
HAL Id: ensl-00086826
https://ens-lyon.hal.science/ensl-00086826

Submitted on 20 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing machine-efficient polynomial approximations
Jean-Michel Muller, Nicolas Brisebarre, Arnaud Tisserand

To cite this version:
Jean-Michel Muller, Nicolas Brisebarre, Arnaud Tisserand. Computing machine-efficient polyno-
mial approximations. ACM Transactions on Mathematical Software, 2006, 32 (2), pp.236-256.
�10.1145/1141885.1141890�. �ensl-00086826�

https://ens-lyon.hal.science/ensl-00086826
https://hal.archives-ouvertes.fr

Computing machine-efficient polynomial
approximations

NICOLAS BRISEBARRE

Université J. Monnet, St-Étienne and LIP-E.N.S. Lyon

JEAN-MICHEL MULLER

CNRS, LIP-ENS Lyon

and

ARNAUD TISSERAND

INRIA, LIP-ENS Lyon

Polynomial approximations are almost always used when implementing functions on a computing

system. In most cases, the polynomial that best approximates (for a given distance and in a given
interval) a function has coefficients that are not exactly representable with a finite number of

bits. And yet, the polynomial approximations that are actually implemented do have coefficients

that are represented with a finite - and sometimes small - number of bits: this is due to the
finiteness of the floating-point representations (for software implementations), and to the need

to have small, hence fast and/or inexpensive, multipliers (for hardware implementations). We

then have to consider polynomial approximations for which the degree-i coefficient has at most
mi fractional bits: in other words, it is a rational number with denominator 2mi . We provide a

general and efficient method for finding the best polynomial approximation under this constraint.
Moreover, our method also applies if some other constraints (such as requiring some coefficients

to be equal to some predefined constants, or minimizing relative error instead of absolute error)

are required.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arith-

metic; G.1.2 [Numerical Analysis]: Approximation; B.2.4 [Arithmetic and Logic Struc-
tures]: High-Speed Arithmetic

General Terms: Algorithms, Performance

Additional Key Words and Phrases: polynomial approximation, minimax approximation, floating-

point arithmetic, Chebyshev polynomials, polytopes, linear programming

Authors’ addresses: N. Brisebarre, LArAl, Université J. Monnet, 23, rue du Dr P. Michelon, F-

42023 Saint-Étienne Cedex, France and LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS
Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 France; email: Nicolas.Brisebarre@ens-lyon.fr;

J.-M. Muller, LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46 Allée d’Italie, F-

69364 Lyon Cedex 07 France; email: Jean-Michel.Muller@ens-lyon.fr; Arnaud Tisserand, INRIA,
LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex

07 France; email: Arnaud.Tisserand@ens-lyon.fr.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0098-3500/2006/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006, Pages 1–0??.

2 · N. Brisebarre, J.-M. Muller and A. Tisserand

Table I. Latencies (in number of cycles) of double precision floating-

point addition, multiplication and division on some recent processors.

Processor FP add FP mult. FP div.

Pentium IV 5 7 38

PowerPC 750 3 4 31

UltraSPARC III 4 4 24

Alpha21264 4 4 15

Athlon K6-III 3 3 20

1. INTRODUCTION

The basic floating-point operations that are implemented in hardware on modern
processors are addition/subtraction, multiplication, and sometimes division and/or
fused multiply-add, i.e., an expression of the form xy + z, computed with one
final rounding only. Moreover, division is frequently much slower than addition or
multiplication (see Table I), and sometimes, for instance on the Itanium, it is not
hardwired at all. In such cases, it is implemented as a sequence of fused multiply
and add operations, using an iterative algorithm.

Therefore, when trying to implement a given, regular enough, function f , it seems
reasonable to try to avoid divisions, and to use additions, subtractions, multipli-
cations and possibly fused multiply-adds. Since the only functions of one variable
that one can implement using a finite number of these operations and comparisons
are piecewise polynomials, a natural choice is to focus on piecewise polynomial
approximations to f . Indeed, most recent software-oriented elementary function
algorithms use polynomial approximations [Markstein 2000; Muller 1997; Story
and Tang 1999; Cornea et al. 2002].

Two kinds of polynomial approximations are used: the approximations that min-
imize the “average error,” called least squares approximations, and the approxima-
tions that minimize the worst-case error, called least maximum approximations, or
minimax approximations. In both cases, we want to minimize a distance ||p− f ||,
where p is a polynomial of a given degree. For least squares approximations, that
distance is:

||p− f ||2,[a,b] =

(∫ b

a

w(x) (f(x)− p(x))2 dx

)1/2

,

where w is a continuous weight function, that can be used to select parts of [a, b]
where we want the approximation to be more accurate. For minimax approxima-
tions, the distance is:

||p− f ||∞,[a,b] = sup
a≤x≤b

|p(x)− f(x)|.

One could also consider distances such as

||p− f ||rel,[a,b] = sup
a≤x≤b

1
|f(x)|

|p(x)− f(x)|.

The least squares approximations are computed by a projection method using
orthogonal polynomials. Minimax approximations are computed using an algorithm
due to Remez [Remes 1934; Hart et al. 1968]. See [Markstein 2000; Muller 1997]
for recent presentations of elementary function algorithms.
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 3

In this paper, we are concerned with minimax approximations using distance ||p−
f ||∞,[a,b]. And yet, our general method of Section 3.2 also applies to distance ||p−
f ||rel,[a,b]. Our approximations will be used in finite-precision arithmetic. Hence,
the computed polynomial coefficients are usually rounded : let m0,m1, . . . ,mn be a
fixed finite sequence of natural integers, the coefficient pi of the minimax approxi-
mation

p(x) = p0 + p1x + · · · + pnxn

is rounded to, say, the nearest multiple of 2−mi . By doing that, we obtain a slightly
different polynomial approximation p̂. But we have no guarantee that p̂ is the best
minimax approximation to f among the polynomials whose degree-i coefficient is
a multiple of 2−mi . The aim of this paper is to give a way of finding this “best
truncated approximation”. We have two goals in mind:

—rather low precision (say, around 24 bits), hardware-oriented, for specific-purpose
implementations. In such cases, to minimize multiplier sizes (which increases
speed and saves silicon area), the values of mi, for i ≥ 1, should be very small.
The degrees of the polynomial approximations are low. Typical recent examples
are given in [Wei et al. 2001; Pineiro et al. 2001]. Roughly speaking, what
matters here is to reduce the cost (in terms of delay and area) without making
the accuracy unacceptable;

—single-precision or double-precision, software-oriented, for implementation on cur-
rent general-purpose microprocessors. Using table-driven methods, such as the
ones suggested by Tang [1989; 1990; 1991; 1992], the degree of the polynomial
approximations can be made rather low. Roughly speaking, what matters in that
case is to get very high accuracy, without making the cost (in terms of delay and
memory) unacceptable.

