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Heat fluctuations for harmonic oscillators

S. Joubaud, N. B. Garnier, S. Ciliberto

Laboratoire de Physique de l’ENS Lyon, CNRS UMR 5672, 46, Allée d’Italie, 69364

Lyon CEDEX 07, France

PACS. 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion.
PACS. 05.70.-a – Thermodynamics.

Abstract. – Heat fluctuations of a harmonic oscillator in contact with a thermostat and
driven out of equilibrium by an external deterministic force are studied experimentally and
theoretically within the context of Fluctuation Theorems. We consider the case of a periodic
forcing of the oscillator, and we calculate the analytic probability density function of heat
fluctuations. The limit of large time is discussed and we show that heat fluctuations satisfy the
conventional fluctuation theorem, even if a different fluctuation relation exists for this quantity.
Experimental results are also given for a transient state.

Out-of-equilibrium fluctuations have recently received a lot of attention, especially in the
context of nanosystems and biomolecules where fluctuations are large. In the last decade,
Fluctuation Theorems (FTs) appeared in nonequilibrium physics. They quantify the asym-
metry of fluctuations of entropy production for a large class of systems, possibly far from
equilibrium. These theorems were first demonstrated in deterministic dynamics of many de-
grees of freedom [1,2] and later extended to stochastic systems [3–6]. The FT states that the
probability P (σ = a) of observing an entropy production rate σ, measured over a time τ , with
a value a, satisfies

P (σ = a)

P (σ = −a)
→ exp(aτ) for large τ and any value a (1)

There are two classes of FTs. The Stationary State Fluctuation Theorem (SSFT) considers
a nonequilibrium stationary state. SSFT holds in the limit of large time τ . The Transient

Fluctuation Theorem (TFT) describes transient nonequilibrium states where τ measures the
time interval since the system left its equilibrium state. Contrary to SSFT, the TFT holds
for all times, i.e., equation (1) is an equality even for arbitrarily small values of τ .

In this letter, we consider the heat Qτ dissipated on a time interval τ in a thermostated
system at temperature T rather than the entropy production. We study the fluctuations
of the heat dissipated by a harmonic oscillator in contact with the thermostat and driven
out of equilibrium by an external force. Experimental tests of FTs are rare. Some of them
are performed in dynamical systems [8], in which the interpretation of the results is very
difficult. In stochastic systems, a laboratory experiment was carried out by Wang et al using
a Brownian particle in a moving optical trap [9]. Work fluctuations were shown to obey the
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predictions of ref. [5]. Work and heat fluctuations were also studied in an electrical circuit by
Garnier and Ciliberto [10] ; the theoretical predictions for both heat and work fluctuations
were satisfied [5, 6]. These two systems are described by a first order Langevin equation.
Systems described by a second order Langevin equation have been studied [3], and tested
experimentally for work fluctuations Wτ [14]; as far as we know, no analytical results for the
probability density functions (PDFs) of heat fluctuations Qτ are available in this case. In
ref. [5], van Zon and Cohen have calculated the Fourier transform of the PDF of Qτ for a first
order Langevin dynamics but no exact expression of the PDF itself is known.

In the following, we consider first a stationary state obtained by driving the system period-
ically in time. We calculate exactly the probability density function of Qτ . We then compare
our finding with new experimental results, and show that SSFT holds, and we discuss the
large time limit. Finally experimental results of a TFT for the heat are reported.

To study FT, we measure the out-of-equilibrium fluctuations of a harmonic oscillator
whose damping is due to the viscosity of a surrounding fluid, acting as a thermal bath. The
oscillator is a torsion pendulum composed of a brass wire and a glass mirror glued in the
middle of this wire. The elastic torsional stiffness of the wire is C = 4.7 × 10−4 Nmrad−1.
It is enclosed in a cell filled by a water-glycerol solution at 60% concentration. The system is
a harmonic oscillator with resonant frequency fo =

