
HAL Id: ensl-00078110
https://ens-lyon.hal.science/ensl-00078110v1

Preprint submitted on 2 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Valiant’s model: from exponential sums to exponential
products

Sylvain Perifel, Pascal Koiran

To cite this version:
Sylvain Perifel, Pascal Koiran. Valiant’s model: from exponential sums to exponential products. 2006.
�ensl-00078110�

https://ens-lyon.hal.science/ensl-00078110v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Valiant’s model: from exponential sums
to exponential products

Pascal Koiran
Sylvain Perifel

June 2006

Rapport de recherche No 2006–21

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Valiant’s model: from exponential sums

to exponential products

Pascal Koiran
Sylvain Perifel

June 2006

Abstract

We study the power of big products for computing multivariate polynomials in
a Valiant-like framework. More precisely, we define a new class VΠP0 as the set
of families of polynomials that are exponential products of easily computable
polynomials. We investigate the consequences of the hypothesis that these
big products are themselves easily computable. For instance, this hypothesis
would imply that the nonuniform versions of P and NP coincide. Our main
result relates this hypothesis to Blum, Shub and Smale’s algebraic version of P
versus NP. Let K be a field of characteristic 0. Roughly speaking, we show that
in order to separate PK from NPK using a problem from a fairly large class of
“simple” problems, one should first be able to show that exponential products
are not easily computable. The class of“simple”problems under consideration is
the class of NP problems in the structure (K, +,−, =), in which multiplication
is not allowed.

Keywords: Algebraic complexity, Valiant’s model, Blum–Shub–Smale’s model, big products.

Résumé

Cet article étudie la puissance des gros produits pour le calcul de polynômes à
plusieurs variables dans le cadre de la théorie de Valiant. Plus précisément, nous
définissons pour cela une nouvelle classe VΠP0 de familles de polynômes : il
s’agit des produits de taille exponentielle de polynômes facilement calculables.
Nous étudions les conséquences de l’hypothèse que ces gros produits sont eux-
mêmes facilement calculables. Par exemple, cela impliquerait que les versions
non-uniformes de P et NP cöıncident. Le résultat principal est un lien avec les
classes algébriques P et NP du modèle BSS sur un corps K de caractéristique
nulle. On pourrait l’énoncer ainsi : si nous voulons séparer PK de NPK grâce à
des problèmes issus d’un ensemble important de problèmes « simples », il faut
d’abord être capable de montrer que nos gros produits ne sont pas facilement
calculables. L’ensemble des problèmes « simples » en question est NP sur la
structure (K, +,−, =), dans laquelle la multiplication n’est pas autorisée.

Mots-clés: Complexité algébrique, modèle de Valiant, modèle BSS, gros produits.

1 Introduction

Valiant’s model. In the framework of Valiant’s theory, which goes back to [18], the objects of interest
are families of multivariate polynomials. The complexity of such families can be measured by the size
of arithmetic circuits which compute them. Two main complexity classes were introduced : VP, whose
elements are families of polynomials computed by arithmetic circuits of polynomial size and polynomially
bounded degree, and VNP. A VNP family is obtained from a VP family by a summation of (possibly)
exponential size, and a central open question is whether VP and VNP coincide. For a long time, these
two classes were almost the only classes studied in Valiant’s theory. One exception is the class VQP of
polynomials computed by arithmetic circuits of quasi-polynomial size of polynomially bounded degree.
More recently, new classes were defined and studied by Malod [13]. Of particular interest for us is his
class VP0

nb. In contrast to VP, arbitrary constants are not allowed, and the degrees of polynomials are
not bounded.

In this paper we define a new class, called VΠP0, which is obtained from VP0
nb by computing products

of (possibly) exponential size. By definition VP0
nb is included in VΠP0, and we conjecture that this

inclusion is strict. Some support for this conjecture is provided by the following observation : if VP0
nb =

VΠP0 the polynomial family

Pd =
d−1∏
i=0

(X − i) (1)

is easy to compute, i.e., can be computed by a family of arithmetic circuits of size polynomial in log d.
However, there is in algebraic complexity theory a fairly old conjecture that this family is hard to
compute [7, 12]. Even more compelling support for our conjecture is provided by Theorem 1, which
shows that the non-uniform versions of P and NP coincide if VP0

nb= VΠP0, that is, if big products are
computable by polynomial size circuits.

The goal of this paper is not merely to define yet another complexity class. Indeed, as explained below
the study of VΠP0 leads to meaningful results about the complexity of decision problems. This paper is
therefore in the same spirit as [9], where it is shown that certain sequences of integers become easy to
compute if certain classes of polynomial families coincide.