One could object that the mi’s are not necessarily known a priori. For instance, if
one wishes a coefficient to be exactly representable in double precision arithmetic,
one needs to know the order of magnitude of that coefficient to know what value
of mi corresponds to that wish. And yet, in practice, good approximations of the
same degree to a given function have coefficients that are very close (the approach
given in Section 3.1 allows to show that), so that using our approach with possibly
two different values of mi if the degree-i coefficient of the minimax approximation
is very close to a power of i suffices.

It is important to notice that our polynomial approximations will be computed
once for all, and will be used very frequently (indeed, several billion times, for an el-
ementary function program put in a widely distributed library). Hence, if it remains
reasonably fast, the speed of an algorithm that computes adequate approximations
is not extremely important. However, in the practical cases we have studied so far,
our method will very quickly give a result.

In this paper, we provide a general and efficient method for finding the “best
truncated approximation(s)” (it is not necessarily unique). It consists in building
a polytope P of Rn+1, to which the numerators of the coefficients of this (these)
“best truncated approximation(s)” belong, such that P contains a number as small
as possible of points of Zn+1. Once it is achieved, we do an exhaustive search by

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

4 · N. Brisebarre, J.-M. Muller and A. Tisserand

computing the norms1∥∥∥ a0

2m0
+

a1

2m1
x + · · ·+ an

2mn
xn − f

∥∥∥
∞,[a,b]

with (a0, a1, . . . , an) ∈ P ∩ Zn+1.
The method presented here is very flexible since it applies also when we impose

supplementary constraints on the “truncated polynomials”, and/or when distance
||.||rel,[a,b] is considered. For example, the search can be restricted to odd or even
polynomials or, more generally, to polynomials with some fixed coefficients. This
is frequently useful: one may for instance wish the computed value of exp(x) to
be exactly one if x = 0 (hence, requiring the degree-0 coefficient of the polynomial
approximation to be 1).

Of course, one would like to take into account the roundoff error that occurs
during polynomial evaluation: getting the polynomial, with constraints on the size
of the coefficients, that minimizes the total (approximation plus roundoff) error
would be extremely useful. Although we are currently working on that problem, we
do not yet have a solution: first, it is very algorithm-and-architecture dependent (for
instance, some architectures have an extended internal precision), second, since the
largest roundoff error and the largest approximation error are extremely unlikely
to be attained at the same points exactly, the total error is difficult to predict
accurately.

And yet, here are a few observations that lead us to believe that in many practical
cases, our approach will give us polynomials that will be very close to these “ideal”
approximations. Please notice that these observations are merely intuitive feelings,
and that one can always build cases for which the “ideal” approximations differ
from the ones we compute.

(1) Good approximations of the same degree to a given function have coefficients
that are very close in practice. Indeed, the approach given in Section 3.1 allows
to show that.

(2) When evaluating two polynomials whose coefficients are very close, on variables
that belong to the same input interval, the largest roundoff errors will be very
close too.

(3) In all practical cases, the approximation error oscillates slowly, whereas the
roundoff error varies very quickly, so that if the input interval is reasonably
small, an error very close to the maximum error is reached near any point.
This is illustrated in Figures 1 and 2: we have defined p as the polynomial
obtained by rounding to the nearest double precision number each coefficient
of the degree-5 minimax approximation to ex in [0, 1/128]. Figure 1 shows the
difference p(x) − ex (approximation error), and Figure 2 shows the difference
between the computed value and the exact value of p(x), assuming Horner’s
scheme is used, in double precision arithmetic.

1So far, we have computed these norms using the infnorm function of Maple. Our research group is

working on a C implementation that will use multiple precision interval arithmetic to get certified
upper and lower bounds on the infinite norm of a regular enough function.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 5

Fig. 1. Approximation error: we have plotted the difference p(x)− ex.

Fig. 2. Roundoff error: we have plotted the difference between the exact and computed values of
p(x). The computations are performed using Horner’s scheme, in double precision, without using
a larger internal format.

These observations tend to indicate that for all candidate polynomials the round-
off errors will be very close, and the total error will be close to the sum of the
approximation and roundoff errors. Hence, the “best” polynomial when consider-
ing the approximation error only will be very close to the “best” polynomial when
considering approximation and roundoff errors.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

6 · N. Brisebarre, J.-M. Muller and A. Tisserand

Of course, these observations are not proofs: they just result from some experi-
ments, and we are far from being able to solve the general problem of finding the
“best” polynomial, with size constraints on coefficients, when considering approxi-
mation and roundoff errors. Hopefully, these remarks will one day help to build a
more general method.

The outline of the paper is the following. We give an account of Chebyshev
polynomials and some of their properties in Section 2. In Section 3, we first provide
a method based on Chebyshev polynomials that partially answers to the problem
and then, we give a general and efficient method based on polytopes that finds
a “best truncated approximation” of a function f over a compact interval [a, b].
Despite the fact that it is less efficient and general than the polytope method, we
present the method based on Chebyshev polynomials because this approach seems
interesting in itself, is simple and gives results easy to use and, moreover, might be
useful in other problems. We end Section 3 with a remark illustrating the flexibility
of our method. We finish with some examples in Section 4. We complete the paper
with three appendices. In the first one, we collect the proofs of the statements given
in Section 2. In the second one, we prove a lemma, used in Subsection 3.2, that
implies in particular the existence of a best truncated polynomial approximation.
In the last one, we give a worked example of the methods presented here.

To end this introduction, let us mention that a C implementation of our method
is in process and also that the method applies to some signal processing problems,
namely finding the rational linear combination of cosines with constraints on the size
in bits of the rational coefficients in order to implement (in software or hardware)
digital FIR filters. This will be the purpose of a future paper.

As we only deal with the supremum norm, wherever there is no ambiguity, we
will write || · ||I instead of || · ||∞,I where I is any real set.

2. SOME REMINDERS ON CHEBYSHEV POLYNOMIALS

Definition 1 Chebyshev polynomials. The Chebyshev polynomials can be
defined either by the recurrence relation T0(x) = 1,

T1(x) = x,
Tn(x) = 2xTn−1(x)− Tn−2(x);

or by

Tn(x) =
{

cos
(
n cos−1 x

)
for |x| ≤ 1,

cosh
(
n cosh−1 x

)
for x > 1.

A presentation of Chebyshev polynomials can be found in [Borwein and Erdélyi
1995] and especially in [Rivlin 1990]. These polynomials play a central role in
approximation theory. The following property is easily derived from Definition 1.

