorithm 1 fails for at least one value.
Otherwise, we cannot infer anything.

4.2 Method 2: use of Theorem 2

Again, we use X = 2n−1x and Xcut =
⌊
2n−1xcut

⌋
, and

we separate the cases x < xcut and x > xcut.

4.2.1 If x > xcut

If ∣∣∣∣Cx − A

2n−1

∣∣∣∣ < ε1x +
1
2

ulp (C�x)

then, ∣∣∣∣C − A

X

∣∣∣∣ < ε1 +
2n−2

X
ulp (C�x). (10)

Now, if

22n+1ε1 + 22n−1 ulp (2C�) ≤ 1, (11)

then for any X < 2n (i.e., x < 2),

ε1 +
2n−2

X
ulp (C�x) <

1
2X2

.

Hence, if (11) is satisfied, then (10) implies (from Theo-
rem 2) that A/X is a convergent of C. This means that
if (11) is satisfied, to find the possible bad cases for Algo-
rithm 1 it suffices to examine the convergents of C of de-
nominator less than 2n. We can quickly eliminate most of
them. A given convergent p/q (with gcd(p, q) = 1) is a

candidate for generating a value X for which Algorithm 1
does not work if there exist X = mq and A = mp such that




Xcut < X ≤ 2n − 1,

2n + 1 ≤ A ≤ 2n+1 − 1,

| CX
2n−1 − A

2n−1 | < ε1
X

2n−1 + 1
2 ulp (C�x).

This would mean
∣∣∣C mq

2n−1
− mp

2n−1

∣∣∣ < ε1
mq

2n−1
+

1
2

ulp (2C�),

which would imply

|Cq − p| < ε1q +
2n−1

m∗ ulp (C�), (12)

where m∗ = �Xcut/q	 is the smallest possible value of m.
Hence, if Condition (12) is not satisfied, convergent p/q
cannot generate a bad case for Algorithm 1.

Now, if Condition (12) is satisfied, we have to check
Algorithm 1 with all values X = mq, with m∗ ≤ m ≤
�(2n − 1)/q�.

4.2.2 If x < xcut

If ∣∣∣∣Cx − A

2n

∣∣∣∣ < ε1xcut +
1
2

ulp (C�xcut)

then
∣∣∣∣2C − A

X

∣∣∣∣ < 2n × ε1xcut + 1
2 ulp (C�xcut)
X

.

Therefore, since X ≤ Xcut, if

ε1xcut +
1
2

ulp (C�xcut) ≤ 1
2n+1Xcut

(13)

then we can apply Theorem 2: if |Cx − A/2n| < ε1xcut +
1
2 ulp (C�xcut) then A/X is a convergent of 2C.

In that case, we have to check the convergents of 2C of
denominator less than or equal to Xcut. A given convergent
p/q (with gcd(p, q) = 1) is a candidate for generating a
value X for which Algorithm 1 does not work if there exist
X = mq and A = mp such that




2n−1 ≤ X ≤ Xcut

2n + 1 ≤ A ≤ 2n+1 − 1
| CX
2n−1 − A

2n | < ε1xcut + 1
2 ulp (C�xcut).

This would mean
∣∣∣C mq

2n−1
− mp

2n

∣∣∣ < ε1xcut +
1
2

ulp (C�xcut),
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which would imply

|2Cq − p|
<

2n

m∗

(
ε1xcut +

1
2

ulp (C�xcut)
)

,
(14)

where m∗ = �2n−1/q	 is the smallest possible value of
m. Hence, if (14) is not satisfied, convergent p/q cannot
generate a bad case for Algorithm 1.

Now, if (14) is satisfied, we have to check Algorithm 1
with all values X = mq, with m∗ ≤ m ≤ �Xcut/q�.

This last result and (4) make it possible to deduce:

Theorem 3 (Conditions on C and n) Assume 1 < C < 2.
Let xcut = 2/C, and Xcut =

⌊
2n−1xcut

⌋
.

• If X = 2n−1x > Xcut and 22n+1ε1 +
22n−1 ulp (2C�) ≤ 1 then Algorithm 1 will always re-
turn a correctly rounded result, except possibly if X is
a multiple of the denominator of a convergent p/q of

C for which |Cq − p| < ε1q + 2n−1

�Xcut/q� ulp (C�);

• if X = 2n−1x ≤ Xcut and ε1xcut + 1/2 ulp (C�xcut) ≤
1/(2n+1Xcut) then Algorithm 1 will always re-
turn a correctly rounded result, except possibly
if X is a multiple of the denominator of a
convergent p/q of 2C for which |2Cq − p| <

2n

�2n−1/q�
(
ε1xcut + 1

2 ulp (C�xcut)
)
.

