
HAL Id: ensl-00103018
https://ens-lyon.hal.science/ensl-00103018v1

Preprint submitted on 3 Oct 2006 (v1), last revised 31 Jan 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VPSPACE and a Transfer Theorem over the Reals
Pascal Koiran, Sylvain Perifel

To cite this version:
Pascal Koiran, Sylvain Perifel. VPSPACE and a Transfer Theorem over the Reals. 2006. �ensl-
00103018v1�

https://ens-lyon.hal.science/ensl-00103018v1
https://hal.archives-ouvertes.fr

en
sl

-0
01

03
01

8,
 v

er
si

on
 1

 -
 3

 O
ct

 2
00

6

VPSPACE and a Transfer Theorem

over the Reals

Pascal Koiran and Sylvain Perifel

LIP⋆, École Normale Supérieure de Lyon.
[Pascal.Koiran,Sylvain.Perifel]@ens-lyon.fr

Abstract We introduce a new class VPSPACE of families of polyno-
mials. Roughly speaking, a family of polynomials is in VPSPACE if its
coefficients can be computed in polynomial space. Our main theorem
is that if (uniform, constant-free) VPSPACE families can be evaluated
efficiently then the class PARR of decision problems that can be solved
in parallel polynomial time over the real numbers collapses to PR. As a
result, one must first be able to show that there are VPSPACE families
which are hard to evaluate in order to separate PR from NPR, or even
from PARR.

Keywords: computational complexity, algebraic complexity, Blum-Shub-
Smale model, Valiant’s model.

1 Introduction

Two main categories of problems are studied in algebraic complexity theory:
evaluation problems and decision problems. A typical example of an evaluation
problem is the evaluation of the permanent of a matrix, and it is well known
that the permanent family is complete for the class VNP of “easily definable”
polynomial families [19]. Deciding whether a multivariate polynomial has a real
root is a typical example of a decision problem. This problem is NP-complete in
the Blum-Shub-Smale model of computation over the real numbers [1,2].

The main purpose of this paper is to provide a transfer theorem connecting
the complexity of evaluation and decision problems. This paper is therefore in
the same spirit as [12]. In that paper, we showed that if certain polynomials
can be evaluated efficiently then certain decision problems become easy. The
polynomials considered in [12] are those that can be written as exponential-
size products of polynomials that are easy to compute (see [12] for a precise
definition) over some field K. The decision problems under consideration are
those that are in NP in the structure (K, +,−, =), in which multiplication is not
allowed.

In the present paper we work with a larger class of polynomial families,
which we call VPSPACE. Roughly speaking, a family of polynomials (of pos-
sibly exponential degree) is in VPSPACE if its coefficients can be evaluated in

⋆ UMR 5668 ENS Lyon, CNRS, UCBL, INRIA. Research report RR2006-29.