Property 1. For n ≥ 0, we have

Tn(x) =
n

2

bn/2c∑
k=0

(−1)k (n− k − 1)!
k!(n− 2k)!

(2x)n−2k.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 7

Hence, Tn has degree n and its leading coefficient is 2n−1. It has n real roots, all
strictly between −1 and 1.

We recall that a monic polynomial is a polynomial whose leading coefficient is
1. The following statement is a well known and remarkable property of Chebyshev
Polynomials.

Property 2 Monic polynomials of smallest norm. Let a, b ∈ R, a < b.
The monic degree-n polynomial having the smallest || · ||[a,b] norm is

(b− a)n

22n−1
Tn

(
2x− b− a

b− a

)
.

In the following, we will make use of the polynomials

T ∗
n(x) = Tn(2x− 1).

We have (see [Fox and Parker 1972, Chap. 3] for example) T ∗
n(x) = T2n(x1/2),

hence all the coefficients of T ∗
n are nonzero integers.

Now, we state two propositions that generalize Property 2 when dealing with
intervals of the form [0, a] and [−a, a].

Proposition 1. Let a ∈ (0,+∞), define

α0 + α1x + α2x
2 + · · · + αnxn = T ∗

n

(x

a

)
.

Let k be an integer, 0 ≤ k ≤ n, the polynomial

1
αk

T ∗
n

(x

a

)
has the smallest || · ||[0,a] norm among the polynomials of degree at most n with a
degree-k coefficient equal to 1. That norm is |1/αk|.

Remark 1. Moreover, when k = n = 0 or 1 ≤ k ≤ n, we can show that this
polynomial is the only one having this property. We do not give the proof of this
uniqueness property in this paper since we only need the existence result in the
sequel.

Proposition 2. Let a ∈ (0,+∞), p ∈ N, define

β0,p + β1,px + β2,px
2 + · · · + βp,px

p = Tp

(x

a

)
.

Let k and n be integers, 0 ≤ k ≤ n.

—If k and n are both even or odd, the polynomial

1
βk,n

Tn

(x

a

)
has the smallest || · ||[−a,a] norm among the polynomials of degree at most n with
a degree-k coefficient equal to 1. That norm is |1/βk,n|.

—Else, the polynomial
1

βk,n−1
Tn−1

(x

a

)
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

8 · N. Brisebarre, J.-M. Muller and A. Tisserand

has the smallest || · ||[−a,a] norm among the polynomials of degree at most n with
a degree-k coefficient equal to 1. That norm is |1/βk,n−1|.

3. GETTING THE “TRUNCATED” POLYNOMIAL THAT IS CLOSEST TO A FUNC-
TION ON A COMPACT INTERVAL

Let a, b be two real numbers, let f be a function defined on [a, b] and m0, m1, . . . ,
mn be n + 1 integers. Define P [m0,m1,...,mn]

n as the set of the polynomials of degree
less than or equal to n whose degree-i coefficient is a multiple of 2−mi for all i
between 0 and n (we will call these polynomials “truncated polynomials”), that is
to say

P [m0,m1,...,mn]
n =

{
a0

2m0
+

a1

2m1
x + · · ·+ an

2mn
xn, a0, . . . , an ∈ Z

}
.

Let p be the minimax approximation to f on [a, b]. Define p̂ as the polynomial
whose degree-i coefficient is obtained by rounding the degree-i coefficient of p to the
nearest multiple of 2−mi (with an arbitrary choice in case of a tie) for i = 0, . . . , n:
p̂ is an element of P [m0,m1,...,mn]

n .
Also define ε and ε̂ as

ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We assume that ε̂ 6= 0.
We state our problem as follows. Let K ≥ ε, we are looking for a truncated

polynomial p? ∈ P [m0,m1,...,mn]
n such that

||f − p?||[a,b] = min
q∈P[m0,m1,...,mn]

n

||f − q||[a,b]

and

||f − p?||[a,b] ≤ K. (1)

Lemma 2 in Appendix 2 implies that the number of truncated polynomials satisfying
(1) is finite.

When K = ε̂, this problem has a solution since p̂ satisfies (1). It should be
noticed that, in that case, p? is not necessarily equal to p̂.

We can put, for example, K = λε̂ with λ ∈ [ε/ε̂, 1].

3.1 A partial approach through Chebyshev polynomials

The term “partial” refers to the fact that the intervals we can deal with in this
subsection must be of the form [0, a] or [−a, a] where a > 0. This restriction comes
from the following two problems:

(1) we do not have in the general case [a, b] a simple analogous of Propositions 1
and 2,

(2) from a given polynomial and a given interval, a simple change of variable allows
to reduce the initial approximation problem to another approximation problem
with an interval of the form [0, a] or [−a, a]. Unfortunately, this change of vari-
ables (that does not keep the size of the coefficients invariant) leads to a system
of inequalities of the form of those we face in Subsection 3.2. Then, we have

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 9

to perform additional operations in order to produce candidate polynomials.
Doing so, we lose the main interest -its simplicity- of the approach through
Chebyshev polynomials in the cases [0, a] and [−a, a].

We will only deal with intervals [0, a] where a > 0 since the method presented in
the following easily adapts to intervals [−a, a] where a > 0.

In this subsection, we compute bounds such that if the coefficients of a polynomial
q ∈ P [m0,m1,...,mn]

n are not within these bounds, then

||p− q||[0,a] > ε + K.

Knowing these bounds will make possible an exhaustive searching of p?. To do
that, consider a polynomial q whose degree-i coefficient is pi + δi. From Proposi-
tion 1, we have

||q − p||[0,a] ≥
|δi|
|αi|

,

where αi is the nonzero degree-i coefficient of T ∗
n(x/a). Now, if q is at a distance

greater than ε + K from p, it cannot be p? since

||q − f ||[0,a] ≥ ||q − p||[0,a] − ||p− f ||[0,a] > K.

Therefore, if there exists i, 0 ≤ i ≤ n, such that

|δi| > (ε + K)|αi|

then ||q − p||[0,a] > ε + K and therefore q 6= p?. Hence, the degree-i coefficient of
p? necessarily lies in the interval [pi − (ε + K)|αi|, pi + (ε + K)|αi|]. Thus we have

d2mi(pi − (ε + K)|αi|)e︸ ︷︷ ︸
ci

≤ 2mip?
i ≤ b2mi(pi + (ε + K)|αi|)c︸ ︷︷ ︸

di

, (2)

since 2mip?
i is an integer. Note that, as 0 ∈ [0, a], Condition (1) implies in particular

f(0)−K ≤ p?
0 ≤ f(0) + K

i.e., since 2m0p?
0 is an integer,

d2m0(f(0)−K)e︸ ︷︷ ︸
c′0

≤ 2m0p?
0 ≤ b2m0(f(0) + K)c︸ ︷︷ ︸

d′0

.