4.3 Method 3: refinement of Method 2

When Method 2 fails to return an answer, we can use the
following method.

We have |C − Ch| < 2−n, hence ulp (C�) ≤ 2−2n.

4.3.1 If x < xcut

if ulp (C�) ≤ 2−2n−2 then we have

|u2 − Cx| <
1
2

ulp (u2) + 2−2n−1.

For any integer A, the inequality
∣∣∣∣Cx − 2A + 1

2n

∣∣∣∣ ≤ 1
22n+1

implies

|2CX − 2A − 1| ≤ 1
2n+1

<
1

2X
:

(2A + 1)/X is a convergent of 2C from Theorem 2. It
suffices then to check (as in Method 2) the convergents of
2C of denominator less or equal to Xcut.

Now, assume ulp (C�) ≥ 2−2n−1. We have,

− ulp (C�) + C�
X

2n−1
≤ u1 ≤ ulp (C�) + C�

X

2n−1

i.e.,

−22n ulp (C�) + 2n+1C�X

≤ u122n

≤ 22n ulp (C�) + 2n+1C�X.

(15)

We look for the integers X , 2n−1 ≤ X ≤ Xcut, such that
there exists an integer A, 2n−1 ≤ A ≤ 2n − 1, with

∣∣∣∣Ch
X

2n−1
+ u1 − 2A + 1

2n

∣∣∣∣ < 2 ulp (C�)

i.e.,

∣∣∣∣ ChX

2n ulp (C�)
+

u1

2 ulp (C�)
− 2A + 1

2n+1 ulp (C�)

∣∣∣∣ < 1.

Since u1/(2 ulp (C�)) is half an integer and ChX

2n ulp (C�)
and

2A+1

2n+1 ulp (C�)
are integers, we have

ChX

2n ulp (C�)
+

u1

2 ulp (C�)
− 2A + 1

2n+1 ulp (C�)
= 0,±1/2.

Then, combining these three equations with inequalities
(15), we get the following three pairs of inequalities

0 ≤ 2X(Ch + C�) − (2A + 1) + 2n ulp (C�)
≤ 2n+1 ulp (C�),

0 ≤ 2X(Ch + C�) − (2A + 1)
≤ 2n+1 ulp (C�),

0 ≤ 2X(Ch + C�) − (2A + 1) + 2n+1 ulp (C�)
≤ 2n+1 ulp (C�).

For y ∈ R, let {y} be the fractional part of y: {y} =
y − �y�. These three inequalities can be rewritten as

{2X(Ch + C�) + 2n ulp (C�)} ≤ 2n+1 ulp (C�),

{2X(Ch + C�)} ≤ 2n+1 ulp (C�),

{2X(Ch + C�) + 2n+1 ulp (C�)} ≤ 2n+1 ulp (C�).

We use an efficient algorithm due to V. Lefèvre [7] to deter-
mine the integers X solution of each inequality.

5
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4.3.2 If x > xcut

if ulp (C�) ≤ 2−2n−1 then we have

|u2 − Cx| <
1
2

ulp (u2) + 2−2n.

Therefore, for any integer A, the inequality∣∣∣∣Cx − 2A + 1
2n−1

∣∣∣∣ ≤ 1
22n

is equivalent to

|CX − 2A − 1| ≤ 1
2n+1

<
1

2X
,

(2A+1)/X is necessarily a convergent of C from Theorem
2. It suffices then to check, as indicated in Method 2, the
convergents of C of denominator less or equal to 2n − 1.

Now, assume ulp (C�) = 2−2n. We look for the integers
X , Xcut +1 ≤ X ≤ 2n−1, such that there exists an integer
A, 2n−1 ≤ A ≤ 2n − 1, with∣∣∣∣Ch

X

2n−1
+ u1 − 2A + 1

2n−1

∣∣∣∣ <
1

22n

i.e., ∣∣2n+1ChX + u122n − 2n+1(2A + 1)
∣∣ < 1.

Since u122n, 2n+1ChX and 2n+1(2A + 1) ∈ Z, we have

2n+1ChX + u122n − 2n(2A + 1) = 0.

Then, combining this equation with inequalities (15), we
get the inequalities

0 ≤ X(Ch + C�) − (2A + 1) +
1

2n+1
≤ 1

2n
,

that is to say

{X(Ch + C�) +
1

2n+1
} ≤ 1

2n
.

Here again, we use Lefèvre’s algorithm [7] to determine
the integers X solution of this inequality.