√

C/Ieff/(2π) = 217 Hz and a relaxation
time τα = 2Ieff/ν = 9.5 ms. Ieff is the total moment of inertia of the displaced masses and ν
is the oscillator viscous damping. The angular displacement of the pendulum θ is measured
by a differential interferometer [12, 13]. The measurement noise is two orders of magnitude
smaller than thermal fluctuations of the pendulum. θ(t) is acquired with a resolution of 24
bits at a sampling rate of 8192 Hz, which is about 40 times fo. The calibration accuracy of
the apparatus, tested using the Fluctuation Dissipation Theorem, is better than 3% (see [13]).
We drive the system out-of-equilibrium by forcing the system with an external torque M by
means of a small electric current J flowing in a coil glued behind the mirror. The coil is inside
a static magnetic field, hence M ∝ J . More details on the set-up can be found in ref. [12,13].
The system is very well described by a second order Langevin equation:

Ieff
d2θ

dt2
+ ν

dθ

dt
+ C θ = M +

√

2kBTν η, (2)

with η the noise, delta-correlated in time, β = (kBT )−1 with kB Boltzmann’s constant and
T the temperature of the system. At equilibrium (M = 0 pN.m), the PDF of the thermal
fluctuations δθ is Gaussian with variance kBT/C. We apply two kinds of forcing. First, we
study a periodic forcing : M(t) = Mo sin(ωdt) with Mo = 0.78 pN.m and ωd/2π = 64 Hz. We
then analyze a linear forcing M(t) = Mot/τr with Mo = 6.2 pN.m and τr = 0.01 s = 1.07 τα.

The change in internal energy ∆Uτ of the oscillator over a time τ , starting at a time ti, is
written as:

∆Uτ = U(ti + τ) − U(ti) = Qτ + Wτ (3)

which is the first law of thermodynamics. Wτ is the work done on the system over a time τ :

Wτ =
1

kB T

∫ ti+τ

ti

M(t′)
dθ

dt
(t′)dt′ (4)

and Qτ is the heat given to the system. Equivalently, (−Qτ ) is the heat dissipated by the
system.

For a harmonic oscillator described by a second order Langevin equation, the internal
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energy has two contributions : the kinetic and potential energies:

U(t) =
1

kB T

[

1

2
Ieff

[

dθ(t)

dt

]2

+
1

2
Cθ(t)2

]

(5)

Multiplying eq. (2) by dθ
dt and integrating between ti and ti + τ , we obtain exactly the first

law of thermodynamics eq. (3) and have the following expression for the heat:

Qτ = ∆Uτ − Wτ = −
1

kB T

∫ ti+τ

ti

ν

[

dθ

dt
(t′)

]2

dt′ +
1

kB T

∫ ti+τ

ti

η(t′)
dθ

dt
(t′)dt′ . (6)

The first term corresponds to the viscous dissipation and is always positive, whereas the second
term can be interpreted as the work of the thermal noise which have a fluctuating sign.

We rescale the work Wτ (the heat Qτ ) by the average work 〈Wτ 〉 (the average heat 〈Qτ 〉)
and define: wτ = Wτ

〈Wτ 〉
(qτ = Qτ

〈Qτ 〉
). Averages are obtained experimentally as time-averages,

and they are proportional to τ on the stationary state under consideration.
We consider first the periodic forcing. In this case, we choose τ as a multiple of the period

of the driving (τ = 2nπ/ωd with n integer). The starting phase tiωd is averaged over all
possible ti to increase statistics. The PDFs of wτ , ∆Uτ and qτ are plotted in Fig. 1 for
different values of n. The average of ∆Uτ is clearly zero because the time τ is a multiple of
the period of the forcing. The PDFs of the work (fig. 1a) are Gaussian for any n whereas the
PDFs of heat fluctuations qτ have exponential tails (fig. 1c). These exponential PDFs can be
understood noticing that, from eq. (6), −Qτ = Wτ − ∆Uτ and that ∆Uτ has an exponential
PDF independent of n (fig. 1b). Therefore, on a first approximation, the PDF of qτ is the
convolution between an exponential and a Gaussian.