Blum-Shub-Smale model. One crucial difference between this second model of algebraic computation
and Valiant’s model is the focus on decision (rather than evaluation) problems. Precise definitions will
be given in section 2. In this introduction we will just recall that there is for each field a version of the
classical P versus NP problem. In particular, for the field of complex numbers there is a very natural
“PC = NPC ?” problem, which has remained open since [3]. In order to separate PC from NPC, it is of
course sufficient to exhibit a “well chosen” problem A which belongs to NPC but not to PC. One natural
choice would be to try A = FEASC, where FEASC, the feasibility problem for systems of polynomial
equations, is the canonical NPC-complete problem. One insight from Shub and Smale [17] was that there
are much more elementary-looking NPC problems that do not seem to belong to PC. Shub and Smale’s
candidate is the problem Twenty Questions, which can be defined as follows : given a complex number
x and an integer d written in binary, decide whether x is an integer in the set {0, 1, . . . , d − 1}. It is
not difficult to see that this problem is in NPC (hint : guess the binary decomposition of x). Shub and
Smale gave compelling evidence that this problem does not belong to PC, but no conclusive proof could
be obtained. In hindsight, this lack of definitive results is not surprising. Indeed, to decide whether an
input to Twenty Questions should be accepted it suffices to evaluate the polynomial Pd at X = x, and to
compare the result to 0. In order to show that Twenty Questions is not in PC, one must therefore show
that the family Pd is hard to compute. As explained above, this is a fairly longstanding open problem1

which actually predates [17].
In this paper we investigate the following question : are there other examples of “simple” problems

which might be used to separate NPC from PC ? The class of “simple” problems that we have in mind is
NP(C,+,−,=). This is the class of NP problems over the set of complex numbers endowed with addition,
subtraction, and equality tests (there is therefore no multiplication in this structure). It contains Twenty
Questions and many other natural problems (for instance, Subset Sum). Our main result, Theorem 2, is
established in section 5 : we show that if VP0

nb = VΠP0 then NP(C,+,−,=) is contained in P(C,+,−,×,=),
the non-uniform version of PC. Here, the non-uniformity is only due to the fact that (in keeping with the

1The computation model of [7] and [12] is non-uniform, but Shub and Smale’s is uniform. It doesn’t seem, however, that
adding a uniformity requirement would be of much help in showing that the family Pd is hard to compute.

1

tradition set by Valiant) the classes VP0
nb and VΠP0 are non-uniform. One could equally well work with

uniform versions of VP0
nband VΠP0, and arrive instead at the inclusion NP(C,+,−,=) ⊆ PC.

We hope that this paper will help put the focus back from decision problems to evaluation problems.
Indeed, we have shown that in order to prove good lower bounds for problems in a fairly large class of
decision problems, one must first be able to prove good lower bounds for a related class of evaluation
problems. It is a natural question whether the study of evaluation problems can shed light not only on
the problem “NP(C,+,−,=) ⊆ PC ?”, but also on the full “PC = NPC ?” problem, or on the “PR = NPR ?”
problem. This question will be investigated in a forthcoming paper.

The present paper is the full version of [11].

2 Notations

Our polynomials will be multivariate, and for notational simplicity a tuple of indeterminates will be
denoted x̄ instead of (x1, . . . , xu(n)). We will use the Greek letter ε̄ to emphasize that we are using a
tuple of boolean variables, i.e. ε̄ ∈ {0, 1}u(n). However, depending on the context x̄ will also denote a
boolean word when we are dealing with boolean problems.

2.1 Boolean complexity classes

We will not offend the reader by defining the boolean classes P and NP. Let us only recall the
definitions of their nonuniform versions P/poly and NP/poly. P/poly is defined equivalently in terms of
circuits or machines : this is the set of boolean langugages recognized by a family of boolean circuits of
polynomial size. Alternatively, this is also the set of languages recognized by a Turing machine working
in polynomial time with the help of a polynomial size advice function (hence the name P/poly, see [8]).

NP/poly, the nonuniform version of NP, is the set of languages recognized by polynomial time non-
deterministic Turing machine with the help of a polynomial size advice function. Equivalently, it is easily
seen to be the nondeterministic counterpart of P/poly, that is to say : L ∈ NP/poly if and only if there
exist A ∈ P/poly and a polynomial p(n) such that

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

If A is a language and k a nonnegative integer, A=k denotes the set of words of A of size k.
Another class used in this paper is coRP. It is the set of languages recognized in polynomial time by

randomized Turing machines with one-sided error. For more details on boolean complexity, we refer the
reader to [14] for instance.

2.2 Algebraic circuits

In this section we recall the definitions of the non-uniform classes P(K,+,−,×,=) and NP(K,+,−,×,=),
where K is an arbitrary field. These two classes are the non-uniform versions of the classes PK and
NPK defined by Blum, Shub and Smale [3, 2]. Following [15], we will use families of algebraic circuits to
recognize languages over K, that is, subsets of K∞ =

⋃
n≥0 Kn.