5 Examples

5.1 Example 1: multiplication by π in double pre-
cision

Consider the case C = π/2 (which corresponds to mul-
tiplication by any number of the form 2±jπ), and n = 53
(double precision), and assume we use Method 1. We find:


Ch = 884279719003555/562949953421312,

C� = 6.123233996 · · · × 10−17,

ε1 = 1.497384905 · · · × 10−33,

xcut = 1.2732395447351626862 · · · ,
ulp (C�xcut) = 2−106,

ulp (C�) = 2−106.

Hence, {
2nη = 7.268364390 × 10−17,

2n−1η′ = 6.899839541 × 10−17.

Computing the convergents of 2C and C we find

pk

qk
=

6134899525417045
1952799169684491

and δ = 9.495905771 × 10−17 > 2nη (which means that
Algorithm 1 works for x < xcut), and

p′k′

q′k′
=

12055686754159438
7674888557167847

and δ′ = 6.943873667 × 10−17 > 2n−1η′(which means
that Algorithm 1 works for x > xcut). We therefore deduce:

Theorem 4 (Correctly rounded multiplication by π)
Algorithm 1 always returns a correctly rounded result in
double precision with C = 2jπ, where j is any integer,
provided no under/overflow occur.

Hence, in that case, multiplying by π with correct rounding
only requires 2 consecutive FMAs.

5.2 Example 2: multiplication by ln(2) in double
precision

Consider the case C = 2 ln(2) (which corresponds to
multiplication by any number of the form 2±j ln(2)), and
n = 53, and assume we use Method 2. We find:




Ch = 6243314768165359
4503599627370496

,

C� = 4.638093628 · · · × 10−17,

xcut = 1.442695 · · · ,
ε1 = 1.141541688 · · · × 10−33,

ε1xcut

+ 1
2

ulp (C�xcut) = 7.8099 · · · × 10−33,

1/(2n+1Xcut) = 8.5437 · · · × 10−33.

Since ε1xcut+1/2 ulp (C�xcut) ≤ 1/(2n+1Xcut), to find the
possible bad cases for Algorithm 1 that are less than xcut, it
suffices to check the convergents of 2C of denominator less
than or equal to Xcut. These convergents are:
2, 3, 11/4, 25/9, 36/13, 61/22, 890/321, 2731/985,
25469/9186, 1097898/395983, 1123367/405169,
2221265/801152,16672222/6013233, 18893487/6814385,
35565709/12827618, 125590614/45297239,
161156323/58124857, 609059583/219671810,
1379275489/497468477, 1988335072/717140287,
5355945633/1931749051, 7344280705/2648889338,
27388787748/9878417065, 34733068453/12527306403,
62121856201/22405723468, 96854924654/34933029871,
449541554817/162137842952,
2794104253556/1007760087583,
3243645808373/1169897930535,
6037750061929/2177658018118,
39470146179947/14235846039243,
124448188601770/44885196135847,
163918334781717/59121042175090,
288366523383487/104006238310937,
6219615325834944/2243252046704767.
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None of them satisfies condition (14). Therefore there are
no bad cases less than xcut. Processing the case x > xcut is
similar and gives the same result, hence:

Theorem 5 (Correctly rounded multiplication by ln(2))
Algorithm 1 always returns a correctly rounded result in
double precision with C = 2j ln(2), where j is any integer,
provided no under/overflow occur.

5.3 Example 3: multiplication by 1/π in double
precision

Consider the case C = 4/π and n = 53, and assume we
use Method 1. We find:



Ch = 5734161139222659
4503599627370496

,

C� = −7.871470670 · · · × 10−17,

ε1 = 4.288574513 · · · × 10−33,

xcut = 1.570796 · · · ,
C�xcut = −1.236447722 · · · × 10−16,

ulp (C�xcut) = 2−105,

2nη = 1.716990939 · · · × 10−16,

pk/qk = 15486085235905811
6081371451248382

,

δ = 7.669955467 · · · × 10−17.

Consider the case x < xcut. Since δ < 2nη, there
can be bad cases for Algorithm 1. We try Algorithm 1
with X equal to the denominator of pk/qk, that is,
6081371451248382, and we find that it does not return
◦(cX) for that value. Hence, there is at least one value
of x for which Algorithm 1 does not work.

Method 3 certifies that X = 6081371451248382, i.e.,
6081371451248382×2±k are the only FP values for which
Algorithm 1 fails.

