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Abstract. A random fuse network, or equivalently a 2d spring network with

quenched disorder, is submitted to a constant load and thermal noise, and studied

by numerical simulations. Rupture is thermally activated and the lifetime follows

an Arrhenius law where the energy barrier is reduced by disorder. Due to the

non-homogenous distribution of forces from stress concentration at microcracks’ tips,

spatial correlations between rupture events appear, but they do not affect the energy

barrier’s dependence on disorder, they affect only the coupling between disorder and

the applied load.

PACS numbers: 61.43.-j, 05.10.-a, 05.70.Ln, 62.20.Mk

The effect of quenched disorder on dynamics is a recurring problem in many physical

systems with elastic interactions. The motion of vortex lines in supraconductors, charge-

density waves in Bragg glasses, magnetic domains walls, or contact lines in wetting

show a competition between elastic interactions and pinning by disorder [1, 2]. While

many studies have focused on systems driven above a critical depininng threshold, an

important issue remains to understand the sub-critical regime, when thermally activated

creep motion occurs [3, 4].

Rupture in disordered brittle solids falls in the same class of problems [5]. Elastic

interactions tend to make a crack propagate in a straight direction while disorder creates

roughness [6] or causes spatially diffuse damage [7, 8]. In the sub-critical rupture regime,

a very important quantity for safety reasons is the lifetime, i.e. the mean time for a

sample to break under a prescribed load. The lifetime follows an Arrehnius law [9, 10],

but thermal noise is generally too small compared to recent theoretical estimates of

the energy barrier [11, 12, 13] to explain experimental observations in heterogenous

materials [14, 15, 16]. For athermal systems, disorder actually reduces the energy

barrier and can be seen as an effective temperature [17]. In order to clarify the role

of disorder in thermal systems, one-dimensional Thermal and Disordered Fiber Bundles
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Models (1d-TDFBM) have been introduced to model the thermally activated rupture

of an heterogenous material submitted to a constant external load [18, 19, 20, 21, 22].

The TDFBM considers an elastic system in equilibrium at constant temperature where

statistical force fluctuations occur in time due to thermal noise. This is very different

from previous thermal random fuse models [23] where rupture results from an increase

in fuse temperature due to dissipation through a generalized Joule effect until reaching a

critical melting temperature. In a TDFBM, elastic energy is the equivalent of dissipation

in the thermal random fuse model but does not cause rupture when the system is at

mechanical equilibrium; rupture is caused by elastic force fluctuations analogous to

Nyquist noise.

One problem with the 1d-TDFBM investigated up to now is that the load is shared

equally among all the unbroken fibers. This is not a realistic load-sharing rule for

experimental geometries where elasticity cause stress concentration at microcracks’ tips

and lead to a non-uniform redistribution of stress. In this letter, we show that spatial

correlations between rupture events in 2d do not affect the dependence of the energy

barrier on disorder but only the coupling between disorder and the applied load.

First, we discuss briefly results obtained by several authors [18, 19, 20, 21, 22] on the

1d-TDFBM. The system considered is made of a set of N parallel fibers, each carrying

an initial force f0 and behaving as a linear elastic spring with unity stiffness. Each fiber

j can carry a maximum force f
(j)
c before it breaks. Quenched disorder is introduced

in the system by distributing thresholds f
(j)
c according to a gaussian distribution of

mean < f
(j)
c >= 1 and variance Td; for each fiber, the value f

(j)
c is a time-independent

constant. Contrary to the case of non-thermal 1d-DFBM where the system evolves due

to a progressive increase in total current, we consider that the total force applied to

the 1d-TDFBM is kept constant. Dynamics is introduced in the system by introducing

fluctuations in spring forces due to thermal noise. We write fj the average force on fiber

j. The fluctuations in force δfj that occur in time on fiber j are assumed to follow a

gaussian probability distribution with 0 mean value and variance T , where T represents

the thermodynamical temperature in unit of square force. When the total force on a

fiber fj + δfj is larger than the threshold f
(j)
c , the fiber breaks. The remaining fibers

share equally the total force: this is a so-called democratic model. The bundle will break

completely as soon as the average force on each fiber exceeds the breaking threshold.

Roux has shown that the mean time to break the first fiber follows an Arrhenius law

where disorder acts as an additive temperature [18]:

τ ∼ exp

(

(1 − f0)
2

2(T + Td)

)

(1)

with f0 the initial force carried by each fiber of the bundle. In the general case where

many fibers break before total rupture of the bundle, the lifetime obeys an Arrhenius

law with a different general form :

τ ∼ exp

(

U(f0, Td)

T

)

(2)
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An approximate expression of U for low disorder is [19, 20]:

U =
1

2

(

1 − f0 − β1

√

Td

)2

(3)

with β1 =
√

π/2. For higher disorder, Politi et al [21] have shown numerically that U is

determined with a very good approximation by the minimum value of the rate at which

fibers break. More precisely, if n is the number of broken fibers and N the total number

of fibers then Φ = n/N is the fraction of broken fibers and Φ̇ its time derivative. The

value Φ∗ for which Φ̇ is minimum obeys an implicit equation [21, 22]:

exp
[

irfc2(2Φ∗)
]

