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Abstract— This paper presents a simple hardware architecture
for computing the seed values for reciprocal and square root
reciprocal. These seeds are used in the initialization of floating-
point division and square root software iterations. The proposed
solution is based on polynomial approximation with specific
coefficients and a table lookup.

INTRODUCTION

In general-purpose processors, floating-point division and
square root are often performed using iterative methods such
as the Newton-Raphson algorithm [1], [2], [3]. In order to
reduce the number of iterations, dedicated hardware tables
are frequently used to store medium accuracy initial values,
or seeds, for the iterations. In this work, we focus on the
computation of such seeds in hardware.

The proposed solution is based on a polynomial approx-
imation with specific coefficients and a table lookup. The
corresponding architecture is very simple and leads to small
and fast circuits. There are several parameters in seed hardware
operator: the approximated function (1/x or 1/

√
x), the argu-

ment width, internal accuracy requirements and optimization
parameters. We have developed a VHDL code generator,
called seedgen, to support all the possible parameters of
our method. This program generates an optimized and synthe-
sizable VHDL description of the seed operator based on our
method. Compared to direct lookup table implementation on
FPGAs (with content optimization using the synthesis tools),
the proposed method leads to 2.5 reduction factor in size and
40% speed improvement.

I. BACKGROUND

A. Newton-Raphson Iteration

The Newton-Raphson algorithm evaluates a function by
iteratively improving an initial approximation. This algorithm
is based on a general method to obtain a single zero α of

function f (i.e., f(α) = 0 and f ′(α) �= 0). If x0 is close
enough to α, the following iteration converges towards α:

xi+1 = xi − f(xi)
f ′(xi)

(1)

where f ′(x) denotes the derivate of f with respect to x. The
convergence of the method is quadratic, which means that
the number of bits of accuracy roughly doubles after each
iteration.

In order to speed up the overall computation, the first
iterations that only provide a very small number of bits of
accuracy should be avoided. For instance, if one uses an
initial value x0 with only one bit of accuracy, the computation
requires at least 5 iterations (1 → 2 → 4 → 8 → 16 → 32)
for 32-bit values. Using an initial seed with 8 bits of accuracy,
it only requires 2 iterations (8 → 16 → 32).

In general, by using an initial approximation with a relative
error not greater than 2−n, the number of iterations to obtain
the result with a relative error not greater than 2−m is

K =
⌈
log2

(m

n

)⌉
(2)

Therefore, the choice of the initial approximation is critical
for the speed of the algorithm. On the other hand, a seed with a
large number of bits is costly to obtain. Consequently, finding a
simple method of obtaining the seed value is of great practical
interest in implementing the Newton-Raphson method. This
speed-up method also applies in the Goldschmidt iteration for
division and square root [2].

Direct lookup table implementations of such seeds are possi-
ble for small accuracy. For instance, the IBM 360/91 processor
used generated 10-bit seed from a table (implemented as a
ROM) addressed by 7 bits of the normalized divisor [4].

For larger accuracies, the bipartite method is more and more
used [5]. For instance, in the AMD-K7 processor an optimized
and simplified reciprocal and square root reciprocal estimate
interpolation unit is implemented [6]. The reciprocal estimate
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provides at least 14.94 bits of accuracy while the square root
reciprocal is accurate to at least 15.84 bits. This unit requires
69Kb of ROM and 3 cycles of latency.

B. Division Iteration

For the computation of the quotient q = a/d, one can use
the following 2-step method:

1) Evaluate t = 1/d using the Newton-Raphson iteration
based on the function f(x) = 1

x −d. The corresponding
iteration is:

xi+1 = xi

(
2 − dx

2

i

)
(3)

2) Compute the quotient using q = t × a.
Each iteration requires two multiplications and one addition.

The second step requires an additional full-length multiplica-
tion.

A table is often used to get the initial value x0 based on a
few most significant bits of d. As an example, on the Itanium
processor, the frcpa instruction gives a seed for reciprocal
(1/d) with an accuracy of 8.886 bits (see [3] for details).

