
HAL Id: ensl-00086896
https://ens-lyon.hal.science/ensl-00086896

Submitted on 20 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex division with prescaling of operands
Jean-Michel Muller, Milos Ercegovac

To cite this version:
Jean-Michel Muller, Milos Ercegovac. Complex division with prescaling of operands. Application-
specific Systems, Architectures and Processors, 2003, Jun 2003, Delft, Netherlands. �ensl-00086896�

https://ens-lyon.hal.science/ensl-00086896
https://hal.archives-ouvertes.fr

Complex Division with Prescaling of Operands

Miloš D. Ercegovac
Computer Science Department

3732 Boelter Hall
University of California at Los Angeles

Los Angeles, CA 90024, USA
milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire CNRS-ENSL-INRIA-UCBL LIP

Ecole Normale Supérieure de Lyon
46 Allée d’Italie

69364 Lyon Cedex 07, France
Jean-Michel.Muller@ens-lyon.fr

Abstract

We adapt the radix-r digit-recurrence division algorithm to complex division. By prescal-
ing the operands, we make the selection of quotient digits simple. This leads to a simple
hardware implementation, and allows correct rounding of complex quotient. To reduce large
prescaling tables required for radices greater than 4, we adapt the bipartite-table method to
multiple-operand functions.

1. Introduction

1.1. Complex division

Complex division is used in many applications such astronomy [4] and non-linear RF
measurement [19].

A straightforward way to implement complex division is to use the conventional formula

a + ib

c + id
=

ac + bd + i(bc − ad)
c2 + d2

. (1)

Using this formula, however, may lead to overflows during the intermediate computations:
c2 + d2 may overflow, even if the final result is representable in the floating-point format
being considered. This severe drawback has been discussed by many authors (e.g., [1, 11]).
R.L. Smith [14] suggested another, much more robust, algorithm. It uses the relations:

a + ib

c + id
=




a + b(d/c)
c + d(d/c)

+ i
b − a(d/c)
c + d(d/c)

(if |c| ≥ |d|)

b + a(c/d)
d + c(c/d)

+ i
a − b(c/d)
d + c(c/d)

(if |c| ≤ |d|)
(2)

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Stewart [16] analyzes Smith’s algorithm and suggests an even more robust, and even
more complicated, algorithm. It is worth noticing that none of these algorithms guarantees
correct rounding of the real and imaginary parts of the obtained quotient. Moreover, these
algorithms would require very costly hardware implementation.

Hardware implementation of complex division has been recently considered in [12]. A
radix-2 on-line complex division algorithm is used for implementing (1) on a reconfigurable
hardware.

The aim of this paper is to adapt to complex division a high-radix (real) digit-recurrence
division algorithm with prescaling [9, 10]. For computing x/y, this division algorithm uses
the recurrence

w[j + 1] = rw[j] − qj+1y (3)

where w[0] = x, and the quotient digits qj’s are chosen in a radix-r redundant digit-set, so
that the w[j]’s remain bounded. One of the main difficulties is to find a practical quotient-
digit function for higher radices. Several solutions have been suggested. Among them,
the prescaling technique consists in multiplying x and y by a constant K chosen so that
Ky becomes close to 1, and then using the residual recurrence to compute (Kx)/(Ky).
By doing that, one can choose qj+1 by rounding w[j] (or an approximation to w[j] with
a few digits only) to the nearest integer, provided that some conditions are satisfied. The
idea of scaling operands to make the quotient-digit selection independent of the divisor was
proposed in [17] for a decimal computer. This scheme was extended in [18] to an arbitrary
radix with signed-digit adder and applied in signed-digit division algorithm. Svoboda’s
scaling is one-sided, i.e., the (positive) divisor is transformed into the range 1 + ε. A two-
sided prescaling approach is discussed in [6, 7]. The prescaling technique and the radix-4
division are considered in [8, 2, 15].

1.2. Notation

Throughout the paper, i is
√−1, and if z is a complex number, then �(z) and �(z)

denote the real and imaginary parts of z. The norm ||z||∞ denotes max{|�(z)|, |�(z)|},
whereas |z| denotes the usual complex absolute value

√
(�(z))2 + (�(z))2.