To quantify the symmetry of the PDF around the origin, we define the function S as:

S(eτ ) ≡
1

〈Eτ 〉
ln

[

P (eτ )

P (−eτ )

]

(7)

where eτ stands for either wτ or qτ and Eτ stands for either Wτ or Qτ . The question we ask
is whether:

lim
τ→∞

S(eτ ) = eτ (8)

as required by SSFT. S(qτ ) is plotted in Fig. 1d for different values of n ; three regions appear:
(I) For large fluctuations qτ , S(qτ ) equals 2. When τ tends to infinity, this region spans

from qτ = 3 to infinity.
(II) For small fluctuations qτ , S(qτ ) is a linear function of qτ . We then define Σq(n) as the

slope of the function S(qτ ), i.e. S(qτ ) = Σq(n) qτ . This slope is plotted in Fig. 1e where we
see that it tends to 1 when τ is increased. So, SSFT holds in this region II which spans from
qτ = 0 up to qτ = 1 for large τ .

(III) A smooth connection between the two behaviors.
The PDF of the work being Gaussian, the functions S(wτ ) are proportional to wτ for any τ ,

i.e. S(wτ ) = Σw(n)wτ (ref. [14]). Σw(n) is plotted in Fig. 1e and we observe that it matches
experimentally Σq(n), for all values of n. So the finite time corrections to the FT for the heat
are the same than the ones of FT for work [14] : Σw(n) = Σq(n) = 1+K/n+1/nO

(

e−τn/τα

)

,
where K is a constant.

We now give an analytical expression of the PDF of heat Qτ . In order to do this, we
write θ = θ̄ + δθ where θ̄ is the mean response of the system to the external work and δθ the
thermal fluctuations. We suppose that fluctuations at M(t) 6= 0 are those of equilibrium, i.e.



4 EUROPHYSICS LETTERS

Fig. 1 – Sinusoidal forcing. a) PDFs of wτ . b) PDFs of ∆Uτ . c) PDFs of qτ . d) Functions S(qτ ).
In all plots, the integration time τ is a multiple of the period of forcing, τ = 2nπ/ωd, with n = 7
(◦), n = 15 (�), n = 25 (⋄) and n = 50 (×). Continuous lines are theoretical predictions with no
adjustable parameter. e) The slope Σq(n) of S(qτ ) for qτ < 1, plotted as a function of n (◦). The
slope Σw(n) of S(wτ ) plotted as a function of n(�). Continuous line is theoretical prediction.

that the external driving does not perturb the equilibrium PDF. This hypothesis is supported
experimentally as shown in ref. [13] and detailed in [14]. Times τ under consideration are taken
larger than τα = 9, 5 ms, so that exponential corrections to the autocorrelation functions,
which are scaling like exp(−τ/τα), can be neglected. Experimentally, τ/τα = 1.64 n, so this
is correct as soon as n is larger than 3 or 4. Within this assumption, θ(ti + τ) and θ(ti)
are independent, and so are dθ

dt (ti + τ) and dθ
dt (ti). Eq. (2) is second order in time, so θ(t)

and dθ
dt (t) are independent at any given time t. Just like in our experiment, we choose the

integration time τ to be a multiple of the period of the forcing, so 〈∆Uτ 〉 = 0 and therefore
〈Wτ 〉 = −〈Qτ 〉. Within this framework, we find that the PDF of ∆Uτ is exponential:

P (∆Uτ ) =
1

2
exp(−|∆Uτ |) . (9)

It is independent of τ because ∆Uτ depends only on θ and dθ
dt at times ti and ti + τ which

are uncorrelated. This expression is in perfect agreement with the experimental PDFs for
all times (see Fig. 1b). Experimentally, work fluctuations have a Gaussian distribution so it
is fully characterized by its mean 〈Wτ 〉 and its variance σ2

W . In a Gaussian case, the FTs
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take a simple form S(wτ ) = 2〈Wτ 〉
σ2

W

wτ = Σw(n)wτ . We have already computed the analytic

expression of Σw(n) [14] and this gives a relation between the variance and the mean value of
Wτ : σ2

W = 2〈Wτ 〉 + O( 1
τ ) and so σ2

W = 2|〈Qτ 〉| + O( 1
τ ).