An algebraic circuit (understood over (K, +,−,×, =)) is a directed acyclic graph whose vertices,
called gates, have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is a gate of
outdegree 0. We assume that there is only one such gate in the circuit. Gates of indegree 2 are labelled
by a symbol from the set {+,−,×}. Gates of indegree 1, called test gates, are labelled “= 0 ?”. The size
of a circuit C, in symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from Kn to K. On input ū ∈ Kn the value returned
by the circuit is by definition equal to the value of its output gate. The value of a gate is defined in the
usual way. Namely, the value of input gate number i is equal to the i-th input ui. The value of other
gates is then defined recursively : it is the sum of the values of its entries for a +-gate, their difference for
a −-gate, their product for a ×-gate. The value taken by a test gate is 0 if the value of its entry is �= 0,
and 1 otherwise. We assume without loss of generality that the output is a test gate. The value returned
by the circuit is therefore 0 or 1.

Finally, the class P(K,+,−,×,=) is the set of languages L ⊆ K∞ such that there exists a tuple ā ∈ Kp

and a polynomial-size circuit family (Cn) satisfying the following condition : Cn has exactly n+p inputs,

2

and for any x̄ ∈ Kn, x̄ ∈ L⇔ Cn(x̄, ā) = 1. Note that ā plays the role of the machine constants of [2, 3].
The uniform class PK of [2, 3] can be obtained from P(K,+,−,×,=) by adding a uniformity requirement
on the family (Cn). In this paper we will stick to non-uniform classes.

Furthermore, NP(K,+,−,×,=) is the class of languages L such that there exists a language A ∈
P(K,+,−,×,=) and a polynomial p(n) satisfying

x̄ ∈ L ⇐⇒ ∃ȳ ∈ Kp(|x̄|).(x̄, ȳ) ∈ A.

We also define a version DNP(K,+,−,×,=) (‘D’ stands for “digital”), where nondeterminism is allowed only
on boolean tuples :

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

We will also need to compute over the structure (K, +,−, =), where multiplication is not allowed. An
algebraic circuit over (K, +,−, =) is defined as above, except that there are no ×-gate and that there is
a new type of gates, called selection gates. A selection gates is of indegree 3. Its value on input (x, y, z)
is x if z = 0, and y otherwise. The role of these gates is to simulate “if then else” statements. These
gates are not needed for the structure (K, +,−,×, =) since “if then else” statements can be simulated
using multiplication (for instance, by the subcircuit [z = 0?] × x + (1 − [z = 0?]) × y). The classes
P(K,+,−,=) and NP(K,+,−,=) are defined in the same way as P(K,+,−,×,=) and NP(K,+,−,×,=). We could
define DNP(K,+,−,=) as well, but the first author has shown in [10] that DNP(K,+,−,=) = NP(K,+,−,=),
i.e., only digital nondeterminism is enough over the structure (K, +,−, =).

2.3 Arithmetic circuits

In Valiant’s model, we compute polynomials instead of recognizing languages. A book-length treat-
ment of this topic can be found in [4]. In our framework, which, as explained in the introduction, is
not the original one, we require the underlying structure to be a field of characteristic 0, and do not
allow arbitrary constants (apart from the constant 1) in our circuits. Hence we compute polynomials
fn ∈ Z[x1, . . . , xu(n)]. Furthermore, we have no restriction on the degree of the polynomials. This forma-
lism was introduced and studied in [13].

An arithmetic circuit is the same as an algebraic circuit over (K, +,−,×, =), but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input, +, − and ×-gates, and we therefore
compute polynomials with integer coefficients.

The polynomial computed by an arithmetic circuit is defined in the usual way. Thus a family (Cn)
of arithmetic circuits computes a family (fn) of polynomials, fn ∈ Z[x1, . . . , xu(n)]. The class VP0

nb is
the set of families (fn) of polynomials computed by a family (Cn) of polynomial size arithmetic circuits,
i.e., Cn computes fn and there exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume
without loss of generality that the number u(n) of variables is bounded by a polynomial function of n.

Arithmetic circuits are at least as powerful as boolean circuits in the sense that one can simulate the
latter by the former. Indeed, we can for instance replace ¬u by 1−u, u∧v by uv, and u∨v by u+v−uv.
This proves the following classical lemma.

Lemma 1 Any boolean circuit C can be simulated by an arithmetic one of size at most 3|C|, in the sense
that on boolean inputs, both circuits output the same value.

3 Big products

We introduce here the new class VΠP0, where exponential products are allowed. This is very much
inspired by the class VNP, but sums are replaced by products (and, as explained before, constants
different from 1 are not allowed, and there is no restriction on the degree).