2. Complex division algorithm

2.1. General scheme

Assume we wish to compute q = z/d, where q, z and d are complex numbers. We will
perform the division as follows:

Prescaling Obtain (through table-lookup and, possibly, some interpolation) a com-
plex scaling factor K such that

||Kd − 1||∞ < 2−p

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

where the integer p is a parameter of the algorithm. Then, compute{
w[0] = Kz
y = Kd

The major benefit of prescaling the divisor and dividend is that it allows separate
selection of the real and imaginary parts of the complex quotient digits. These two
selections can be performed in parallel.
Iterations Perform radix-r iterations

w[j + 1] = rw[j] − qj+1y (4)

where r (in most cases a power of 2) is the radix of the division, and qj+1 = qRj+1+iqIj+1,
where qRj+1 and qIj+1 belong to the digit set S of a redundant radix-r representation (a
typical example is the maximally redundant set S = {−r+1,−r+2, . . . , r−2, r−1}).

A straightforward induction shows that

w[j]
y

= rj
[
w[0]
y

−
(
q1r

−1 + q2r
−2 + · · · + qjr

−j
)]

. (5)

Hence, any choice of the qj’s for which the ||w[j]||∞’s remain bounded will suffice to give

0.qR1 qR2 qR3 · · · qRn + i0.qI1 qI2 qI3 · · · qIn → z/d

2.2. Selection of the quotient digits

As for conventional higher radix division, the key point is to be able to easily select
quotient digits. The benefit of division with prescaling is that, since the prescaled divisor
becomes close to 1, the j + 1st quotient digit can be obtained by rounding the residual
to its integer part. Moreover, a short-precision estimate of the residual suffices for this
rounding so that residuals can be obtained in redundant form (e.g., carry-save or signed-
digit). Therefore, the selection is performed by rounding to the nearest integer the real and
imaginary parts of ŵ[j], where ŵ[j] is obtained by truncating w[j] after some fractional
position. More precisely, we choose


qRj+1 = s (�(rw[j]))

qIj+1 = s (�(rw[j]))

where the selection function s satisfies

|s(x) − x| <
1
2

+ 2−σ. (6)

For instance, one can meet such a requirement by truncating a carry-save representation
of x after the σ + 1-st fractional position, and rounding the obtained result to the nearest
integer. If x is represented in borrow-save, it suffices to truncate it after the σ-th fractional
position before rounding it to the nearest.

We assume that the quotient digits, for the real part as well as for the imaginary part,
will be chosen from the digit-set

S = {−a,−a + 1, . . . , 0, . . . ,+a}

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

where 2a + 1 > r and, in most cases, a ≤ r − 1 (and yet, we will later see that the “over-
redundant” choice a = r may sometimes be of interest). To make sure that the selection
function (6) always returns elements of S, we must have

||w[j]||∞ ≤ 1
r

(
a +

1
2
− 2−σ

)
(7)

Let us call Ω = 1/r × (a + 1
2 − 2−σ) this last bound. We now find conditions on the

various parameters (i.e., a, p, r and σ) for the algorithm to converge.
We assume that ||w[0]||∞ < Ω (if needed, this can be achieved by a shift of the dividend

and extra iterations), and we show that w[j]’s, for all j, have a norm less than Ω. As for
conventional SRT division, this is shown by induction, assuming ||w[j]||∞ < Ω, and trying
to get ||w[j + 1]||∞ < Ω.

Define εy = y − 1. From (4) and (6), we get

w[j + 1] = rw[j] − qj+1y

= rw[j] −
(
qRj+1 + iqIj+1

)
(1 + εy)

= rw[j] − {�(rw[j]) + [s(�(rw[j])) −�(rw[j])]} (1 + εy)

−i {�(rw[j]) + [s(�(rw[j])) −�(rw[j])]} (1 + εy)

= −εys(�(rw[j])) − [s(�(rw[j])) −�(rw[j])]

−iεys(�(rw[j])) − i [s(�(rw[j])) −�(rw[j])]

= −εyq
R
j+1 − [s(�(rw[j])) −�(rw[j])]

−iεyq
I
j+1 − i [s(�(rw[j])) −�(rw[j])]

Therefore,
w[j + 1] = εyqj+1 + A + iB (8)

where A and B are real numbers of absolute value less than 1
2 + 2−σ, ||qj+1||∞ ≤ a and

||εy||∞ < 2−p. From that, we immediately deduce

||w[j + 1]||∞ < 2−p+1a +
1
2

+ 2−σ.