C. Square Root Iteration

Directly evaluating
√

c using the Newton-Raphson algo-
rithm with the function f(x) = x

2 − c is not a good idea. The

corresponding iteration is xi+1 = 1

2

(
xi + c

xi

)
which requires

a division at each iteration. A better solution is based on the
following 2-step method:

1) Newton-Raphson iteration based on the function f(x) =
1

x2 −c which has a zero equal to 1√
c
. The corresponding

iteration is:
xi+1 =

xi

2

(
3 − cx2

i

)
(4)

2) Multiplication by c to get
√

c.
Each iteration requires three multiplications and one addi-

tion.
In this case also, a table is often used to get the initial value

x0 based on a few most significant bits of c. As an example, on
the Itanium processor, the frsqrta instruction gives a seed
for 1/

√
c with an accuracy of 8.831 bits (see [3] for details).

D. Minimax Polynomial Approximation

The initial approximations used in the following are based
on the minimax polynomial approximation as a starting point.
The degree-d minimax polynomial approximation to f on [a, b]
is the polynomial P ∗ that satisfies:

||f − P ∗||∞ = min
P∈Pd

||f − P ||∞ (5)

where Pd is the set of polynomials with real coefficients and
degree at most d and

||f − P ||∞ = max
a≤x≤b

|f(x) − P (x)|. (6)

Minimax approximations can be computed using a well-
known algorithm due to Remes [7] (available in the Maple
numapprox package, for instance).

II. RECIPROCAL SEED

The degree-1 minimax polynomial of f(x) = 1/x with x ∈
[1, 2[ (the range of the mantissa of a floating-point number)
computed using Maple is

1.4571 − 0.5x (7)

This polynomial provides an approximation with 4.5 bits of
accuracy.

In this work, we use the minimax polynomial as a starting
point because it is convenient and well implemented (e.g.,
Maple minimax function). But for degree-1 polynomial ap-
proximation, another method is possible to get the polynomial
coefficients exactly, for details see [2, page 373]. Using this
method one can get the polynomial (3/4+

√
2/2)−x/2 which

is theoretical polynomial that correspond to the minimax
polynomial (7). Theoretically, this is the same polynomial,
the slight difference in the constant coefficient is due to
the rounding error during the Remez algorithm numerical
execution. So, the two polynomials can be used as a starting
point for our method since they provide similar accuracy and
coefficients.

In the polynomial (7), the degree-1 coefficient is a power
of 2. The constant coefficient is close to the value 1.5. So
the following “close” polynomial can be used to approximate
1/x:

p(x) =
3
2
− x

2
(8)

This modified polynomial p approximates 1/x on [1, 2[ with
3.5 bits of accuracy. We will use this very simple polynomial
as a starting point to compute the seed value for the reciprocal
function.

The evaluation cost of this polynomial is very small in
practice. It is illustrated in Figure 1. Using 2’s complement
the value −x/2 is obtained by complementing all bits of x,
shifted one position to the right, and adding a 1 in the LSB
position. As x ∈ [1, 2[, the first bit of x is 1 (at position
0). If the binary representation of x is (1.x1x2x3 . . . xn)2,
then the binary expansion of −x/2 is (1.0x1x2x3 . . . xn)2
plus 1 LSB. So the computation of 3/2− x/2 only costs one
carry propagation corresponding to the additional 1 LSB. This
kind of a very simple polynomial approximation was proposed
in [8].
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100 ...x1 2x 3x

x =

10 1 0 0 0 03/2 = 0

......x 2x 3x1100

...11 ...x 2x 3x10

xn

x

x

x

n

n

n

+1LSB

+1LSB

0

x/2 =

−x/2 =

3/2 − x/2 =

Fig. 1. Efficient evaluation of the polynomial p(x) = 3
2
− x

2
.

In order to improve the result of this approximation (p only
provides 3.5 bits of accuracy), we add a correcting term t(x)
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to the result of this modified polynomial. Our method is based
on this very simple polynomial approximation (8) and a table
to store the correcting terms. So the value of the seed is:

s(x) = p(x) + t(x) =
3
2
− x

2
+ t(x) (9)

where the correcting term t(x) is the difference between the
actual function 1/x and the result of p(x) rounded to the
output width:

t(x) =
1
x
−

(3
2
− x

2

)
(10)

The corresponding architecture is presented in Figure 3.
The table used to the correcting terms has n-bit addresses

(the bits of the operand x) and w-bit words. The final result
(seed) s(x) has n + g bits where g is the number of guard
bits (g > 1 for the reciprocal function). The alignment of the
n bits of p and the w bits of t is illustrated in Figure 2 using
an example.

n+g=12

g=4p(x)

t(x) w=9

n=8

11 01234567810 9

Fig. 2. Alignment of p and t in the final result. For n = 8 and g = 4 the
generator gives w = 9.