5.4 Example 4: multiplication by
√

2 in single pre-
cision

Consider the case C =
√

2, and n = 24 (which corre-
sponds to single precision), and assume we use Method 1.
We find:



Ch = 11863283/8388608,

C� = 2.420323497 · · · × 10−8,

ε1 = 7.628067479 · · · × 10−16,

Xcut = 11863283,

ulp (C�xcut) = 2−48,

2nη = 4.790110735 · · · × 10−8,

pk/qk = 22619537/7997214,

δ = 2.210478490 · · · × 10−8,

2n−1η′ = 2.769893477 · · · × 10−8,

pk′/qk′ = 22619537/15994428,

δ′ = 2.210478490 · · · × 10−8.

Since 2nη > δ and X = qk = 7997214 is not a bad
case, we cannot infer anything in the case x < xcut. Also,
since 2n−1η′ > δ′ and X = qk′ = 15994428 is not a bad

case, we cannot infer anything in the case x ≥ xcut. Hence,
in the case C =

√
2 and n = 24, Method 1 does not allow

us to know if the multiplication algorithm works for any
input FP number x. In that case, Method 2 also fails. And
yet, Method 3 or exhaustive testing (which is possible since
n = 24 is reasonably small) show that Algorithm 1 always
works.

6 Implementation and results

As the reader will have guessed from the previous ex-
amples, using our Methods by paper and pencil calculation
is fastidious and error-prone. We have written Maple pro-
grams that implement Methods 1 and 2, and a GP/PARI2

program that implements Method 3. They allow any user
to quickly check, for a given constant C and a given num-
ber n of mantissa bits, if Algorithm 1 works for any x, and
Method 3 gives all values of x for which it does not work (if
there are such values). These programs can be downloaded
from the url

http://perso.ens-lyon.fr/jean-michel.

muller/MultConstant.html

These programs, along with some examples, are given in
the appendix. Table 2 presents some obtained results. They
show that implementing Method 1, Method 2 and Method 3
is necessary: Methods 1 and 2 do not return a result (either a
bad case, or the fact that Algorithm 1 always works) for the
same values of C and n. For instance, in the case C = π/2
and n = 53, we know thanks to Method 1 that the multipli-
cation algorithm always works, whereas Method 2 fails to
give an answer. On the contrary, in the case C = 1/ ln(2)
and n = 24, Method 1 does not give an answer, whereas
Method 2 makes it possible to show that the algorithm al-
ways works. Method 3 always returns an answer, but is
more complicated to implement: this is not a problem for
getting in advance a result such as Theorem 4, for a general
constant C. And yet, this might make method 3 difficult to
implement in a compiler, to decide at compile-time if we
can use our algorithm.

7 Conclusion

The three methods we have proposed allow one to check
whether correctly rounded multiplication by an “infinite
precision” constant C is feasible at a low cost (one mul-
tiplication and one FMA). For instance, in double preci-
sion arithmetic, we can multiply by π or ln(2) with correct
rounding. Interestingly enough, although it is always pos-
sible to build ad hoc values of C for which Algorithm 1
fails, for “general” values of C, our experiments show that
Algorithm 1 works for most values of n.

2http://pari.math.u-bordeaux.fr/
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C n method 1 method 2 method 3

π 8
Does not

work for

226

Does not

work for

226

AW (c)

unless X =
226

π 24 unable unable AW

π 53 AW unable AW

π 64 unable AW AW (c)

π 113 AW AW AW (c)

1/π 24 unable unable AW

1/π 53
Does not

work for

6081371451248382

unable

AW

unless X =
6081371451248382

1/π 64 AW AW AW (c)

1/π 113 unable unable AW

ln 2 24 AW AW AW (c)

ln 2 53 AW unable AW (c)

ln 2 64 AW unable AW (c)

ln 2 113 AW AW AW (c)
1

ln 2 24 unable AW AW (c)
1

ln 2 53 AW AW AW (c)
1

ln 2 64 unable unable AW
1

ln 2 113 unable unable AW

ln 10 24 unable AW AW (c)

ln 10 53 unable unable AW

ln 10 64 unable AW AW (c)

ln 10 113 AW AW AW (c)
1

ln 10 24 unable unable AW
1

ln 10 53 unable AW AW (c)
1

ln 10 64 unable AW AW (c)
1

ln 10 113 unable unable AW

cos π
8 24 unable unable AW

cos π
8 53 AW AW AW (c)

cos π
8 64 AW unable AW

cos π
8 113 unable AW AW (c)

Table 2. Some results obtained using methods 1, 2
and 3. The results given for constant C hold for all
values 2±jC. “AW” means “always works” and “un-
able” means “the method is unable to conclude”. For
method 3, “(c)” means that we have needed to check
the convergents.
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