This gives the condition we were looking for

2−p+1a +
1
2

+ 2−σ ≤ 1
r

(
a +

1
2
− 2−σ

)
. (9)

Typical examples of parameters that meet these constraints are given in Table 1.

2.3. The complex residual recurrences

The new recurrences for computing complex residuals are given below. Note that the real
and imaginary parts of w[j +1] can be computed in parallel. This fact and the simplicity of
the selection function (that only require to separately round the real and imaginary parts
of w[j + 1]) make the iterations very simple.

 �(w[j + 1]) = r�(w[j]) − qRj+1�(y) + qIj+1�(y)

�(w[j + 1]) = r�(w[j]) − qIj+1�(y) − qRj+1�(y)
(10)

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

r a p σ Ω
2 1 4 4 23/32
2 2 3 3 19/16
4 2 6 5 79/128
4 3 5 3 27/32
4 4 4 4 71/74
8 4 8 6 287/512
8 5 6 6 351/512
8 6 6 4 103/128
8 7 6 3 59/64
8 8 5 5 271/256
16 8 10 7 1087/2048
16 15 7 3 123/128
16 16 6 6 1055/1024

Table 1. Values of the parameters p, σ and Ω of the algorithm, depending on r and a. It
is worth being noticed that p decreases when a increases, which is important, since the
prescaling step (if implemented just by one table-lookup) requires to access a table with
2p + 1 address bits. Even over-redundant digit-sets (i.e., for which a ≥ r) may therefore
prove useful.

3. Remarks on prescaling

Our method requires that, from a given divisor d, we obtain a scaling factor K such that
||Kd − 1||∞ < 2−p by a table-lookup. Let us examine three approaches to obtaining the
complex scaling factor K.

3.1. First approach: direct table-lookup

We assume that
1
2
≤ ||d||∞ < 1.

This is obtained by a mere shift of the divisor d. Now, if we write d = a + ib, a and b can
be represented as binary fixed-point numbers{

a = 0.a1a2a3a4 · · ·
b = 0.b1b2b3b4 · · · ,

where a1 = 1 or b1 = 1. Define â and b̂ as a and b rounded to the nearest q-fractional-bit
number. Our first solution consists in looking-up

K =
1

â + ib̂

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

in a table with 2q − 1 address bits1. Now, by denoting d̂ = â + ib̂, we easily find∣∣∣∣
∣∣∣∣d
d̂
− 1

∣∣∣∣
∣∣∣∣∞ ≤ 2||d − d̂||∞

∣∣∣∣
∣∣∣∣1
d̂

∣∣∣∣
∣∣∣∣∞ ≤ 4||d − d̂||∞ ≤ 2−q+1

Therefore, to assure that ||y−1||∞ will be less than 1, it suffices to choose q = p+1. Hence
the lookup table will have 2p + 1 address bits.

3.2. Second approach: prescaling using a multiple variable bipartite method

The previous prescaling method works for radix-2 division (for a = 1, the constraint
p = 4 – hence, q = 5 – requires the use of a table with 9 address bits, which is feasible
with current technology. If we use an over-redundant number system, with a = 2, the
table will have 7 address bits, which is small). Radix 4 can be used as well (with the
maximally redundant digit-set – i.e., a=3, the table will have 11 address bits, and if we
use the over-redundant digit set with a = 4, the table we have 9 address bits). Radix-8
might be feasible (13 address bits with the maximally redundant digit-set, 11 with an over-
redundant digit-set). For higher radices, the reciprocal table grows rapidly and becomes
quickly impractical.