The main hardware cost of our solution is one (2n × w)-
bit table and one (n + g)-bit addition with input carry.
Optimizations at circuit level are presented in Section IV.

In addition to the VHDL description of the architecture,
seedgen generates a plot of the approximation results. The
corresponding plot is presented Figure 4 in the case n = 3
bits and g = 1 bit for the reciprocal function. The generated
plot is based on a gnuplot script [9].

not

x

s(x)

clk

n w

n

1

table

n+g

t(x)
p(x)

Fig. 3. Architecture of the seed generator.

The accuracy (corresponding to the maximum error) pro-
vided by our architecture is n+g+1 bits for the reciprocal. The
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Fig. 4. Approximation for f = 1/x, n = 3 and g = 1.

choice of the correcting terms t(x) can be done to ensure the
seed value s(x) is within a 1/2ulp distance to the theoretical
value of 1/x. The plot presented in Figure 5 illustrates the
approximation error corresponding to the case n = 3 bits and
g = 1 bit. This plot is also generated using seedgen.
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Fig. 5. Approximation error for f = 1/x, n = 3 and g = 1.

The polynomial p overestimates the actual value of f (see
Figure 4 for an illustration). Then the sign of the difference
between p and f is always greater than or equal to zero. At
the implementation level, the correction can be implemented
using two solutions:

• store positive offsets in the table t and perform a subtrac-
tion p − t;

• store negative offsets in the table t and perform an
addition p + t.

The best solution depends on the basic cells available at low
level.

Figures 3 and 2 show that the alignment of p and t operands
allow to improve the adder architecture used to perform p+ t.
Indeed, in some cases one can use incrementer cells instead of
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adder cells for the w − g LSBs. In practice, this optimization
is provided at the synthesis level by most of standard tools.

III. SQUARE ROOT RECIPROCAL SEED

A similar solution is proposed for the square root reciprocal.
The degree-1 minimax polynomial of f(x) = 1/

√
x with x ∈

[1, 2[, and 5.7 bits of accuracy is

1.2739 − 0.292x (11)

This polynomial is close to:

p(x) =
5
4
− x

4
(12)

which gives an approximation to 1/
√

x on [1, 2[ with 4 bits of
accuracy. The evaluation cost of this polynomial is also very
small in practice as illustrated on Figure 6.

Using 2’s complement the value −x/4 is obtained by
complementing all bits of x shifted 2 bits to the right and
add 1 LSB. As x ∈ [1, 2[, the binary expansion of −x/4
is (1.10x1x2x3 . . . xn)2 plus 1 LSB. The computation of
5/4−x/4 only costs one carry propagation corresponding the
additional 1 LSB. So the same kind of architecture presented
in Figure 3 can be used in case of the square root reciprocal.
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Fig. 6. Efficient evaluation of the polynomial p(x) = 5
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4
.

As the x is shifted two positions to the right the number of
guard bits is g ≥ 2 in the square root reciprocal case. Now
the generator has to compute the correct constant bits of −x/4
and the correcting terms1 t(x) with

t(x) =
1√
x
−

(5
4
− x

4

)
(13)

The accuracy (corresponding to the maximum error) pro-
vided by our architecture is also n + g + 1 bits (1/2 LSB) for
the square root reciprocal.

IV. VHDL GENERATOR

We have developed a program that generates optimized and
synthesizable VHDL descriptions of seed architectures using
our method. This program, called seedgen, is a C program in
text mode and distributed under the GPL license. It is available
on the Web [10]. All the seedgen parameters are given on
the command line. Table I, given in the last page of the paper,
reports the main parameters.

1The correcting terms t here are specific to the square root reciprocal
functions.

V. ACCURACY RESULTS

Our solution provides seeds (for reciprocal and square
root reciprocal) with an accuracy of at most 1/2 LSB with
words on n + g bits. This corresponds to a maximum error
of at most 2−(n+g+1). In order to verify this accuracy, we
present in Table II, given in the last page of the paper, the
minimum accuracy (corresponding to the maximum error)
and the average accuracy (corresponding to the average error)
reported by the generator (using an exhaustive check).