2 Pascal Koiran and Sylvain Perifel

polynomial space. For instance, we show that resultants of systems of multi-
variate polynomial equations form a VPSPACE family. Our main result is that
if (uniform, constant-free) VPSPACE families can be evaluated efficiently then
the class PARR of decision problems that can be solved in parallel polynomial
time over the real numbers collapses to PR. This result relies crucially on a com-
binatorial lemma due to Grigoriev [10] and especially on its effective version,
recently established in [7]. The class PARR plays roughly the same role in the
theory of computation over the reals as PSPACE in discrete complexity theory.
In particular, it contains NPR [1] (but the proof of this inclusion is much more
involved than in the discrete case). It follows from our main result that in order
to separate PR from NPR, or even from PARR, one must first be able to show
that there are VPSPACE families which are hard to evaluate. This seems to be
a very challenging lower bound problem, but it is still presumably easier than
showing that the permanent is hard to evaluate.
Organization of the paper. We first recall in Section 2 some notions and notations
from algebraic complexity (Valiant’s model, the Blum-Shub-Smale model). A
uniform version of the class VPSPACE is defined in Section 3. The next two sec-
tions of the paper are devoted to the transfer theorem. Section 4 deals with sign
conditions, an important tool from computational real algebraic geometry. The
transfer theorem is stated at the beginning of Section 5, and proved thereafter.
Some of the proofs are relegated to the appendix. In addition, the appendix con-
tains several other results. In particular, we show in Appendix A that resultants
of multivariate polynomial systems form a VPSPACE family. The definition of
the nonuniform class VPSPACE is given in Appendix B, and the hypothesis that
VPSPACE families are easy to evaluate is discussed in Appendix C. We show
that (assuming the generalized Riemann hypothesis) this hypothesis is equiva-
lent to: VP = VNP and P/poly = PSPACE/poly. The conjunction of these two
equalities is an extremely strong assumption: by results from [3] (see [11]), it
implies, assuming again GRH, that NC/poly = PSPACE/poly. This conjunc-
tion of equalities is still apparently consistent with our current understanding
of complexity theory. We also discuss the uniform, constant-free version of the
hypothesis that VPSPACE families are easy to evaluate. It turns out that this
stronger hypothesis implies that PSPACE collapses to the polynomial-time uni-
form version of NC. Such a dramatic collapse of complexity classes looks ex-
tremely unlikely, but as far as we know it cannot be refuted with the current
methods of complexity theory.

2 Preliminaries

The notions of boolean complexity theory that we use are quite standard. In the
present section, we focus on algebraic complexity.

2.1 The Blum-Shub-Smale Model

In contrast with boolean complexity, algebraic complexity deals with other struc-
tures than {0, 1}. In this paper we will focus on the ordered field (R, +,−,×,≤) of

VPSPACE and a Transfer Theorem over the Reals 3

the real numbers. Although the original definitions of Blum, Shub and Smale [2,1]
are in terms of uniform machines, we will follow [17] by using families of algebraic
circuits to recognize languages over R, that is, subsets of R∞ =

⋃

n≥0 Rn.
An algebraic circuit is a directed acyclic graph whose vertices, called gates,

have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is
a gate of outdegree 0. We assume that there is only one such gate in the circuit.
Gates of indegree 2 are labelled by a symbol from the set {+,−,×}. Gates of
indegree 1, called test gates, are labelled “≤ 0?”. The size of a circuit C, in
symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from Rn to R. On input
ū ∈ Rn the value returned by the circuit is by definition equal to the value of its
output gate. The value of a gate is defined in the usual way. Namely, the value
of input gate number i is equal to the i-th input ui. The value of other gates is
then defined recursively: it is the sum of the values of its entries for a +-gate,
their difference for a −-gate, their product for a ×-gate. The value taken by a
test gate is 0 if the value of its entry is > 0 and 1 otherwise. We assume without
loss of generality that the output is a test gate. The value returned by the circuit
is therefore 0 or 1.

The class PR is the set of languages L ⊆ R∞ such that there exists a tuple
ā ∈ R

p and a P-uniform family of polynomial-size circuits (Cn) satisfying the
following condition: Cn has exactly n + p inputs, and for any x̄ ∈ Rn, x̄ ∈ L ⇔
Cn(x̄, ā) = 1. The P-uniformity condition means that Cn can be built in time
polynomial in n by an ordinary (discrete) Turing machine. Note that ā plays the
role of the machine constants of [1,2].

As in [6], we define the class PARR as the set of languages over R recognized
by a PSPACE-uniform family of algebraic circuits of polynomial depth (and
possibly exponential size), with constants ā as for PR. Note at last that we could
also define similar classes without constants ā. We will use the superscript 0 to
denote these constant-free classes, for instance P0

R
and PAR0

R
.

2.2 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages.
We thus use arithmetic circuits instead of algebraic circuits. A book-length treat-
ment of this topic can be found in [3].