A possible solution to this problem is to generalize to functions of two variables the
bipartite table method of [3, 13]. This is done as follows. Since

1
â + ib̂

=
â − ib̂

â2 + b̂2

we easily deduce that we have to quickly get good approximations to the function

ϕ(x, y) =
x

x2 + y2

where x and y are q-bit numbers. To simplify, assume q is some multiple of 3, and define
k = q/3. Define two 2k-bit numbers xH and yH , two k-bit numbers x� and y�, and two
k + �k/2�-bit numbers xh and yh, all with absolute value less than 1 such that:

• xH is x rounded to the nearest multiple of 2−2k;
• yH is y rounded to the nearest multiple of 2−2k;
• x = xH + x�2−2k;
• y = yH + y�2−2k;
• xh is x rounded to the nearest multiple of 2−k−�k/2�;
• yh is y rounded to the nearest multiple of 2−k−�k/2�;

If we define functions: 
 β(xh, yh, x�) = x�2−2k ∂

∂xϕ(xh, yh)

γ(xh, yh, x�) = y�2−2k ∂
∂yϕ(xh, yh)

then an elementary manipulation of Taylor series shows that ϕ(x, y) can be approximated
by

ϕ(xH , yH) + β(xh, yh, x�) + γ(xh, yh, x�)
1A straightforward implementation would require 2q address bits, but one can notice that one can assume

a1 = 1: if a1 = 0, then we know that b1 = 1, and we can easily interchange â and b̂.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

with error ≈ 2−3k. This shows that instead of using one table with 2q − 1 address bits
(with the previous method), we can use three tables (one for φ, one for β and another one
for γ), each of them with 4q/3 address bits.

The functions that need be stored are


ϕ(xH , yH) =
xH

x2
H + y2

H

β(xh, yh, x�) = x�2−2 k

((
xh

2 + yh
2
)−1 − 2

xh
2

(xh
2 + yh

2)2

)

γ(xh, yh, x�) = −2
y�2−2 kxhyh

(xh
2 + yh

2)2

Improvements to the bipartite method such as the one suggested in [5] might be adapted
to functions of 2 variables, but this is outside the scope of this paper.

3.3. Third approach: hybrid method

The scaling factor K is an approximation to 1/d with p bits of relative accuracy. A
simple solution consists in actually computing this scaling factor with a few steps of our
complex recurrence (using a small radix, typically 2 or 4). As soon as we have obtained
a sufficiently accurate approximation (this will require p + 1 radix-2 or (p + 1)/2 radix-4
iterations), we can start the higher-radix iterations.

4. Rounding

One of the major advantages of a digit-recurrence division algorithm over techniques
(such as Goldschmidt or Newton-Raphson methods) is that getting a correctly rounded
result is straightforward. We now show that this remains true with our complex digit-
recurrence algorithm. Note that the algorithm, by construction, always returns digits of a
“valid” radix-r representation of the quotient (which means that whatever the number of
steps we will continue to execute – i.e., whatever the final accuracy will be –), the digits
that have already been output will never change. Thus, if we stop the computation after
having computed digit qj, then the maximum possible error on the real as well as on the
imaginary part is obtained if all subsequent digits have the maximum possible value. Hence
this maximum possible error is

∞∑
�=j+1

a × r−� =
ar−j

r − 1
.

If the digit-set S is not over-redundant (that is, if a ≤ r − 1) then this is less than or
equal to the weight of the last computed digit qj. Therefore our algorithm always provides
faithfully rounded real and imaginary parts of the quotient.

Now, let us turn to the problem of getting correctly rounded quotients. Let us first
neglect the prescaling step, and assume we stop the iterations at step j, where j log2 r is
greater than or equal to the number of bits of the target format.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

From
w[j]
y

= rj
[
w[0]
y

−
(
q1r

−1 + q2r
−2 + · · · + qjr

−j
)]

we deduce that the sign of the real part (imaginary part) of q− q1r
−1 + q2r

−2 + · · · + qjr
−j

is the sign of the real part (imaginary part) of w[j]/y. Since y is very close to 1, in most
cases, that sign will be the sign of the real part (imaginary part) of w[j], but this will not
always be the case. More precisely, from ||1 − y||∞ < 2−p we deduce |1 − y| <

√
2 × 2−p

and |y| ≥ 1 − 2−p, hence, ∣∣∣∣1 − y

y

∣∣∣∣ ≤ 2−p
√

2
1 − 2−p

,

hence, ∣∣∣∣
∣∣∣∣1 − 1

y

∣∣∣∣
∣∣∣∣∞ ≤ 2−p

√
2

1 − 2−p
.

Define

ρp =
2−p

√
2

1 − 2−p
.