To obtain the PDF P (Qτ ) of the heat, we define its Fourier transform (characteristic
function) as

P̂τ (s) ≡

∫ ∞

−∞

dqτeisqτ P (qτ ) (10)

which can be computed exactly [5]. We then write P (qτ ) using eq. (6) as:

P (qτ ) =

∫ ∫

dθdθ̇P̃
(

∆Uτ − Qτ , θ(ti + τ), θ(ti), θ̇(ti + τ), θ̇(ti)
)

(11)

where P̃ is the joint distribution of the work Wτ , θ and dθ
dt at the beginning and at the end

of the time interval τ . This distribution is expected to be Gaussian because Wτ is linear in θ̇
and additionally θ, θ̇ and Wτ are Gaussian. Some algebra then yields:

P̂τ (s) =
1

1 + s2
exp

(

i〈Qτ 〉s −
σ2

W

2
s2

)

(12)

The characteristic function of heat fluctuations is therefore the product of the characteris-
tic function of an exponential distribution ( 1

1+s2 ) with the one of a Gaussian distribution

(exp
(

i〈Qτ 〉s −
σ2

W

2 s2
)

). Thus the PDF of heat fluctuations is nothing but the convolution of

a Gaussian and an exponential PDF, just as if Wτ and ∆Uτ were independent. The inverse
Fourier transform can be computed exactly:

P (Qτ ) =
1

4
exp

(

σ2
W

2

)

[

eQτ−〈Qτ 〉erfc

(

Qτ − 〈Qτ 〉 + σ2
W

√

2σ2
W

)

+

e−(Qτ−〈Qτ 〉)erfc

(

−Qτ + 〈Qτ 〉 + σ2
W

√

2σ2
W

)]

, (13)

where erfc stands for the complementary Erf function. In Fig. 1c, we have plotted the ana-
lytical PDF from eq. (13) together with the experimental ones, using values of σ2

W and 〈Qτ 〉
from the experiment. The agreement is perfect for all values of n and with no adjustable
parameters. Using eq. (13), we isolate three different regions for S(qτ ):

(I) if Qτ > σ2
W + |〈Qτ 〉| = 3|〈Qτ 〉| + O(1), then S(qτ ) = 2 + O( 1

τ ). This case corresponds
to large fluctuations and the PDF can be pictured as exponential with a non-vanishing mean.

(II) if Qτ < σ2
W − |〈Qτ 〉| = |〈Qτ 〉| + O(1), then S(qτ ) = Σ(n)qτ + O( 1

τ ) with Σq(n) =
2|〈Qτ 〉|

σ2

W

= Σw(n). In this case, heat fluctuations are small and behave like work fluctuations.

The slope Σ(τ) is the same as the one found in the case of work fluctuations. The exact
correction to the asymptotic value is plotted in Fig. 1e and again it matches perfectly the
experimental behavior.

(III) for σ2
W −|〈Qτ 〉| < Qτ < σ2

W + |〈Qτ 〉|, there is an intermediate region connecting cases

(I) and (II) by a second order polynomial S(qτ ) = 2. − Σ(τ)
4 (qτ − (1 + 2

Σ(τ) ))
2 + O( 1

τ ).

Those three regions offer a perfect description of the three domains observed experimentally
(Fig. 1d).

Now, we examine the limit of infinite τ in which SSFT is supposed to hold but which
depends on the variable we use : either the heat Qτ or the normalized heat qτ . First we discuss
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Qτ . The asymptotic behavior of the PDF of Qτ (eq. (13)) for large τ is Gaussian with variance
σ2