We replace c0 with max(c0, c
′
0) and d0 with min(d0, d

′
0).

For i = 0, . . . , n, we have di − ci + 1 possible values for the integer 2mip?
i . This

means that we have
∏n

i=0(di−ci+1) candidate polynomials. If this amount is small
enough, we search for p? by computing the norms ||f − q||[0,a], q running among
the possible polynomials. Otherwise, we need an additional step to decrease the
number of candidates. Hence, we now give a method for this purpose. It allows
us to reduce the number of candidate polynomials dramatically and applies more
generally to intervals of the form [a, b] where a and b are any real numbers.

3.2 A general and efficient approach through polytopes

From now on, we will deal with intervals of the form [a, b] where a and b are any
real numbers.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

10 · N. Brisebarre, J.-M. Muller and A. Tisserand

We recall the following definitions from [Schrijver 2003].

Definitions 1. Let k ∈ N.
A subset P of Rk is called a polyhedron if there exists an m×k matrix A with real

coefficients and a vector b ∈ Rm (for some m ≥ 0) such that P = {x ∈ Rk|Ax ≤ b}.
A subset P of Rk is called a polytope if P is a bounded polyhedron.
A polyhedron (resp. polytope) P is called rational if it is determined by a rational

system of linear inequalities.

The n + 1 inequalities given by (2) define a rational polytope of Rn+1 which
the numerators of p? (i.e. the 2mip?

i) belong to. The idea2 is to build a polytope
P, still containing the 2mip?

i , such that P ∩ Zn+1 is the smallest possible, which
means that the number of candidate polynomials is the smallest possible, in order
to reduce as much as possible the final step of computation of supremum norms.
Once we get this polytope, we need an efficient way of producing these candidates,
i.e., an efficient way of scanning the integer points (that is to say points with integer
coordinates) of the rational polytope we built. Several algorithms allow to achieve
that : the one given in [Ancourt and Irigoin 1991] uses the Fourier-Motzkin pairwise
elimination, the one given in [Feautrier 1988; Collard et al. 1995] is a parameterized
version of the Dual Simplex method and the one given in [Le Verge et al. 1994] is
based on the dual representation of polyhedra used in Polylib [The Polylib Team
2004]. The last two algorithms allow us to produce in an “optimized” way3 the
loops in our final program of exhaustive search. Note that these algorithms have,
at worst, the complexity of integer linear programming4. Now, let us give the
details of the method.

First, we can notice that the previous approach handles the unknowns p?
i sepa-

rately, which seems unnatural. Hence, the basic aim of the method is to construct
a polytope defined by inequalities that take into account in a more satisfying way
the dependence relations between the unknowns. This polytope should contain less
points of Zn+1 than the one built from Chebyshev polynomials’ approach. The ex-
amples of Section 4 indicate that this seems to be the case (and the improvements
can be dramatic).

Condition (1) means

f(x)−K ≤
n∑

j=0

p?
jx

j ≤ f(x) + K (3)

for all x ∈ [a, b].
The idea is to consider inequalities (3) for a certain number (chosen by the user)

of values of x ∈ [a, b]. As we want to build rational polytopes, these values must be
rational numbers. We propose the following choice of values. Let A be a rational
approximation to a greater than or equal to a, let B be a rational approximation

2After the submission of this paper, we read that this idea has already been proposed in [Habsieger

and Salvy 1997], a paper dealing with number-theoretical issues, but the authors did not have any
efficient method for scanning the integer points of the polytope.
3By “optimized”, we mean that all points of the polytope are scanned only once.
4In fact, the algorithm given in [Feautrier 1988; Collard et al. 1995] has in the situation we are
facing the complexity of rational linear programming.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 11

to b less than or equal to b and such that B > A, let d be a nonzero natural
integer chosen by the user. We show in Lemma 2 in Appendix 2 that we must have
d ≥ n in order to ensure that we get a polytope (which implies the finiteness of
the number of the “best truncated approximation(s)”). We consider the rational
values5 xi = A + i

d (B − A), i = 0, . . . , d. Then again, since the polytope has
to be rational, we compute, for i = 0, . . . , d two rational numbers li and ui that
are rational approximations to, respectively, f(xi) − K and f(xi) + K such that
li ≤ f(xi)−K and ui ≥ f(xi) + K . The rational polytope P searched is therefore
defined by the inequalities

li ≤
n∑

j=0

p?
jx

j
i ≤ ui, i = 0, . . . , d. (4)

If P ∩ Zn+1 is small enough (this can be estimated thanks to Polylib), we start
our exhaustive search by computing the norms∥∥∥ a0

2m0
+

a1

2m1
x + . . .

an

2mn
xn − f

∥∥∥
[a,b]

(5)

with (a0, a1, . . . , an) ∈ P∩Zn+1. This set can be scanned efficiently thanks to one
of the algorithms given in [Ancourt and Irigoin 1991], [Feautrier 1988; Collard et al.
1995] or [Le Verge et al. 1994] that we quoted above. Or else, we increase the value
of the parameter d in order to construct another rational polytope P′ that contains
fewer elements of Zn+1. We must point out that assuming that the new parameter
is greater than d does not necessarily lead to a new polytope with fewer elements
of Zn+1 inside (it is easy to show such counter-examples) but it is reasonable to
expect that, generally, a polytope built with a greater parameter should contain
fewer elements of Zn+1 inside since it is defined from a larger number of inequalities
(4) or in other words, as our discretization method is done using a larger number
of rational points, which should allow to restrict the number of possible candidates
since there are more conditions to satisfy. It is indeed the case if we choose any
positive integer multiple of d as new parameter. In this case, the new polytope P′,
associated to the parameter νd, with ν ∈ N∗, is a subset of P: P is built from the set
of rational points {A+ i

d (B−A)}i=0,...,d which is a subset of {A+ j
νd (B−A)}j=0,...,νd

from which P′ is built.

Remark 2. As we said in the introduction, this method is very flexible. We
give some examples to illustrate that.

—If we restrict our search to odd truncated polynomials (in this case, we put
n = 2k + 1 and we must have d ≥ k), it suffices to replace inequalities (4) with

li ≤
k∑

j=0

p?
jx

2j+1
i ≤ ui, i = 0, . . . , d

to create a polytope P of Rk+1 whose points with integer coordinates we scan.