Definition 1 The class VΠP0 is the set of families of polynomials (gn(x̄)) such that there exists a family
(fn(x̄, ȳ)) ∈ VP0

nb satisfying the relation :

gn(x̄) =
∏

ε̄∈{0,1}|ȳ|

fn(x̄, ε̄).

3

Example 1 The family (gn(X)) defined by gn(X) =
2n−1∏
i=0

(X − i) is in VΠP0. To see this, let (fn(X, ε̄))

be the family

fn(X, ε̄) = X −
n∑

j=1

εj2j−1.

Then (fn) ∈ VP0
nb and gn(X) =

∏
ε̄∈{0,1}n

fn(X, ε̄).

Note that gn = P2n , where P2n is defined by (1). This polynomial can therefore be computed by a circuit
of size polynomial in n if VP0

nb = VΠP0. In fact a more general property holds true : if VP0
nb = VΠP0 the

family (Pd) is easy to compute. Indeed, once we know how to evaluate efficiently Pd when d is a power of
2, we can also evaluate efficiently for an arbitrary d thanks to the relation Pd+2n(X) = Pd(X)P2n(X−d).
This observation gives some plausibility to the conjecture VP0

nb �= VΠP0. Additional support is provided
by Theorem 1 from section 4.

Remark 1 The underlying field is implicit in the notations VP0
nb and VΠP0, and should usually be

clear from the context. Note that for the question VP0
nb = VΠP0, there is no ambiguity at all. Indeed,

the equality VP0
nb = VΠP0 holds true in a field of characteristic 0 if and only if it holds true in all fields

of characteristic 0.

Remark 2 In the spirit of the polynomial hierarchy in boolean complexity theory, one could define a
whole hierarchy of new complexity classes by alternating sums and products. The classes VP0

nb, VNP0
nb

(also studied by Malod [13]) and VΠP0 would be the first three classes of this hierarchy.

Next we present a criterion which enables to make products over a set more complicated than {0, 1}n.

Lemma 2 Let (fn(x̄, ȳ)) be a VP0
nb family, and s(n) a function which bounds from above the length of

ȳ, and is itself polynomially bounded (i.e., s(n) ≤ p(n) for some polynomial p). Let A be a language in
P/poly. There exists a family (gn(l̄, x̄)) in VΠP0, where |l̄| = s(n) − |ȳ|, such that for any tuple x̄ of
elements of K and any boolean tuple l̄ we have :

gn(l̄, x̄) =
∏

ε̄; (l̄,ε̄)∈A=s(n)

fn(x̄, ε̄).

Proof. Since A ∈ P/poly, there exists a family of polynomial size boolean circuits (Cn) deciding A. By
Lemma 1, we can simulate this family of boolean circuits by a family of arithmetic circuits. We obtain
a family of polynomials (cn(ȳ, z̄)) in VP0

nb such that for any boolean input (l̄, ε̄) of size n :

cn(l̄, ε̄) =
{

1 if (l̄, ε̄) ∈ A
0 otherwise.

The family (hn(x̄, ȳ, z̄)) defined by

hn(x̄, ȳ, z̄) = cs(n)(ȳ, z̄)fn(x̄, z̄) + 1− cs(n)(ȳ, z̄)

is therefore in VP0
nb and satisfies

∏
ε̄∈{0,1}s(n)

hn(x̄, l̄, ε̄) =
∏

ε̄; (l̄,ε̄)∈A=s(n)

fn(x̄, ε̄).

��
Note that this lemma is already meaningful when s(n) = |ȳ|, i.e., when |l̄| = 0. The more general

statement given here will be useful for the proof of our main theorem.

4

4 Boolean complexity

In this section we explore the consequences for boolean complexity theory of the assumption that big
products are computable by polynomial size circuits. Namely, we prove the following result.

Theorem 1 If VΠP0 = VP0
nb then P/poly = NP/poly.

Proof. Let A ∈ NP/poly. Then there exist a language B ∈ P/poly and a polynomial p(n) such that

x̄ ∈ A ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ B.

Since B ∈ P/poly, it is decided by a family of polynomial size boolean circuits. These circuits can be
simulated by arithmetic ones as in Lemma 1. We obtain a family of polynomials (fn(x̄, ȳ)), whose value
on a boolean input (x̄, ȳ) is 0 if (x̄, ȳ) ∈ B and 1 otherwise. This family is in VP0

nb because the family of
arithmetic circuits has polynomial size.