From
||w[j]||∞ < Ω,

and
�(w[j]/y) = �(w[j])�(1/y) −�(w[j])�(1/y)

and
�(w[j]/y) = �(w[j])�(1/y) + �(w[j])�(1/y),

we deduce

if �(w[j]) ≥ 0 then �
(

w[j]
y

)
≥ �(w[j])(1 − ρp) − Ωρp

if �(w[j]) < 0 then �
(

w[j]
y

)
≤ �(w[j])(1 − ρp) + Ωρp

if �(w[j]) ≥ 0 then �
(

w[j]
y

)
≥ �(w[j])(1 − ρp) − Ωρp

if �(w[j]) < 0 then �
(

w[j]
y

)
≤ �(w[j])(1 − ρp) + Ωρp

Hence, if

�(w[j]) ≥ Ωρp

1 − ρp

then �(w[j]/y) ≥ 0, so that �(q) ≥ qR1 r−1 + qR2 r−2 + · · · + qRj r−j, and rounding of the real
part of the quotient is done exactly as with conventional digit-recurrence division. If

�(w[j]) ≤ − Ωρp

1 − ρp

then �(q) ≤ qR1 r−1 + qR2 r−2 + · · · + qRj r−j. The same properties hold for the imaginary
part if

�(w[j]) ≥ Ωρp

1 − ρp

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

or
�(w[j]) ≤ − Ωρp

1 − ρp

If these conditions are not met, then additional iterations may need to be performed
to get a correctly rounded result. In all practical cases, Ωρp

1−ρp
is very small, so that, if we

assume a uniform distribution of the real and imaginary parts of the residuals between −Ω
and Ω, the probability that additional iterations are necessary is very small. For instance,
if r = 8 and a = 4, we find

Ωρp

1 − ρp
≈ 0.003126093949 < 2−8

This means that for this case, each time the final real and imaginary parts of the residual
are more than 2−8 we are able to correctly round the quotient.

It is important to notice that this possible rounding difficulty, in some extreme cases, is
not due to our algorithm. Indeed, it is an intrinsic problem of complex division. Consider,
for instance, the following problem. We wish to evaluate

1
1 + 2−60i

.

The exact result is

1329227995784915872903807060280344576
1329227995784915872903807060280344577

+
1152921504606846976

1329227995784915872903807060280344577
i

whose decimal representation is

0.999999999999999999999999999999999999247 · · · + 8.673617379 · · · × 10−19 i.

It thus requires to approximate the real part of this value with a precision corresponding to
roughly 38 decimal places to be able to safely decide whether this real part is less or more
than 1. By replacing the term 2−60 by an even smaller term, one can obtain arbitrarily
difficult cases.

Now, to take into account the prescaling, it is necessary that the scaling factor K is
exactly representable with a (small) finite number of bits, so that no rounding error occurs
during the prescaling step. This is done by adequately rounding the real and imaginary
parts of the “theoretical” value of K.

5. Comparison of recurrence implementation with other methods

Implementing complex division by using the basic formula (1) requires two real divisions,
two squarings and four multiplications. As indicated earlier, such a formula is not suitable
for implementation.

A block diagram of implementing one of the two recurrences (10) is shown in Figure 1
suitable for radix-2 or radix-4. A similar scheme implements imaginary part of the residual
recurrence. The selection of the real and imaginary parts of qj+1and the real and imaginary

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

parts of w[j + 1] can be computed in parallel. Compared to a conventional radix-4 SRT
recurrence (3), a [4:2] carry-save adder is used instead of a [3:2] adder. Moreover, another
multiple generator is needed. Hence, the delay of our division algorithm will be slightly
more than the delay of a conventional radix-4 SRT division, and certainly less than an
implementation based on (1). The recurrence implementation can be pipelined to allow
sharing in computing complex recurrence.

ws REGwc REG M-GEN M-GEN

[4:2] ADDER R&R

Re(w[j+1])

Re(rw[j])

Re(w[j+1])

Re(y) Im(y)

qR
j+1

qR
j+1

qI
j+1

(Round &
Recode)

Figure 1. Implementation of recurrence for real part (Similarly for imaginary part). This
corresponds to radix-2 or radix-4 schemes. For higher radices, multiple generators (M-
GEN) are replaced by digit-vector multipliers producing redundant products, and the [4:2]
adder is replaced by a [6:2] adder.

Compared to Smith’s iteration (2) which require significantly more arithmetic operations
than (1), we conclude that our algorithm is much faster. Smith’s iteration requires 4
conventional divisions and 3 multiplications. A rough estimation is that our algorithm will
be around 4 times faster.