5Choosing equally-spaced rational values seems a natural choice, when dealing with regular enough

functions. And yet, in a few cases, we get a better result with very irregularly-spaced points. This
is something we plan to investigate in the near future.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

12 · N. Brisebarre, J.-M. Muller and A. Tisserand

—If we restrict our search to truncated polynomials whose some coefficients have
fixed values. For example, if we assume that the truncated polynomials sought
have constant term equal to 1, it suffices to replace inequalities (4) with

li ≤ 1 +
n∑

j=1

p?
jx

2j+1
i ≤ ui, i = 0, . . . , d

to create a polytope P of Rn whose we scan the points with integer coordinates
(we must have d ≥ n− 1).

—Our method also applies to the search for the best truncated polynomial with
respect to the relative error distance || · ||rel,[a,b] defined in the introduction. In
this case, we can state the problem as follows. Let K ≥ 0, we search for a
truncated polynomial p? ∈ P [m0,m1,...,mn]

n such that

||f − p?||rel,[a,b] = min
q∈P[m0,m1,...,mn]

n

||f − q||rel,[a,b]

and

||f − p?||rel,[a,b] ≤ K. (6)

It suffices to consider the inequalities

−K|f(x)| − f(x) ≤
n∑

j=0

p?
jx

j ≤ K|f(x)|+ f(x)

for at least n+1 distinct rational values of x ∈ [a, b] to make a polytope to which
we apply the method presented above.

4. EXAMPLES

We implemented in Maple the method given in Subsection 3.1 and we started
developing a C library that implements the method described in Subsection 3.2.

For producing the results presented in this section, we implemented the approach
through polytopes in a C program of our own, based on the polyhedral library
Polylib [The Polylib Team 2004]. This allows to treat a lot of examples but it is
too roughly done to tackle with approximations of degree 15 to 20 for example.
Our goal is to implement the method presented here in a C library, which should
use Polylib and PIP [Feautrier 2003], that implements the parametric integer linear
programming solver given in [Feautrier 1988; Collard et al. 1995], for scanning the
integer points of the polytope. The choice of PIP instead of the algorithm given
in [Le Verge et al. 1994] is due to the fact that our polytope may, in some cases,
have a large amount of vertices (due to the need of a large amount of points xj , i.e.
constraints, when building the polytope) which can generate memory problems if we
use [Le Verge et al. 1994]. We also need the MPFR multiple-precision library [The
Spaces project 2004] since we face precision problems when forming the polytope,
and the GMP library [Granlund 2002] since the polytope is defined by a matrix
and a vector which may have very large integer coefficients. The GMP library is
also used inside some Polylib computations.
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 13

Table II. Examples

f [a, b] m ε ε̂ K

1 cos
�
0, π

4

�
[12, 10, 6, 4] 1.135...10−4 6.939...10−4 ε̂/2

2 exp
�
0, 1

2

�
[15, 14, 12, 10] 2.622...10−5 3.963...10−5 < ε̂

3 exp
�
0, log

�
1 + 1

2048

��
[56, 45, 33, 23] 1.184...10−17 2.362...10−17 < ε̂

4 arctan(1 + x)
�
0, 1

4

�
[24, 21, 18, 17, 16] 2.381...10−8 3.774...10−8 < ε̂

5 exp
h
− log(2)

256
,
log(2)
256

i
[25, 17, 9] 8.270...10−10 3.310...10−9 < ε̂

6 exp
h
− log(2)

256
,− log(2)

256

i
[28, 19, 9] 8.270...10−10 3.310...10−9 < ε̂

7
log(3/4+x)

log(2)
[−1/4, 1/4] [12, 9, 7, 5] 6.371...10−4 7.731...10−4 < ε̂

8
log(

√
2/2+x)

log(2)

h
1−
√

2
2

, 2−
√

2
2

i
[12, 9, 7, 5] 6.371...10−4 9.347...10−4 < ε̂

Table III. Corresponding results

Chebyshev Polytope (d) T1 T2 Gain of accuracy in bits

1 330 1 (4) 0.62 0.26 ≈ 1.5

2 84357 9 (20) 0.51 2.18 ≈ 0.375

3 9346920 15 (20) 0.99 1.77 ≈ 0.22

4 192346275 1 (20) 0.15 0.55 ≈ 0.08

5 1 0 (4) 0.05 0 0

6 4 1 (4) 0.03 0.10 ≈ 0.41

7 38016 2 (15) 0.13 0.69 ≈ 0.06

8 12 (20) 0.59 5.16 ≈ 0.26

We put some examples in Table II and we group the corresponding results in
Table III. In the last column of Table II, the notation < ε̂ means that we chose a
value slightly smaller than ε̂, namely ε̂ rounded down to four fractional digits.

In the first column of Table III, one can find the amount of candidates given by
Chebyshev’s approach. In the second, we give the number of candidates given by
the approach through polytopes and the corresponding parameter d. T1 denotes
the time in seconds for producing the candidate polynomials with the polytope
method. T2 denotes the time in seconds for computing the norms (5), which, for
the moment (cf. footnote 1), is done with Maple 9, in which the value of Digits
was fixed equal to 20. In the last column, we give the gain of accuracy in bits that
we get if we use the best truncated polynomial instead of polynomial p̂.

All the computations were done on a 2.53 GHz Pentium 4 computer running
Debian Linux with 256 MB RAM. The compiler used was gcc without optimization.

4.1 Choice of the examples

These examples correspond to common cases that occur in elementary and special
function approximation [Muller 1997]. Examples 1, 2 and 4 are of immediate inter-
est. Example 3 is of interest for implementing the exponential function in double
precision arithmetic, using a table-driven method such as Tang’s method [Tang
1991; 1992]. Examples 5 and 6 also correspond to a table-driven implementation of
the exponential function, in single precision. Examples 7 and 8 aim at producing
very cheap approximations to logarithms in [1/2, 1], for special purpose applica-
tions.

Figure 3 shows how the number of integer points of the polytope drops when K
decreases, in the case of example 2.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

14 · N. Brisebarre, J.-M. Muller and A. Tisserand

Fig. 3. This figure shows how the number of integer points of the polytope drops when K decreases,
in the case of example 2. The term “all candidates” means the integer points of the polytope. By

“good candidate” we mean the points that fulfill the requirement (1).

Acknowledgements

We would like to thank the referees, who greatly helped to improve the quality of
the manuscript. We would also like to thank Nicolas Boullis and Serge Torres, who
greatly helped computing the examples, and Paul Feautrier and Cédric Bastoul,
whose expertise in polyhedric computations has been helpful.