Now, the products
gn(x̄) =

∏
ȳ∈{0,1}p(|x̄|)

fn(x̄, ȳ)

form a VΠP0 family. On any boolean input x̄ we have gn(x̄) ∈ {0, 1}, and gn(x̄) = 0 iff ∃ȳ ∈
{0, 1}p(|x̄|).(fn(x̄, ȳ) = 0). In other words,

gn(x̄) = 0⇔ x̄ ∈ A. (2)

Under the hypothesis VΠP0 = VP0
nb, the family (gn) is in VP0

nb. It is therefore computed by poly-
nomial size arithmetic circuits. Deciding whether x̄ ∈ A in nonuniform polynomial time thus amounts
to testing in nonuniform polynomial time whether the value of a circuit is zero. It is well known that
this can be done in randomized polynomial time coRP by computing modulo random primes (see for
instance [16]). The inclusion coRP ⊂ P/poly [1] concludes the proof. ��

It follows from (2) that we can decide any problem in NP by testing an appropriate VΠP0 family for
zero. This fact will be used in section 5.4.

5 A transfer theorem

We now turn our attention to links with the Blum-Shub-Smale model. The main result of this section,
and of the present paper, is the following theorem.

Theorem 2 If VΠP0 = VP0
nb then NP(K,+,−,=) ⊆ P(K,+,−,×,=).

As in Theorem 1, this connection between VΠP0 and nondeterminism will be obtained by replacing
quantifiers by products. However, in VΠP0 the products concern only arithmetic circuits, whereas in
NP(K,+,−,=) the quantifiers concern algebraic circuits (where test gates occur). Therefore, we would
like to simulate the computation of an algebraic circuit by an arithmetic one, i.e., to eliminate the
test gates. For this purpose, we use boolean circuits as an intermediate step. The latter can indeed be
easily simulated by arithmetic circuits by Lemma 1. Doing so requires to deal only with boolean inputs.
One part of this problem has already been solved in [10] : boolean nondeterminism already captures
NP(K,+,−,=). It remains to replace the algebraic input x̄ ∈ Kn by a boolean one. This is achieved in the
sequel by using mostly techniques which deal with arrangements of hyperplanes. The idea is to replace
the algebraic input x̄ ∈ Kn by a point q̄ ∈ Kn of “small” rational coefficients, “close enough” to x̄ so that
their behaviours will be the same. Now, this rational point can be encoded by boolean tuples, and the
whole computation simulated by boolean circuits. “Close enough” means in fact that x̄ and q̄ belong to
the same cell of a suitable arrangement of hyperplanes, i.e., lie on exactly the same hyperplanes of the
arrangement. Similar ideas were used in the proofs of the transfer theorems of [5] and [6], which dealt
with the structure (R, +,−, <). Note however that the cells of an arrangement as defined below are not
the same as in these two papers. Indeed, since we work in an unordered structure, it doesn’t make sense
to ask whether a point is “above” or “below” a given hyperplane. The only thing that matters is whether
the point lies or not on the hyperplane.

5

Point location in arrangements of hyperplanes is the main ingredient for finding the rational point q̄
on input x̄. For a given family of hyperplanes, the goal is to build a circuit which outputs the cell of x̄.
These notions are explained in section 5.1. In section 5.2 we explain how to find the cell of x̄ using VΠP0

tests. Then section 5.3 deals with the existence of small rational points in the cell of x̄. Finally, these
tools are put together in section 5.4 to recognize NP(K,+,−,=) problems with the help of VΠP0 tests.

5.1 Arrangement of hyperplanes

By hyperplane (or affine hyperplane) of Kn, we mean a surface (of dimension n − 1) defined by an
affine equation

∑
i λixi = µ. We say that k linear hyperplanes of Kn are independent if their intersection

has dimension exactly n− k. In other words, the k hyperplanes are in general position.
An arrangement of hyperplanes is merely a finite family of affine hyperplanes A = {Hi; i ∈ I}. This

enables us to define an equivalence relation :

x̄ ∼ ȳ iff ∀i.(x̄ ∈ Hi ⇐⇒ ȳ ∈ Hi).

The equivalence classes are called cells of the arrangement. In other words, two points are in the same
cell if they belong to exactly the same hyperplanes. A cell is therefore of the form

(
⋂
i∈J

Hi) \ (
⋃

j∈J′
Hj)

for some subsets J and J ′ of I. One can assume without loss of generality that the hyperplanes (Hi)i∈J are
independent. Notice that the cell of x̄ ∈ Kn is characterized by a maximal set (with respect to inclusion)
of independent hyperplanes that contain x̄. We will use this characterization later for describing the cells
of our arrangement. As outlined at the beginning of section 5, on input x̄ ∈ Kn we want to determine
its cell, i.e., to return the indices of these independent hyperplanes.