The complex division in [12] uses a radix-2 on-line algorithm. It implements the selection
function using selection constants and consequently, unlike the proposed algorithm which
uses rounding, it is restricted to small radices. In the case of radix 2, the critical path in
the recurrence and its cost are similar in both schemes.

Prescaling requires a table lookup as discussed earlier and two complex (rectangular)
multiplications to perform scaling of the operands. As described in the literature, these
can be merged with the recurrence implementation.

6. Summary

We have introduced a new algorithm for complex division. It is derived from the con-
ventional (real) digit-recurrence algorithm and uses prescaling of the operands to allow
quotient-digit selection by rounding. The recurrences are suitable for higher radix. The
prescaling is more complicated than in the real case and the table size is the limiting factor

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

for the choice of radix. The cost of implementing complex recurrence in radix-r is roughly
twice the cost of a radix-r recurrence in the case of reals. The proposed algorithm is faster
than the other known algorithms for complex division and it is suitable for hardware im-
plementation. Moreover, it always allows easy faithful rounding while correct rounding can
be performed at a reasonable cost.

References

[1] D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givens rotations reliably and
efficiently. ACM Transactions on Mathematical Software, 28(2):206–238, 2002.

[2] N. Burgess . Prescaled maximally-redundant radix-4 SRT divider. Electronics Letters, 30(23):1926–8,
1994.

[3] D. Das Sarma and D. W. Matula. Faithful bipartite ROM reciprocal tables. In Proceedings of the 12th
IEEE Symposium on Computer Arithmetic, pages 17–28, 1995.

[4] S.R. Dicker et al. Cbm observations with the Jodrell Bank - iac interferometer at 33 Ghz. Mon. Not.
R. Astron. Soc., 00:1–12, 2000.

[5] F. de Dinechin and A. Tisserand. Some improvements on multipartite table methods. In Proceedings
of the 15th IEEE Symposium on Computer Arithmetic, pages 128–135, 2001.

[6] M. D. Ercegovac. A general hardware-oriented method for evaluation of functions and computations
in a digital computer. IEEE Transactions on Computers, C-26(7):667–680, 1977.

[7] M. D. Ercegovac. A higher radix division with simple selection of quotient digits. In Proceedings of
the 6th IEEE Symposium on Computer Arithmetic, pages 94–98, 1983.

[8] M. D. Ercegovac and Lang, T. Simple radix-4 division with operands scaling. IEEE Transactions on
Computers, C-39(9):1204–1207, 1990.

[9] M. D. Ercegovac, Lang, T., and Montuschi, P. Very-high radix division with prescaling and rounding.
IEEE Transactions on Computers, 43(8):909–918, 1994.

[10] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms and Imple-
mentations. Kluwer Academic Publishers, Boston, 1994.

[11] X. Li et al. Design, implementation and testing of extended and mixed precision BLAS. ACM
Transactions on Mathematical Software, 28(2):152–205, 2002.

[12] R.D. Mcilhenny. Complex Number On-line Arithmetic for Reconfigurable Hardware: Algorithms, Im-
plementations, and Applications. PhD thesis, University of California at Los Angeles, 2002.

[13] M.J. Schulte and J.E. Stine. Approximating elementary functions with symmetric bipartite tables.
IEEE Transactions on Computers, 48(8):842–847, Aug. 1999.

[14] R.L. Smith. Algorithm 116: Complex division. Communications of the ACM, 5(8):435, 1962.

[15] H. Srinivas and Parhi, K. A fast radix-4 division algorithm and its architecture. IEEE Transactions
on Computers, 44(6):826–831, 1995.

[16] G.W. Stewart. A note on complex division. ACM Transactions on Mathematical Software, 11(3):238–
241, 1985.

[17] A. Svoboda, A. An algorithm for division. Information Processing Machines, (Stroje na Zpracovani
Informaci), 9:25–34, 1963.

[18] C. Tung. A division algorithm for signed-digit arithmetic. IEEE Transactions on Computers, C-
17(9):887–889, 1963.

[19] G. Vandersteen et al. Comparison of arithmetic functions with respect to Boolean circuits. In 58th
ARFTG Conference Digest RF Measurements for a Wireless World, 2001.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