(1 − Φ∗)2 = α

where irfc is the inverse function of the complementary error function and α =

f0/
√

2πTd. Then, U can be approximated as [24]:

U =
1

2

(

1 − f0 − β2

√

Td

)2

with β2(α) = α
√

2π
Φ∗

1 − Φ∗

+
√

2 irfc(2Φ∗) (4)

Note that the coupling coefficient β2 depends on both disorder Td and applied load

f0. Eq.(4) predicts that the variation of U with Td for a fixed f0 is non monotonous

[22]. However, when α > 1/4 (this condition corresponds to Φ∗ < 1/2 which would

be expected in practice for most materials), U decreases when Td is increased with

f0 constant. In that case, the function β2 has a lower value β2(1/4) = β1/2 and an

asymptotic behavior for large α (Φ∗ → 0), β2(α) ≃
√

2 lnα + 1/
√

2 lnα [21].

To study the effect of a non-uniform force redistribution on the rupture dynamics of

the TDFBM, one could keep a 1d geometry and introduce a finite range of interaction

between fibers [25]. Instead, we work directly in a 2d geometry more closely related

to a real experiment. The above described 1d-TDFBM is equivalent to a system of

parallel fuses where forces are transformed in currents and displacements in electric

potentials. A 2d square fuse network is then equivalent to a square lattice of springs in

antiplane deformation. Specifically, each node of the N × N nodes square lattice can

move along an axis perpendicular to the plane of springs at rest. A constant force F

is applied at two opposite sides of the lattice in antiplane configuration. In the initial

equilibrium configuration of the lattice, the springs submitted to a load f0 = F/N are

called ”parallel” springs while the unloaded springs (zero force) are called ”orthogonal”

springs.

Like in 1d, the fluctuations in force δfj on spring j follow a gaussian probability

distribution with 0 mean value and variance T , and the rupture thresholds f
(j)
c follow

a gaussian distribution of mean < f
(j)
c >= 1 and variance Td. The time scale in the

simulation is the (constant) time between two configurations of force fluctuations in

the system. The whole network is a square with sides 100 springs wide; thus, the

lattice contains about 2. 104 springs. Whenever we choose rupture thresholds from the

gaussian distribution, there is a non-zero probability to obtain a negative threshold :

P<0 = 1
2
erfc

(

< fc > /
√

2Td

)

. For a system with 2 104 springs, we can safely consider

that no spring will spontaneously break when there is no load (f0 = 0) and at zero
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temperature if P<0 < 10−5, thus Td < 0.055 when < fc >= 1. In practice, we will work

with Td < 0.05.

First, let us consider a lattice with no disorder in the rupture thresholds and all

the springs initially intact. When thermal noise is on, some springs will start to break.

Due to stress concentration effects, as soon as one of the parallel springs is broken,

the neighboring springs are submitted to a larger force. If that new force exceeds the

rupture threshold then the neighboring spring will also break, and the force on the next

neighbor will be even higher. This process will result in the rupture of the whole network

in an avalanche started from a single rupture event. Numerically, this will occur in our

lattice as soon as f0 > f 1
c , where f 1

c (≃ 0.785) is the critical threshold of the homogenous

lattice at T = 0 when one parallel spring is broken. In that case, the rupture time will

be directly related to the probability of breaking a single spring in the network and, if

the lattice is disordered, we will recover essentially the result given by eq. (1) [18]. In

the rest of the paper, we will be interested only in the case where several springs break

before the final avalanche occurs, i.e. when f0 < f 1
c .
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Figure 1. Scaled rupture time versus Arrhenius factor U/T . Various symbols

correspond to different values of disorder and applied force. The solid line corresponds

to log y = x.

For a fixed value of the applied force f0 and a fixed value of the disorder Td, we

measure as a function of temperature T the lifetime, i.e. the rupture time averaged over

as many as 100 numerical experiments. We find that lifetime follows an Arrhenius law

and obtain numerically U(f0, Td) as defined by eq (2). We see on figure 1 the collapse of

the data for a range of values 0.04 < f0 < 0.77 and 10−4 < Td < 0.05. Some of the data

points are more scattered around the expected behavior (solid line) than others because

the ratio of the standard deviation over the mean of the rupture time increases when T

becomes small. This property, already mentioned in [18], makes numerical convergence

of the mean difficult in some cases.

To compare the barrier U(f0, Td) for the 2d geometry with the one of the 1d-

TDFBM, we plot on figure 2
√

2U/(1 − f0) as a function of β2

√
Td/(1 − f0). We
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Figure 2. Comparison between the numerical value of U in 2d and eq. (4) in 1d (solid

line). Inset : same scaling, but using the numerical value U0 = U(f0, 0) for the 2d

lattice.
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Figure 3. Collapse of all the numerical data using an effective value βe which is only

a function of f0 but not of Td, contrary to the case of β2 which is a function of Td.

clearly see that the functional form for β2 is not correct, but also that the data for

various values of disorder do not rescale very well. The first immediate reason for the

discrepancy is that for Td = 0, the energy barrier of the 2d network U0 = U(f0, 0)

(determined numerically) is not (1 − f0)
2/2 as in 1d. This is due to the preferential

redistribution on the nearest neighbors of the force carried by a fiber before rupture.