Let p(n) be a fixed polynomial, and Ap,n the set of all hyperplanes in Kn with integer coefficients of
absolute value at most 2p(n). We call Hp the family of all the arrangements Ap,n (where n ranges over
N \ {0}). Section 5.2 explains how to build a family of polynomial-size circuits with VΠP0 tests which,
on input x̄ ∈ Kn, output the cell of x̄ in the arrangement Ap,n (this is called “point location” in the
arrangement).

5.2 Point location

The goal of this section is to build an algebraic circuit with VΠP0 tests, which on input x̄ ∈ Kn

returns its cell. We first define formally circuits with VΠP0 tests. Then we prove that the point location
problem can be solved efficiently using VΠP0 tests.

Definition 2 A family of algebraic circuits with VΠP0 tests is a family (fn(x̄)) ∈ VΠP0 together with a
family (Cn) of algebraic circuits, where Cn is endowed with gates labeled by “fn(ȳ) = 0 ?” (the subscript
n has to be the same for fn and Cn). These gates are of indegree |ȳ| and output 0 if the test fails (i.e.
fn evaluated on the inputs of the gate is nonzero), 1 otherwise.

The class P(K,+,−,×,=)(VΠP0) is the set of languages recognized by a family of polynomial size alge-
braic circuits with VΠP0 tests.

By adding some “selection variables”, it is not hard to see that in fact any constant number of VΠP0

families can be tested (instead of only one) and still we stay in P(K,+,−,×,=)(VΠP0). For instance, two
VΠP0 families will be used in section 5.4 : one family to perform a point location task, and the other
family to decide a (classical) NP problem. We now explain how to solve the point location problem using
VΠP0 tests.

Proposition 1 Let (Hp) be the family of arrangements of hyperplanes whose coefficients are integers
bounded by 2p(n) in absolute value (this family was defined at the end of section 5.1). There exists a family
(Cn) of polynomial size algebraic circuits with VΠP0 tests that, on input x̄ ∈ Kn, output the indices of
m independent hyperplanes that characterize the cell of x̄.

6

Proof. The idea of the algorithm is simple : we maintain a “search space”E which locates x̄ as accurately
as possible. At the beginning we have no information, and we let E = Kn. At each subsequent step, we find
(if it exists) the first hyperplane H of our arrangement that refines E, i.e., x̄ ∈ H and dim(E∩H) < dim E.
At most n steps are therefore enough, and as the description of the cell of x̄ we return the indices of the
successive hyperplanes met during this process. We will explain below how to find the first hyperplane
refining E with the help of VΠP0 tests. Let us first sum up the algorithm :

– E ← Kn ;
– L← ∅ ;
– R← {H ∈ A : x̄ ∈ H} ;
– while R �= ∅ do

. let H0 be the first hyperplane of R

. L← L ∪ {H0}

. E ← E ∩H0

. R← {H ∈ A : x̄ ∈ H and E ∩H �= E}
– return L.

Note that E =
⋂

H∈L H , thus keeping track of L (a list of hyperplanes, or actually of their indices) is
enough to determine E.

Finding the first hyperplane refining E is done by binary search, thanks to VΠP0 tests. The list L
describing E contains at most n indices, all of size polynomial in n. We store this list in a polynomial
number of variables l1, . . . , lq(n), representing the boolean encoding of these indices.

At each step, let A be the set of indices of hyperplanes that do not contain E. If fi is the equation
of Hi, the polynomial

g(l̄, x̄) =
∏

i<j and i∈A

fi(x̄)

vanishes if and only if the first hyperplane refining E has its index smaller than j. By making j vary, we
can thus find this hyperplane via binary search in a number of steps which is logarithmic in the number
of hyperplanes, i.e., polynomial in n.

We now explain why this product is in VΠP0. With boolean inputs l1, . . . , lq(n) and i, we can compute
the equation of Hi and test by a simple rank calculation whether Hi has nontrivial trace over E. This
is done by a boolean circuit of polynomial size, for instance by Gaussian elimination. Now, Lemma 2
ensures that this product is in VΠP0.

In a polynomial number of VΠP0 tests, we therefore find the first hyperplane refining E. We then
proceed with the next step : after at most n steps we have completely characterized the cell of x̄. We
output the list L of the successive hyperplanes found. This concludes the proof of Proposition 1. ��

5.3 Small rational points

Given a description of the cell of an input x̄ we aim at finding a small rational point in it, so as to
work on boolean rather than algebraic inputs. We begin by a simple lemma on the size of rational points.
Then we show in Lemma 5 how to find a rational point of small size in a given cell.

We say that a rational number q has size at most k if its numerator as well as its denominator are
both of absolute value at most 2k. The following lemma is straightforward.

Lemma 3 Let α and β be two rational numbers of size ≤ t and ≤ t′ respectively. Then
– αβ is of size ≤ t + t′ ;
– α + β is of size ≤ t + t′ + 1.