An arithmetic circuit is the same as an algebraic circuit but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together
with arbitrary constants of R; there are +, − and ×-gates, and we therefore
compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual way
by the polynomial computed by its output gate. Thus a family (Cn) of arithmetic
circuits computes a family (fn) of polynomials, fn ∈ R[x1, . . . , xu(n)]. The class
VPnb defined in [14] is the set of families (fn) of polynomials computed by a
family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes fn and there
exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume without
loss of generality that the number u(n) of variables is bounded by a polynomial

4 Pascal Koiran and Sylvain Perifel

function of n. The subscript “nb” indicates that there is no bound on the degree
of the polynomial, in contrast with the original class VP of Valiant where a
polynomial bound on the degree of the polynomial computed by the circuit is
required.

The class VNP is the set of families of polynomials defined by an exponential
sum of VP families. More precisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP
and a polynomial p such that |ȳ| = p(n) and fn(x̄) =

∑

ǭ∈{0,1}p(n) gn(x̄, ǭ). Note
that these definitions are nonuniform. The class uniform VPnb is obtained by
adding a condition of polynomial-time uniformity on the circuit family, as in
Section 2.1.

We can also forbid constants from our arithmetic circuits in unbounded-
degree classes, and define constant-free classes. The only constant allowed is
1 (in order to allow the computation of constant polynomials). As for classes
of decision problems, we will use the superscript 0 to indicate the absence of
constant: for instance, we will write VP0

nb (for bounded-degree classes, we are to
be more careful; see Definition 6).

Note at last that arithmetic circuits are at least as powerful as boolean cir-
cuits in the sense that one can simulate the latter by the former. Indeed, we can
for instance replace ¬u by 1 − u, u ∧ v by uv, and u ∨ v by u + v − uv. This
proves the following classical lemma.

Lemma 1. Any boolean circuit C can be simulated by an arithmetic one of size
at most 3|C|, in the sense that on boolean inputs, both circuits output the same
value.

3 The Class VPSPACE

3.1 Definition

We fix an arbitrary field K. The definition of VPSPACE will be stated in terms
of coefficient function. A monomial xα1

1 · · ·xαn
n is encoded in binary by α =

(α1, . . . , αn) and will be written x̄α.

Definition 1. Let (fn) be a family of multivariate polynomials with integer co-
efficients. The coefficient function of (fn) is the function a whose value on input
(n, α, i) is the i-th bit a(n, α, i) of the coefficient of the monomial x̄α in fn. Fur-
thermore, a(n, α, 0) is the sign of the coefficient of the monomial x̄α. Thus fn

can be written as

fn(x̄) =
∑

α

(

(−1)a(n,α,0)
∑

i≥1

a(n, α, i)2i−1x̄α
)

.

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be
viewed as a language. This allows us to speak of the complexity of the coefficient
function.

VPSPACE and a Transfer Theorem over the Reals 5

Definition 2. The class uniform VPSPACE0 is the set of all families (fn) of
multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-
ments:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to define first uniform VPSPACE0, a uniform class without
constants, because this is the main object of study in this paper. In keeping
with the tradition set by Valiant, however, the class VPSPACE defined in the
appendix is nonuniform and allows for arbitrary constants.

3.2 An Alternative Characterization

Let uniform VPAR0 be the class of families of polynomials computed by a
PSPACE-uniform family of constant-free arithmetic circuits of polynomial depth
(and possibly exponential size). This in fact characterizes uniform VPSPACE0.

Proposition 1. The two classes uniform VPSPACE0 and uniform VPAR0 are
equal.

Proof. Let (fn) be a uniform VPSPACE0 family. In order to compute fn by
an arithmetic circuit of polynomial depth, we compute all its monomials in
parallel and sum them in a divide-and-conquer-fashion. The resulting family of
arithmetic circuits is uniform due to the uniformity condition on (fn).