Taking into account the effective energy barrier in 2d does not improve the comparison

with the 1d-TDFBM. After replacing 1 − f0 by
√

2U0 in eq. (4), we see in the inset of

figure 2 that it is not enough to get a good collapse of all the data on the theoretical

prediction (solid line).

We find that the barrier decreases with disorder following the linear curve :
√

U(f0, Td) =
√

U0 − b
√

Td for 10−4 < Td < 0.05 and a fixed value of f0. Thus, it

turns out that eq. (3) is a much better functional form than eq. (4), even though it is
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Figure 4. Numerical values of βe as a function of f0 (circles). The dashed and dotted

lines correspond to β2 as predicted by eq. (4) when Td = 0.001 and Td = 0.01. Close

to f1

c , the values found for βe are close to values predicted by eq. (1).

an approximate expression in 1d. Looking at eq. (3) or eq. (4), we can make an analogy

with the 1d case and say that the second coefficient b corresponds to an effective value

βe/
√

2 which is now only a function of f0. On figure 3, we see the collapse of all the

data when we plot
√

U/U0 as a function of βe(f0)
√

Td/
√

2U0.

The coupling coefficient βe increases almost linearly with f0 up to values close to

f 1
c (figure 4). However, when f0 gets very close to f 1

c , there is an abrupt decrease in the

value of βe. This is related to the fact that rupture is now controlled by a single event

as in eq. (1). Indeed, although eq. (1) does not follow the general scaling property of

eq.(2), we can estimate a value βe for each temperature value used in the simulation.

The average value found for βe from eq. (1) (square symbols in figure 4 with an error bar

corresponding to variations with temperature) is a reasonable estimate of the numerical

value.

The functional behavior of βe is very different from that of the 1d model (eq. (4))

where β2 depends on both f0 and Td. As an example, we plot on figure 4 β2(f0) for fixed

values of Td. Not only the functional dependence is clearly different from the numerical

estimate βe(f0) but also β2 decreases with Td at fixed f0. In that sense, the load and

the disorder do not act cooperatively in 1d.

The key point in 2d is that the spatial correlations between rupture events depend

on the strength of stress intensification. This is illustrated on figure 5 a) to c) which

shows the broken fibers just before the final avalanche for different values of f0 and a

fixed value of Td. For very small loads, damage is scattered everywhere in the sample.

At higher loads, damage becomes less scattered and growth of straight cracks occurs.

Finally, figure 5d) shows that for a load close to the critical threshold, only very few

events occur. A similar transition was observed for zero disorder or annealed disorder

models with power law rate of rupture [26, 27, 28]. In contrast to these models where

the transition occurs by changing the exponent of the power law, we observe a transition
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Figure 5. Image of the broken fibers (black dots) just before the final rupture for

Td = 0.01 and f0 = 0.05 (top left), f0 = 0.1 (top right), f0 = 0.3 (bottom left);

Td = 0.004 and f0 = 0.75 (bottom right). The arrow shows the loading direction.

resulting from the competition between stress intensification and quenched disorder.

To understand this transition in our model, let us consider the increase in force

due to stress intensification when a spring breaks. If the increase is small compared

to
√

Td, there will be very little spatial correlation between rupture events occurring

preferentially at the weakest springs. For a given disorder, there is always a force f0 small

enough to observe this rupture regime similar to the 1d-TDFBM case. On the contrary,

if the increase due to stress intensification is large compared to
√

Td, it is easier to

break a spring next to an already broken spring, and the rupture will proceed mainly by

growth of multiple cracks. In spite of very different regimes of spatial correlation between

rupture events, we have the remarkable result that the energy barrier dependence on

Td is unchanged. Spatial correlations only affects the coupling coefficient βe, increasing

quasi-linearly with f0 and independent of Td.

The multiplicative amplification of disorder due to βe is a mechanism that will

create a load-dependent reduction of the energy barrier in thermally activated rupture.

It will have an effect on the order of magnitude and load-dependence of the rupture

time which could help understanding experiments in heterogeneous materials [14].

In conclusion, we have studied thermally activated rupture of a 2d elastic spring

network submitted to a constant load and thermal noise. We find that spatial

correlations between rupture events are controlled by a competition between quenched

disorder and force inhomogeneities due to stress concentration. For low spatial

correlations, the energy barrier scales naturally like in the 1d model. Remarkably,

the appearance of spatial correlations does not affect the functional dependence of the

energy barrier on disorder, but only the coupling coefficient βe which is independent

of disorder and increases quasi-linearly with the applied load f0. This is an important
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result showing that the applied load contribute to amplify in a cooperative way the

effect of disorder on the lifetime. The observed cooperative effects of load and disorder

in 2d subcritical rupture could be relevant to the creep regime of other physical systems

with elastic interactions [1, 2] and also to crackling noise [29].
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