REFERENCES

Ancourt, C. and Irigoin, F. 1991. Scanning polyhedra with do loops. In Proceedings of the

3rd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (PPoPP’91).
ACM Press, New York, 39–50.

Borwein, P. and Erdélyi, T. 1995. Polynomials and Polynomials Inequalities. Graduate Texts
in Mathematics, 161. Springer-Verlag, New York.

Collard, J.-F., Feautrier, P., and Risset, T. 1995. Construction of do loops from systems of

affine constraints. Parallel Processing Letters 5, 421–436.

Cornea, M., Harrison, J., and Tang, P. T. P. 2002. Scientific Computing on Itanium-Based

Systems. Intel Press.

Feautrier, P. 1988. Parametric integer programming. RAIRO Rech. Opér. 22, 3, 243–268.

Feautrier, P. 2003. PIP/Piplib, a parametric integer linear programming solver. http://www.

prism.uvsq.fr/∼cedb/bastools/piplib.html.

Fox, L. and Parker, I. B. 1972. Chebyshev Polynomials in Numerical Analysis. Oxford Math-
ematical Handbooks. Oxford University Press, London-New York-Toronto.

Granlund, T. 2002. GMP, the GNU multiple precision arithmetic library, version 4.1.2. http:

//www.swox.com/gmp/.

Habsieger, L. and Salvy, B. 1997. On integer Chebyshev polynomials. Math. Comp. 66, 218,
763–770.

Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J., Mesztenyi, C. K., Rice, J. R.,
Thacher, H. G., and Witzgall, C. 1968. Computer Approximations. John Wiley & Sons,
New York.

Le Verge, H., van Dongen, V., and Wilde, D. K. 1994. Loop nest synthesis using the polyhedral
library. Tech. Rep. INRIA Research Report RR-2288, INRIA. May.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 15

Markstein, P. 2000. IA-64 and Elementary Functions : Speed and Precision. Hewlett-Packard

Professional Books. Prentice Hall.

Muller, J.-M. 1997. Elementary Functions, Algorithms and Implementation. Birkhäuser,
Boston.

Pineiro, J., Bruguera, J., and Muller, J.-M. 2001. Faithful powering computation using

table look-up and a fused accumulation tree. In Proc. of the 15th IEEE Symposium on Com-

puter Arithmetic (Arith-15), Burgess and Ciminiera, Eds. IEEE Computer Society Press, Los
Alamitos, CA, 40–58.

Remes, E. 1934. Sur un procédé convergent d’approximations successives pour déterminer les

polynômes d’approximation. C.R. Acad. Sci. Paris 198, 2063–2065.

Rivlin, T. J. 1990. Chebyshev polynomials. From approximation theory to algebra (Second edi-
tion). Pure and Applied Mathematics. John Wiley & Sons, New York.

Schrijver, A. 2003. Combinatorial optimization. Polyhedra and efficiency. Vol. A. Algorithms

and Combinatorics, 24. Springer-Verlag, Berlin.

Story, S. and Tang, P. T. P. 1999. New algorithms for improved transcendental functions
on IA-64. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Koren and

Kornerup, Eds. IEEE Computer Society Press, Los Alamitos, CA, 4–11.

Tang, P. T. P. 1989. Table-driven implementation of the exponential function in IEEE floating-

point arithmetic. ACM Transactions on Mathematical Software 15, 2 (June), 144–157.

Tang, P. T. P. 1990. Table-driven implementation of the logarithm function in IEEE floating-
point arithmetic. ACM Trans. Math. Softw. 16, 4 (Dec.), 378–400.

Tang, P. T. P. 1991. Table lookup algorithms for elementary functions and their error analysis.

In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, P. Kornerup and D. W.
Matula, Eds. IEEE Computer Society Press, Los Alamitos, CA, 232–236.

Tang, P. T. P. 1992. Table-driven implementation of the expm1 function in IEEE floating-point

arithmetic. ACM Trans. Math. Softw. 18, 2 (June), 211–222.

The Polylib Team. 2004. Polylib, a library of polyhedral functions, version 5.20.0. http:

//icps.u-strasbg.fr/polylib/.

The Spaces project. 2004. MPFR, the multiple precision floating point reliable library, version

2.0.3. http://www.mpfr.org.

Wei, B., Cao, J., and Cheng, J. 2001. High-performance architectures for elementary function

generation. In Proc. of the 15th IEEE Symposium on Computer Arithmetic (Arith-15), Burgess
and Ciminiera, Eds. IEEE Computer Society Press, Los Alamitos, CA, 136–146.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

16 · N. Brisebarre, J.-M. Muller and A. Tisserand

Appendix 1. Proofs of Propositions 1 and 2

Proving those propositions first requires the following two results. The first one is
well known.

Property 3. There are exactly n + 1 values x0, x1, x2, . . . , xn such that

−1 = x0 < x1 < x2 < · · · < xn = 1,

which satisfy

Tn(xi) = (−1)n−i max
x∈[−1,1]

|Tn(x)| ∀i, i = 0, . . . , n.

That is, the maximum absolute value of Tn is attained at the xi’s, and the sign of
Tn alternates at these points.

Proof. These extreme points are simply the points cos(kπ/n), k = 0, . . . , n. 2

Lemma 1. Let (δi)i=0,...,n be an increasing sequence of nonnegative integers and

P (x) = a0x
δ0 + · · ·+ anxδn ∈ R[x],

then either P = 0 or P has at most n zeros in (0,+∞).

Proof. By induction on n. For n = 0, it is straightforward. Now we assume that
the property is true until the rank n. Let

P (x) = a0x
δ0 + · · ·+ anxδn + an+1x

δn+1 ∈ R[x]

with 0 ≤ δ0 < · · · < δn+1 and a0a1 . . . an+1 6= 0. Assume that P has at least n + 2
zeros in (0,+∞). Then P1 = P/xδ0 has at least n + 2 zeros in (0,+∞).

Thus, the nonzero polynomial

P ′
1(x) = (δ1 − δ0)a1x

δ1−δ0 + · · ·+ (δn+1 − δ0)an+1x
δn+1−δ0

has, from Rolle’s Theorem, at least n + 1 zeros in (0,+∞), which contradicts the
induction hypothesis. 2

Proof of Proposition 1. From Property 3, there exist 0 = η0 < η1 < · · · < ηn = 1
such that

α−1
k T ∗

n(ηi) = α−1
k (−1)n−i ‖T ∗

n(·/a)‖[0,a] = α−1
k (−1)n−i.

Let q(x) =
n∑

j=0,
j 6=k

cjx
j ∈ R[x] satisfy ‖xk − q(x)‖[0,a] < |α−1

k |. Then the polynomial

P (x) = α−1
k T ∗

n(x) − (xk − q(x)) has the form
n∑

j=0,
j 6=k

djx
j and is not identically zero.