For the converse, take an arithmetic circuit of polynomial depth. We show
that we can build a boolean circuit of polynomial depth which takes as input the
encoding α of a monomial and computes the coefficient of x̄α. We proceed by
induction, computing the coefficient of x̄α for each gate of the original arithmetic
circuit. For the input gates, this is easy. For a +-gate, it is enough to add both
coefficients. For a gate a × b, we compute in parallel the sum of the cd over all
the monomials x̄β and x̄γ such that β +γ = α, where c is the coefficient of x̄γ in
the gate a, and d the coefficient of x̄β in the gate b. The whole boolean circuit
remains uniform and of polynomial depth. Therefore, the coefficient function is
in PSPACE by the “parallel computation thesis”. ⊓⊔

We see here the similarity with PARR, which by definition are those languages
recognized by uniform algebraic circuits of polynomial depth. But of course there
is no test gate in the arithmetic circuits of uniform VPSPACE0.

4 Sign Conditions

4.1 Definition

Given are s polynomials f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign condition is merely
an s-tuple S ∈ {−1, 0, 1}s. Intuitively, the i-th coordinate of S represents the

6 Pascal Koiran and Sylvain Perifel

sign of fi: −1 for < 0, 0 for 0, and 1 for > 0. Accordingly, the sign condition of a
point x̄ ∈ Rn is the tuple S ∈ {−1, 0, 1}s such that Si = −1 if fi(x̄) < 0, Si = 0
if fi(x̄) = 0 and Si = 1 if fi(x̄) > 0.

Of course some sign conditions are not realizable, in the sense that the poly-
nomials can nowhere take the corresponding signs (think for instance of x2 + 1
which can only take positive values over R). We say that a sign condition is
satisfiable if it is the sign condition of some x̄ ∈ Rn and we call N the number
of satisfiable sign conditions. The key result detailed in the next section is that
among all possible sign conditions, there are few satisfiable ones (i.e. N is small),
and there exists a polynomial space algorithm to enumerate them all.

4.2 A PSPACE Algorithm for Sign Conditions

The following theorem of Renegar [18, Prop. 4.1] will prove to be a central tool
in our proofs.

Theorem 1 (Renegar). Let f1, . . . , fs ∈ Z[x1, . . . , xn] be s polynomials of
maximal degree d, and whose coefficients have bit size ≤ L. Then:

1. there are N = (sd)O(n) satisfiable sign conditions;
2. there is an algorithm using work space (log L)[n log(sd)]O(1) which, on input

(f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
component of the i-th satisfiable sign condition.

Note that if d = 2nO(1)

, s = 2nO(1)

and L = 2nO(1)

as will be the case, then
the work space of the algorithm is polynomial in n.

4.3 Enumerating all Possibly Tested Polynomials

In the execution of an algebraic circuit, the values of some polynomials at the
input x̄ are tested to zero. If two points x̄ and ȳ have the same sign condition
with respect to all polynomials possibly tested to zero, then they will either both
belong to the language, or both be outside of it: indeed the results of all the tests
will be the same during the execution of the circuit. Therefore we can handle
sign conditions (i.e. boolean words) instead of algebraic inputs.

Note that in order to find the sign condition of the input x̄, we have to be able
to enumerate in polynomial space all the polynomials that can ever be tested to
zero in some computation of an algebraic circuit. This is done as in [9, Th. 3].

Proposition 2. Let C be a constant-free algebraic circuit with n variables and
of depth d.

1. The number of different polynomials possibly tested to zero in some compu-
tation of C is 2d2O(n).

2. There exists an algorithm using work space (nd)O(1) which, on input C and
integers (i, j) in binary, outputs the j-th bit of the i-th of these polynomials.

The proof can be found in Appendix E. Note that this proposition can also be
useful when our algebraic circuit is not constant-free: it is enough to replace the
constants by fresh variables. The only risk is indeed to take more polynomials
into account since we have replaced specific constants by generic variables.

VPSPACE and a Transfer Theorem over the Reals 7

5 A Transfer Theorem

In this section we prove our main result.

Theorem 2. Uniform VPSPACE0 = uniform VP0
nb =⇒ PAR0

R
= P0

R
.