In particular, if M is a matrix of size n×m whose coefficients are rationals of size ≤ t, and x a vector
of size n whose coefficients are rationals of size ≤ t′, then Ax is a vector of Qm whose coefficients are
rationals of size ≤ n(t + t′) + n− 1.

A point q̄ is in the same cell as x̄ if it is in the same intersection of hyperplanes, and also outside the
same hyperplanes as x̄. That is why we need the following lemma, which exhibits a point outside a given
set of hyperplanes.

7

Lemma 4 Let A be a family of hyperplanes whose coefficients are integers bounded in absolute value
by k. Then the point q̄ of coordinates qi = (k + 1)i (for i = 1, . . . , n) does not belong to any of the
hyperplanes of A .

Proof. Let f(x̄) =
∑n

i=1 αixi + b be the equation of a hyperplane H of A . For a ∈ Z, let a+ = max(0, a)
and a− = max(0,−a). Note that a = a+−a−, and that 0 ≤ a−, a+ ≤ k. We define f+(x̄) =

∑n
i=1 α+

i xi +
b+ and f−(x̄) =

∑n
i=1 α−

i xi + b−.
Then q̄ is in H if and only if f−(q̄) = f+(q̄), i.e.,

∑
i α−

i (k+1)i +b+ =
∑

i α+
i (k+1)i +b−. By unicity

of the decomposition in base (k + 1) this is equivalent to the conditions : b+ = b− and ∀i, α−
i = α+

i .
Hence b = 0 and αi = 0 for all i. This is in contradiction with the hypothesis that H is a hyperplane. ��

The next lemma shows that a point with small rational coordinates exists in a given cell, and can
easily be found (by a boolean circuit of polynomial size). Recall that, as explained at the end of section
5.1, Hp is the family of arrangements whose hyperplanes have integer coefficients bounded by 2p(n) in
absolute value. We only sketch the proof since the details are only routine calculations.

Lemma 5 For the family of arrangements Hp, there exists a family (Cn) of boolean circuits of size
polynomial in n satisfying the following property : Cn takes as input the indices of m ≤ n independent
hyperplanes of Kn, and outputs a vector q̄ such that :

– q̄ is in the cell defined by the m hyperplanes ;
– q̄ has rational coordinates, all of them of size polynomial in n.

Proof. Let E be the intersection of the m hyperplanes : this is an affine subspace of Kn of dimension
n−m. The cell is of the form E \ U , where U is a finite (and possibly empty) union of affine subspaces
of dimension n −m − 1. The equation of E is of the form Ax = b for some m × n matrix A. We can
find in polynomial time a set of m columns of A of rank m. Assume for notational simplicity that these
columns are the m first ones. Let φ : Kn−m → E be the affine map which sends (xm+1, . . . , xn) to
(x1, . . . , xm, xm+1, . . . , xn), where (x1, . . . , xm, xm+1, . . . , xn) is the only point of E whose n − m last
coodinates are (xm+1, . . . , xn). The linear part of φ is an isomorphism of linear spaces. The coefficients of
φ are obtained from those of A and b by solving a linear system of equations. They are therefore rational
numbers of size polynomial in n. If H is a hyperplane of our arrangement with a nontrivial intersection
with E, φ−1(E ∩H) is a hyperplane of Kn−m whose coefficients are integers of size polynomial in n.

Furthermore, thanks to Lemma 4 we can construct a point q̄ ∈ Kn−m whose coefficients are integers
of size polynomial in n, and which lies on none of the φ−1(E ∩H). Now, by Lemma 3 φ(q̄) has rational
coefficients of size polynomial in n, and it is in the cell. ��

5.4 Deciding NP(K,+,−,=)problems

We are now ready for the main theorem of this section : NP(K,+,−,=) problems are decided by poly-
nomial size algebraic circuits with VΠP0 tests.

Theorem 3 Let K be a field of characteristic zero. Then

NP(K,+,−,=) ⊆ P(K,+,−,×,=)(VΠP0).

If big products are computable by arithmetic circuits of polynomial size, one can efficiently simulate
VΠP0 tests with algebraic circuits. Theorem 2 therefore follows immediately from Theorem 3.
Proof. (of Theorem 3)
The outline of the proof is as follows. First we determine the cell of x̄. Then we construct in polynomial
time a small rational point q̄ in the cell. Deciding whether q̄ is a positive input is a (classical) NP problem.
We have seen in the proof of Theorem 1 that NP problems can be decided by testing a single VΠP0

family for zero. Let us now fill in the details.
Digital nondeterminism. Let L ∈ NP(K,+,−,=). By [10, Theorem 2], digital nondeterminism suffices :
there exists a language A ∈ P(K,+,−,=) and a polynomial p(n) such that