As it changes sign between any two consecutive extrema of T ∗
n , it has at least n

zeros in (0,+∞). Hence, from Lemma 1, it must vanish identically which is the
contradiction desired. 2

Proof of Proposition 2. We assume that n is even since a straightforward
adaptation of the proof in this case gives the proof of the case where n is odd.
ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 17

First, we suppose k even. Let

P (x) = anxn + · · ·+ ak+1x
k+1 + xk + ak−1x

k−1 + · · ·+ a0

such that ||P ||[−a,a] < |1/βk,n|. Then, for all x ∈ [−a, a],

− 1
|βk,n|

< Q(x) :=
P (x) + P (−x)

2
<

1
|βk,n|

i.e., since k and n are both even, for all x ∈ [−a, a],

− 1
|βk,n|

< Q(x) = anxn + · · ·+ ak+2x
k+2 + xk + ak−2x

k−2 + · · ·+ a0 <
1

|βk,n|
.

From Property 3 and the inequality ||Q||[−a,a] < |1/βk,n| = ||Tn(·/a)||[−a,a], the

polynomial R(x) = Q(x) − Tn(x/a)/βk,n =
n/2∑
j=0,

j 6=k/2

cjx
2j changes sign between two

consecutive extrema of Tn(x/a). Then, it has at least n distinct zeros in [−a, a]
and, more precisely, in [−a, 0) ∪ (0, a] since 0 is an extrema of Tn(x/a) as n is

even. Hence, the polynomial R(
√

x) =
n/2∑
j=0,

j 6=k/2

cjx
j has at least n/2 distinct zeros in

(0,
√

a] : it is identically zero from Lemma 1.
We have just proved that

P (x) =
1

βk,n
Tn

(x

a

)
+

P (x)− P (−x)
2

.

We recall that |P (x)| < 1/|βk,n| for all x ∈ [−a, a]. Therefore, we have, by substi-
tuting 1 and −1 to x

− 1
|βk,n|

− 1
βk,n

Tn

(
1
a

)
<

P (1)− P (−1)
2

<
1

|βk,n|
− 1

βk,n
Tn

(
1
a

)
and

− 1
|βk,n|

− 1
βk,n

Tn

(
−1

a

)
<

P (−1)− P (1)
2

<
1

|βk,n|
− 1

βk,n
Tn

(
−1

a

)
As n is even, we know that Tn(1/a) = Tn(−1/a) = 1. Hence, we obtain

0 <
P (1)− P (−1)

2
< 0

which is the contradiction desired.
Now, we suppose k odd. Let

P (x) = anxn + · · ·+ ak+1x
k+1 + xk + ak−1x

k−1 + · · ·+ a0

such that ||P ||[−a,a] < |1/βk,n−1|. Then, for all x ∈ [−a, a],

− 1
|βk,n−1|

< Q(x) :=
P (x)− P (−x)

2
<

1
|βk,n−1|

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

18 · N. Brisebarre, J.-M. Muller and A. Tisserand

i.e., for all x ∈ [−a, a],

− 1
|βk,n−1|

< Q(x) = an−1x
n−1+· · ·+ak+2x

k+2+xk+ak−2x
k−2+· · ·+a1 <

1
|βk,n−1|

.

From Property 3 and the inequality ||Q||[−a,a] < |1/βk,n−1| = ||Tn−1(·/a)||[−a,a],

the polynomial R(x) = Q(x) − Tn−1(x/a)/βk,n−1 =
n/2−1∑

j=0,
j 6=(k−1)/2

cjx
2j+1 changes sign

between two consecutive extrema of Tn−1(x/a). Then, it has at least n− 1 distinct
zeros in [−a, a] and, in particular, at least n − 2 distinct zeros in [−a, 0) ∪ (0, a].

Hence, the polynomial R(
√

x)/
√

x =
n/2−1∑

j=0,
j 6=(k−1)/2

cjx
j has at least n/2 − 1 distinct

zeros in (0,
√

a] : it is identically zero from Lemma 1.
We have just obtained that

P (x) =
1

βk,n−1
Tn−1

(x

a

)
+

P (x) + P (−x)
2

.

Here again, we recall that |P (x)| < 1/|βk,n−1| for all x ∈ [−a, a]. Thus, it follows,
by substituting 1 and −1 to x

− 1
|βk,n−1|

− 1
βk,n−1

Tn

(
1
a

)
<

P (1) + P (−1)
2

<
1

|βk,n−1|
− 1

βk,n−1
Tn−1

(
1
a

)
and

− 1
|βk,n−1|

− 1
βk,n−1

Tn−1

(
−1

a

)
<

P (−1) + P (1)
2

<
1

|βk,n−1|
− 1

βk,n−1
Tn−1

(
−1

a

)
As n is even, we have Tn−1(1/a) = −Tn−1(−1/a) = 1. Hence, we obtain

0 <
P (1) + P (−1)

2
< 0

which is the contradiction desired. 2

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 19

Appendix 2.

We now prove the following statement.

Lemma 2. Let d, n ∈ N, let x0, . . . , xd, l0, . . . , ld, u0, . . . , ud ∈ R (resp. Q) such
that xi 6= xj if i 6= j, let P the set defined by

P =

(α0, . . . , αn) ∈ Rn+1 (resp. Qn+1) : li ≤
n∑

j=0

αjx
j
i ≤ ui for i = 0, . . . , d

 .

If d ≥ n, then P is a polytope (resp. rational polytope). If d < n, then either P is
empty or P is unbounded.

Proof. The set P is obviously a polyhedron (resp. rational polyhedron). So, if
we want to prove that P is a polytope (resp. rational polytope), it suffices to show
that it is bounded.

First, we assume d ≥ n. Then, P is contained in the set P′ defined by

P′ =

(α0, . . . , αn) ∈ Rn+1 : li ≤
n∑

j=0

αjx
j
i ≤ ui for i = 0, . . . , n

 .

Let

ϕ : Rn+1 −→ Rn+1

(α0, . . . , αn) 7→ (
∑n

j=0 αjx
j
0, . . . ,

∑n
j=0 αjx

j
n)

The linear application ϕ is an isomorphism for the matrix
1 x0 · · · xn

0

1 x1 · · · xn
1

...
...