W . Thus, the PDF of Qτ coincides with the PDF of Wτ for τ strictly infinite. As we have
already shown, work fluctuations satisfy the conventional SSFT, therefore heat fluctuations
also satisfy the conventional SSFT (eq. (1)). We have found three different regions defined
by two characteristic values, but in the limit of infinite time τ , only region (II) is relevant:
region (II) is bounded from above by |〈Qτ 〉| + O(1) with the average 〈Qτ 〉 being linear in
τ . We see that all the behavior of the fluctuations of Qτ is captured by region (II) where
S(qτ ) is linear for all Qτ and SSFT holds. Second, we turn to the normalized heat qτ . As
the average value of Qτ is linear with τ , rescaling by 〈Qτ 〉 is equivalent to a division by τ ;
the mean of qτ is then 1. This normalization changes into constants the two characteristic
values which delimit the three regions : the boundary between (II) and (III) is now 1+O(1/τ)
and the boundary between (III) and (I) is 3 + O(1/τ). The function S(qτ ) is not linear for
large values of qτ but only in region (II) (qτ < 1), for small fluctuations. So SSFT is satisfied
only for small fluctuations but not for all values of qτ , and instead of a FT, we rather have
a fluctuation relation. These two descriptions in terms of Qτ or qτ are in fact a problem of
two non-commutative limits. The first description implies that one takes the limit τ infinite
before taking the limit of large Qτ . The second description does the opposite. However, the
probability to have large fluctuations decreases with τ and experimentally, for large τ , only
the region (II) where SSFT holds (qτ < 1) can be seen.

Finally, we briefly report results for the Transient Fluctuation Theorem. For this, we
choose a torque M(t) = Mot/τr linear in time, and the system is at equilibrium at ti = 0
(M(ti = 0) = 0 pN.m). Unlike with the periodic driving, the average of the variation of
internal energy 〈∆Uτ 〉 is not vanishing. The work done by M(t) is used by the system to
increase his internal energy but a small amount of energy is lost by viscous dissipation and
exchange with the thermostat. The PDF of Wτ/τ , ∆Uτ/τ and Qτ/τ are plotted in Fig. 2
for different values of τ/τα. Averages 〈Wτ /τ〉 and 〈∆Uτ/τ〉 are linear in τ . However, their
difference (eq. (6)) 〈Qτ/τ〉 is constant and of the order of a few kBT/s (Fig. 2c). The shapes
of the PDF are different from the ones obtained with the periodic forcing. Work fluctuations
have a Gaussian PDF for any values of τ , moreover TFT holds for Wτ [14]. In contrast
∆Uτ have a different probability distribution. Fig. 2b shows that the PDF are not symmetric
around the mean value. Extreme events have again an exponential distribution. For exactly
the same reasons as in the case of a periodic forcing, the PDFs of Qτ/τ are not Gaussian and
have exponential tails for extreme fluctuations : P (Qτ/τ) = A exp(−α|Qτ/τ |). As we can
see in fig. 2c, the PDFs are not symmetric around the mean value, thus there are two pairs
(α, A), one for positive value of large fluctuations (α+, A+) and one for negative (α−, A−).
Thus, there is a simple expression of S(qτ ) for large fluctuations:

S(qτ ) = (α+ − α−)qτ +
1

〈Qτ 〉
ln

(

A+

A−

)

(14)

It can be seen experimentally in fig. 2d. S(qτ ) is not proportional to qτ , therefore TFT is
not satisfied for finite time. However, for large value of τ , the PDF of Qτ becomes symmetric
around the mean value and only the Gaussian behavior remains. Thus, TFT appears to be
satisfied experimentally in the limit of infinite τ . This breaks the expected property of TFT
to be valid at any time.

In conclusion we have proposed an SSFT for heat fluctuations of a harmonic oscillator
driven in a stationary out of equilibrium state by a periodic external force. An exact expres-
sion of the PDFs of the heat Qτ averaged over a time τ is given. This PDF is in perfect
agreement with experimental data. For finite times, we have isolated different behaviors: one
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Fig. 2 – TFT. All plots are given for two values of τ/τα: 0.3 (�) and 1.04 (×). a) PDFs of 1

τ
Wτ .

Continuous lines are Gaussian fits. b) PDFs of 1

τ
∆Uτ . c) PDFs of 1

τ
Qτ . Continuous lines are

exponential fits for large Qτ . d) Functions S(qτ ) for large heat fluctuations qτ computed using
exponential fits.

for small fluctuations (Gaussian behavior) and the other for extreme fluctuations (exponen-
tial behavior). SSFT holds for infinite time. We have also studied a TFT for Qτ using linear
forcing and found that FT is satisfied only in the limit of large times.

We thank G. Gallavotti for useful discussions. This work has been partially supported by
ANR-05-BLAN-0105-01.
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