A. Comparison to Direct Lookup Table

In order to compare our method with standard solutions, we
implemented seeds based on direct lookup table on FPGAs.
The generated direct lookup table architecture is a ROM
description with n-bit addresses and n + g + 1-bit words. The
stored values provide 1/2 LSB accuracy for all inputs as in
operators generated by seedgen. When this ROM description
is implemented on FPGAs, the synthesis tool performs a lot
of logical optimization based on the content of the ROM. This
leads to significantly smaller and faster architecture than using
unoptimized table with 2n × (n + g + 1) bits.

Table III presents the comparison results for the reciprocal
on the Spartan3 FPGA and ISE tools. In this table, 3 solutions
are compared. The first one (direct) is the ROM description
without logical optimization (only area is reported). The sec-
ond one (optimized) is the ROM description with the logical
optimizations performed by the synthesis tool. A reduction
factor less than 2 is obtained compared to the direct ROM
description. The last solution is the results from seedgen.
Our results show a reduction factor up to 2.5 and around 40%
speed improvement compared to the optimized solution.

direct optimized seedgen
ROM area area period area period

n g size [#CLB] [#CLB] [ns] [#CLB] [ns]
7 2 1280 80 57 11.7 33 9.0

8 2 2816 176 109 12.7 48 9.2

9 2 6144 384 227 14.7 89 10.6

10 2 13312 832 448 16.4 178 11.9

TABLE III

COMPARISON RESULTS BETWEEN DIRECT LOOKUP TABLE

IMPLEMENTATION (WITHOUT AND WITHOUT LOGICAL OPTIMIZATION)

AND OUR METHOD ON SPARTAN3 FPGA.

CONCLUSION

A method for the initial approximation to reciprocal and
square root reciprocal functions in hardware was proposed.
These initial approximations or seeds are used in the ini-
tialization of floating-point division and square root software
iterations in order to speedup the computation.

The proposed solution is based on polynomial approxi-
mation with specific coefficients and a table lookup. The
obtained architectures lead to small and fast circuits. The
method has been implemented in C program distributed under
GPL license. This program, called seedgen, automatically
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value

parameter meaning possible default

-f approximated function (f )

{
r for 1

x

s for 1√
x

–

-n argument size (n) 2 ≤ n ≤ 16 –

-g number of guard bits (g)

{
1 ≤ g ≤ 4 for 1

x

2 ≤ g ≤ 4 for 1√
x

{
g = 1 for 1

x

g = 2 for 1√
x

-o optimization n for negative offset no optimization

-r register

⎧⎪⎨
⎪⎩

o output only

i input only

b both input and output

no register

TABLE I

MAIN PARAMETERS SUPPORTED BY seedgen.

f ↓ g ↓ n → 4 5 6 7 8 9 10 11 12
1

x 1 min. 6.04 7.02 8.01 9.00 10.00 11.00 12.00 13.00 14.00
avg. 6.90 7.91 9.10 10.07 11.02 11.99 12.97 14.00 14.99

2 min. 7.06 8.07 9.01 10.01 11.00 12.00 13.00 14.00 15.00
avg. 8.16 9.24 10.05 11.10 12.02 12.98 14.00 15.01 16.01

3 min. 8.07 9.03 10.01 11.00 12.00 13.00 14.00 15.00 16.00
avg. 9.16 10.11 11.14 12.04 12.93 13.99 15.02 15.99 17.01

1√
x

2 min. 7.11 8.03 9.05 10.03 11.00 12.00 13.00 14.00 15.00

avg. 8.02 8.87 10.15 10.98 12.00 12.98 13.98 15.02 16.02
3 min. 8.03 9.05 10.05 11.01 12.00 13.00 14.00 15.00 16.00

avg. 8.76 10.25 11.05 11.97 12.97 13.97 15.01 16.02 17.01
4 min. 9.05 10.08 11.03 12.00 13.00 14.00 15.00 16.00 17.00

avg. 10.27 11.16 11.95 12.87 13.97 15.00 15.99 17.00 17.99

TABLE II

ERROR MEASUREMENTS (MINIMAL AND AVERAGE ACCURACY) IN NUMBER OF CORRECT BITS.

generates optimized and synthesizable VHDL operators for
various parameters and hardware constraints.

Compared to direct lookup table implementation on FPGAs
(with content optimization using the synthesis tools), the
proposed method leads to 2.5 reduction factor in size and 40%
speed improvement.
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