...
1 xn · · · xn

n


is a nonsingular Vandermonde matrix since xi 6= xj if i 6= j. The linear application
ϕ−1, defined on a finite dimensional R-vector space, is continuous and the set
In =

∏n
i=0[li, ui] is a compact of Rn+1. Thus, the set P′ which is equal to ϕ−1(In)

is a compact of Rn+1, which implies that P is necessarily bounded.
Now, we assume d < n and P non empty. Then, we notice that P is defined by

the inequalities

l0 −
∑n

j=d+1 αjx
j
0 ≤

∑d
j=0 αjx

j
0 ≤ u0 −

∑n
j=d+1 αjx

j
0,

... ≤
... ≤

...
ld −

∑n
j=d+1 αjx

j
d ≤

∑d
j=0 αjx

j
d ≤ ud −

∑n
j=d+1 αjx

j
d.

As xi 6= xj if i 6= j, the matrix

A =


1 x0 · · · xd

0

1 x1 · · · xd
1

...
...

...
1 xd · · · xd

d


ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

20 · N. Brisebarre, J.-M. Muller and A. Tisserand

is nonsingular. Hence, in particular, the polyhedron P contains the family of vectorsA−1


u0 −

∑n
j=d+1 αjx

j
0

u1 −
∑n

j=d+1 αjx
j
1

...
ud −

∑n
j=d+1 αjx

j
d

 , (αd+1, . . . , αn) ∈ Zn−d

 ,

which proves that P can not be bounded.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

Computing machine-efficient polynomial approximations · 21

Appendix 3. A worked example

Let us give the details of the first example of Table II. We focus on the degree-3
approximation to the cosine function in [0, π/4].

First, we determine (here using the numapprox package of Maple with Digits
equal to 10) the degree-3 minimax polynomial associated to cos on [0, π/4]. We get

p = 0.9998864206 + (0.00469021603 + (−0.5303088665 + 0.06304636099x)x)x.

Then, ε = ||f − p||[0,π/4] = 0.0001135879209. This means that such an approxima-
tion is not good enough for single-precision implementation of the cosine function.
It can be of interest for some special-purpose implementations. We have

p̂ =
1
16

x3 − 17
32

x2 +
5

1024
x + 1 and ε̂ = ||f − p̂||[0,π/4] = 0.0006939707.

Let us choose K = ε̂/2. Then, the approach that uses Chebyshev polynomials gives

—3 possible values between 4095/4096 and 4097/4096 for the degree-0 term,

—22 possible values between −3/512 and 15/1024 for the degree-1 term,

—5 possible values between −9/16 and −1/2 for the degree-2 term,

—1 possible value equal to 1/16 for the degree-3 term.

Hence, the approach that uses Chebyshev polynomials provides 330 candidate poly-
nomials. This is a reasonably small amount : the time necessary for the exhaustive
computation of the norms (5) is small6. Hence, there is no need to use the approach
based on polytopes. We use it anyway in the following to show how it works.

First, we define a subinterval [A,B] of [0, π/4] with rational bounds. Let A = 0,
we choose a rational approximation B of π/4 such that B ≤ π/4 and its numerator
and denominator are small, in order to speed up the computations. The bigger the
integers occuring in the data defining the polytope are, the slower the computations
are performed. Hence, let B = 7/9, which is a convergent of the continued fraction
expansion of π/4.

We choose a value of d equal to 4, i.e. the polytope is built from five rational
points which are 0, 1

4 ·
7
9 , 2

4 ·
7
9 , 3

4 ·
7
9 , 7

9 . Let a?
j = 2mj p?

j for j = 0, . . . , 3. Therefore,
we want that the inequalities hereafter be satisfied:

cos
(

7i

36

)
−K ≤

3∑
j=0

a?
j

2mj

(
7i

36

)j

≤ cos
(

7i

36

)
+ K for i = 0, . . . , 4. (7)

We still assume that K = ε̂/2. These inequalities define a polytope but it is not a
rational one. Hence, we compute rational approximations of the lower and upper
bounds in (7): for i = 0, . . . , 4, we compute li and ui ∈ Q such that li ≤ cos

(
7i
36

)
−K,

cos
(

7i
36

)
+ K ≤ ui. Here again, our target is to prevent the increase of the size of

the involved integers. Therefore, we can either compute convergents of the li and
ui or we can impose that, for each i, li and ui have the same denominator as

6Around 1.5 second on a 2.53 GHz Pentium 4 computer running Debian Linux with 256 MB
RAM.

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

22 · N. Brisebarre, J.-M. Muller and A. Tisserand

Table IV. Number of points, and computational times (in C and in Maple) for

various choices of d and K in Example 1.

time [s]

d K T1 T2 # polynomials

9 7.00 10−4 2.60 1.68 7

9 5.00 10−4 1.59 0.98 4

9 2.50 10−4 0.25 0.26 1

9 6.93 10−4 2.55 1.40 6

18 6.93 10−4 2.84 1.40 6

36 6.93 10−4 3.37 1.40 6

72 6.93 10−4 7.39 1.40 6

p? : (4095, 6,−34, 1)

2.44 10−4 (gain 1.5 bits)

the a?
j

2mj

(
7i
36

)j
for j = 0, . . . , 3. We choose the second possibility, hence, for all

i = 0, . . . , 4, we put

li =
⌈
Di(cos

(
7i

36

)
−K)

⌉
/Di and ui =

⌊
Di(cos

(
7i

36

)
+ K)

⌋
/Di

where Di is the least common multiple of the denominators of the a?
j

2mj

(
7i
36

)j
for

j = 0, . . . , 3.
Hence, we obtain a rational polytope defined by AX ≤ B with

A =



1 0 0 0
−1 0 0 0
729 567 1764 1372
−729 −567 −1764 −1372
729 1134 7056 10976
−729 −1134 −7056 −10976
27 63 588 1372
−27 −63 −588 −1372
729 2268 28224 87808
−729 −2268 −28224 −87808


, X =


a?
0

a?
1

a?
2

a?
3

 , B =



4097
−4095

2930749
−2928678
2764059
−2761988

92341
−92266
2128473
−2126402


.

Then, our current C implementation returns only one candidate (4095, 6,−34, 1).
We check that it satisfies condition (1). We therefore directly obtain

p? =
1
16

x3 − 17
32

x2 +
3

512
x +

4095
4096

and ||f − p?||[0,π/4] = 0.0002441406250.

In this example, the distance between f and p? is approximately 0.35 times the
distance between f and p̂. Using our approach saves around − log2(0.35) ≈ 1.5 bits
of accuracy.

Table IV gives some figures (number of points of the polytope, delay of computa-
tion) depending on the choices of d and K in this example. Here again, T1 denotes
the time in seconds for producing the candidate polynomials and T2 denotes the
time in seconds for computing the norms (5).

ACM Transactions on Mathematical Software, Vol. V, No. N, April 2006.