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

Let (Cn) be a family of algebraic circuits of polynomial size r(n) over the structure (K, +,−, =) (i.e.
without multiplication gates) that decides A. Notice that our definitions in Valiant’s model are constant-
free, whereas our algebraic decision circuits (and in particular Cn) may use arbitrary constants. This

8

is not a serious problem : it is enough to consider the constants as new variables (i.e. we pretend that
they are part of the input x̄), and the circuit is now constant-free. Then our construction leads to a new
circuit with the same input variables (and VΠP0 tests). It just remains to plug the original constants in
place of the freshly created variables to recognize the original language L. In the remainder of the proof,
we therefore assume that the circuits Cn are constant free.
Definition of the arrangement of hyperplanes. Since only addition and subtraction are allowed, on input
(x̄, ȳ) every test in Cn is of the form

∑n
i=1 λixi =

∑p(|x̄|)
i=1 µiyi + γ, where λi, µi and γ are integers, and

are bounded in absolute value by 2r(n). Since yi ∈ {0, 1}, the right-hand side of the test is bounded in
absolute value by 2r(n)(1 + p(|x̄|)). Let q(n) be a polynomial satisfying 2q(n) ≥ 2r(n)(1 + p(n)). Consider
the family of arrangements Hq defined in section 5.1 : two points x̄ and x̄′ in the same cell satisfy

∀ȳ ∈ {0, 1}p(|x̄|) [(x̄, ȳ) ∈ A ⇐⇒ (x̄′, ȳ) ∈ A].

Hence these two points both belong to L, or both belong to its complement.
Finding the cell of x̄. We can apply Proposition 1 : there is a family of polynomial size algebraic circuits
with VΠP0 tests that output the indices of m independent hyperplanes characterizing the cell of x̄.
Finding a small rational point in the cell. It is shown in Lemma 5 that we can obtain in polynomial time
a point q̄ in the cell of x̄ of rational coordinates of polynomial size. As pointed out above, x̄ is in L if
and only if q̄ is in L.

Deciding whether a given rational point belongs to L is a problem in NP. It follows from the proof
of Theorem 1 that we can decide whether q̄ ∈ L with one additional VΠP0 test. ��

Finally, we thank the anonymous referees of [11] for the following remarks.

Remark 3 The P(K,+,−,×,=) algorithm of Theorem 3 in fact does not use arithmetic operations (apart
from VΠP0 tests of course). Hence the stronger result NP(K,+,−,=) ⊆ P(K,=)(VΠP0) holds. This does not
improve Theorem 2, however.

Remark 4 Since VΠP0 can simulate NP (Theorem 1), the inclusion NPRovs ⊆ PRovs(NP) of [6] for
Rovs = (R, +,−,≤) implies NPRovs ⊆ PRovs(VΠP0) .

Références

[1] L. M. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th IEEE
symposium on foundations of computer science, pages 75–83, October 1978.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag,
1998.

[3] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers :
NP-completeness, recursive functions and universal machines. Bulletin of the American Mathema-
tical Society, 21(1) :1–46, 1989.

[4] P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Number 7 in Algorithms
and Computation in Mathematics. Springer, 2000.

[5] H. Fournier and P. Koiran. Are lower bounds easier over the reals ? In Proc. 30th ACM Symposium
on Theory of Computing, pages 507–513, 1998.

[6] H. Fournier and P. Koiran. Lower bounds are not easier over the reals : Inside PH. In Proc. ICALP
2000, LNCS 1853, 2000.

[7] J. Heintz and J. Morgenstern. On the intrinsic complexity of elimination theory. Journal of Com-
plexity, 9 :471–498, 1993.

[8] R. M. Karp and R. J. Lipton. Turing machines that take advice. L’enseignement mathématique,
28 :191–209, 1982.

[9] P. Koiran. Valiant’s model and the cost of computing integers. Computational Complexity, 13 :131–
146, 2004.

[10] P. Koiran. Computing over the reals with addition and order. Theoretical Computer Science,
133(1) :35–48, 1994.

9

[11] P. Koiran and S. Perifel. Valiant’s model : from exponential sums to exponential products. In Proc.
31th Mathematical Foundations of Computer Science, 2006, to appear.

[12] R. J. Lipton. Straight-line complexity and integer factorization. In Proc. First International Sym-
posium on Algorithmic Number Theory, volume 877 of Lecture Notes in Computer Science, pages
71–79. Springer, 1994.

[13] G. Malod. Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon 1, July 2003.

[14] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[15] B. Poizat. Les petits cailloux. Aléas, 1995.

[16] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the
ACM, 27(4) :701–717, October 1980.

[17] M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of
“NP �= P?”. Duke Math. Journal, 81(1) :47–54, 1995.

[18] L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on Theory of
Computing, pages 249–261, 1979.

10