Note that the collapse of the constant-free class PAR0
R

to P0
R

implies the collapse
of PARR to PR: just replace constants by new variables in order to transform a
PARR problem into a PAR0

R
problem, and then replace these variables by their

orignal values in order to transform a P0
R

problem into a PR problem.
Let A ∈ PAR0

R
: it is decided by a uniform family (Cn) of constant-free al-

gebraic circuits of polynomial depth. For convenience, we fix n and work with
Cn. For the proof of Theorem 2 we will need to find the sign condition of the
input x̄ with respect to the polynomials f1, . . . , fs of Proposition 2, that is to
say, with respect to all the polynomials that can be tested to zero in an execution
of Cn. We denote by N the number of satisfiable sign conditions with respect to
f1, . . . , fs.

Note that most of the forthcoming results depend on the polynomials
f1, . . . , fs, therefore on the choice of Cn. For instance, once Cn and f1, . . . , fs are
chosen, the satisfiable sign conditions are fixed and we will speak of the i-th sat-
isfiable sign condition without referring explicitly to the polynomials f1, . . . , fs.

In order to find the sign condition of the input, we will give a polynomial-time
algorithm which tests some VPSPACE family for zero. Here is the formalized
notion of a polynomial-time algorithm with VPSPACE tests.

Definition 3. A polynomial-time algorithm with uniform VPSPACE0 tests
is a uniform VPSPACE0 family (fn(x1, . . . , xu(n))) together with a uniform
constant-free family (Cn) of polynomial-size algebraic circuits endowed with spe-
cial test gates of indegree u(n), whose value is 1 on input (a1, . . . , au(n)) if
fn(a1, . . . , au(n)) ≤ 0 and 0 otherwise.

Observe that a constant number of uniform VPSPACE0 families can be used in
the preceding definition instead of only one: it is enough to combine them all in
one by using “selection variables”. The following Theorem 3 is the main result
en route to showing the transfer theorem. It is proved via successive lemmas in
Sections 5.1 to 5.3: we proceed as in [10] but constructively.

Theorem 3. There is a polynomial-time algorithm with uniform VPSPACE0

tests that, on input x̄, computes the rank of the sign condition of x̄ with respect
to f1, . . . , fs.

5.1 Truncated Sign Conditions

A truncated sign condition is merely an element T of {0, 1}s. Contrary to full
sign conditions, only the two cases = 0 and 6= 0 are distinguished. We define in
a natural way the truncated sign condition T of a point x̄: Ti = 0 if and only if
fi(x̄) = 0.

8 Pascal Koiran and Sylvain Perifel

Of course, there are fewer satisfiable truncated sign conditions than full ones,
and of course there exists a polynomial space algorithm to enumerate them.
Furthermore, truncated sign conditions can be viewed as subsets of {1, . . . , s}
(via the convention k ∈ T ⇐⇒ Tk = 1), therefore enabling us to speak of
inclusion of truncated sign conditions.

We fix an order ≤T compatible with inclusion and easily computable in par-
allel, e.g. the lexicographic order. Let us call T (i) the i-th satisfiable truncated
sign condition with respect to this order.

Lemma 2. There is an algorithm using work space polynomial in n which, on
input (f1, . . . , fs) in dense representation, and (i, j) in binary, outputs the j-th
component of T (i) (the i-th satisfiable truncated sign condition with respect to
≤T).

Proof. It is enough to use the algorithm of Theorem 1, followed by a fast parallel-
sorting procedure, for instance Cole’s parallel merge-sort algorithm [8]. ⊓⊔

Note that the truncated sign condition of the input x̄ is the maximal trun-
cated satisfiable sign condition T satisfying ∀i, Ti = 1 ⇒ fi(x̄) 6= 0. Hence we
are to find a maximum. This will be done by binary search.

Lemma 3. There is a uniform VPSPACE0 family (gn) of polynomials satisfy-
ing, for real x̄ and boolean i,

gn(x̄, i) =
∏

j≤i

(

∑

k 6∈T (j)

fk(x̄)2
)

.

Proof. Lemma 2 asserts that deciding whether k 6∈ T (j) is in PSPACE. Then
we use twice Lemma 13 from Appendix D (once for the sum and once for the
product). ⊓⊔

Proposition 3. There is a polynomial-time algorithm with
uniform VPSPACE0 tests which on input x̄ outputs the rank m of its
truncated sign condition T (m).

Proof. The algorithm merely consists in performing a binary search thanks to
the polynomials of Lemma 3: if the truncated sign condition of the input x̄ is
T (m), then

∏

j≤i

(
∑

k 6∈T (j) fk(x̄)2
)

= 0 if and only if m ≤ i. By making i vary, we
find m in a number of steps logarithmic in the number of satisfiable truncated
sign conditions, i.e. in polynomial time. ⊓⊔

5.2 Binary Search for the Full Sign Condition

We say that a (full) sign condition S is compatible with the truncated sign
condition T if ∀i, Ti = 0 ⇔ Si = 0 (i.e. they agree for “= 0” and for “ 6= 0”).
Let N ′ denote the number of (full) satisfiable sign conditions compatible with
the truncated sign condition of the input x̄. Obviously, N ′ ≤ N . The following
lemma is straightforward after Lemma 2 and Theorem 1.

VPSPACE and a Transfer Theorem over the Reals 9

Lemma 4. There is an algorithm using work space polynomial in n which, on
input (i, j, k), ouputs the j-th bit of the i-th satisfiable sign condition compatible
with T (k).

Since we know the truncated sign condition of x̄ after running the algorithm
of Proposition 3, we know which polynomials vanish at x̄. We can therefore
discard the zeros in the (full) compatible satisfiable sign conditions. Hence we
are now concerned with two-valued sign conditions, that is, elements of {−1, 1}s′

with s′ ≤ s. In what follows arithmetic over the field of two elements will be
used, hence it will be simpler to consider that our sign conditions have value
among {0, 1} instead of {−1, 1}: 0 for > 0 and 1 for < 0. Thus sign conditions
are viewed as vectors over {0, 1}, or alternately as subsets of {1, . . . , s′}. The set
{0, 1}s′

is endowed with the inner product u.v =
∑

i uivi(mod 2), and we say
that u and v are orthogonal whenever u.v = 0 (see [7]).

The following proposition from [7] will be useful. It consists in an improve-
ment of the result of [10]: first (and most importantly), it is constructive, and
second, the range [N ′/2 −

√
N ′/2, N ′/2 +

√
N ′/2] here is much better than the

original one [N ′/3, 2N ′/3].

Proposition 4. Let V be a set of N ′ vectors of {0, 1}s′

.

1. There exists a vector u orthogonal to at least N ′/2 −
√

N ′/2 and at most
N ′/2 +

√
N ′/2 vectors of V .

2. Such a vector u can be found on input V by a logarithmic space algorithm.

Our aim is to find the sign condition of x̄. We will use Proposition 4 in
order to divide the cardinality of the search space by two at each step. This
is based on the following observation: if u ∈ {0, 1}s′

, the value of the product
∏

j∈u fj(x̄) is negative if the inner product of u and the sign condition of x̄ is
1, and is positive otherwise. The idea is then to choose u judiciously so that
the number of satisfiable sign conditions having the same inner product with
u as the sign condition of x̄ is halved at each step. Therefore, in a logarithmic
number of steps, the sign condition of x̄ will be uniquely determined. This gives
the following algorithm for finding the sign condition of x̄.

– Let E be the set of all the satisfiable sign conditions.
– While E contains more than one element, do

• Find by Proposition 4 a vector u orthogonal to at least |E|/2−
√

|E|/2

and at most |E|/2 +
√

|E|/2 vectors of E.
• Let b be the result of the test “

∏

j∈u fj(x̄) < 0?”.
• Let the new E be the set of all sign conditions in E which have inner

product b with u.
– Enumerate all the satisfiable sign conditions and find the one that produces

exactly the same results as in the loop: this is the sign condition of x̄.

Note that the number of steps is O(log N ′), which is polynomial in n. The last
step of this algorithm (namely, recovering the rank of the sign condition of x̄
from the list of results of the loop) is detailed in Section 5.3.

10 Pascal Koiran and Sylvain Perifel

We now show how to perform this algorithm in polynomial time with
uniform VPSPACE0 tests. The main technical difficulty is that according to
Definition 3 we can use only one VPSPACE family, whereas we want to make
adaptative tests. We therefore have to store the intermediate results of the pre-
ceding tests in some variables c̄ (a “list of choices”) of the VPSPACE polynomial.
Proposition 4 shows that, by reusing space, there exists a logspace algorithm
that, given any set V of N ′ vectors together with a “list of choices” c ∈ {0, 1}l

(with l = O(log N ′)), enumerates l + 1 vectors u(1), . . . , u(l+1) satisfying the
following condition (⋆):

– u(1) is orthogonal to at least N ′/2 −
√

N ′/2 and at most N ′/2 +
√

N ′/2
vectors of V .

– Let Vi ⊆ V be the subset of all the vectors v ∈ V satisfying ∀j ≤ i, v.u(j) =
cj . Then the vector u(i+1) is orthogonal to at least |Vi|/2 −

√

|Vi|/2 and at

most |Vi|/2 +
√

|Vi|/2 vectors of Vi.

Note that |Vi| is roughly divided by 2 at each step, so the number of steps is
O(log N ′). In particular, since s′ and N ′ are simply exponential, the following
lemma is easily derived by combining what precedes with Lemma 4.

Lemma 5. There is an algorithm using work space polynomial in n which, on
input (i, j, k, c) in binary, outputs the j-th bit of u(i) ∈ {0, 1}N ′

, where the vectors
u(1), . . . , u(l+1) satisfy condition (⋆) for the input consisting of:

– the set V of the N ′ (full) satisfiable sign conditions compatible with T (k),
– together with the list of choices c ∈ {0, 1}l.

Lemma 6. There exists a uniform VPSPACE0 family (hn) satifsying, for real
x̄ and boolean (i, k, c):

hn(x̄, i, k, c) =
∏

j∈u(i)

fj(x̄),

where u(1), . . . , u(l+1) are defined as in Lemma 5 (in particular they depend on
T (k)).

Proof. Lemma 5 asserts that deciding whether j ∈ u(i) is done in polynomial
space. The use of Lemma 13 from Appendix D then concludes the proof. ⊓⊔

Therefore, by a uniform VPSPACE0 test, one is able to know the sign of the
polynomial hn(x̄, i, k, c) =

∏

j∈u(i) fj(x̄). As mentioned before, this gives us the

inner product of u(i) and the (full) sign condition of x̄: this sign is < 0 if and
only if the inner product is 1. By beginning with c = 0 · · · 0 (step 1), and at step
i ≥ 2 letting ci−1 = 1 if and only if the preceding test was < 0, the number
of sign conditions that have the same inner products as that of x̄ is divided by
(roughly) two at each step. At the end, we therefore have a list of choices c that
only the sign condition of x̄ fulfills. This proves the following lemma.

VPSPACE and a Transfer Theorem over the Reals 11

Lemma 7. There is a polynomial-time algorithm with uniform VPSPACE0

tests which on input x̄ outputs the list of choices c (defined as above) which
uniquely characterizes the sign condition of x̄, provided we know the rank k of
the truncated sign condition T (k) of x̄.

We are now able to recover the rank of the sign condition of x̄ from this
information, as explained in the next section.

5.3 Recovering the Rank of the Sign Condition

Lemma 8. There is an algorithm using work space polynomial in n which, on
input c ∈ {0, 1}l (a list of choices) and k, outputs the rank of a satisfiable sign
condition compatible with T (k) that fulfills the list of choices c.

Proof. In polynomial space we recompute all the vectors u(i) as in Lemma 5,
then we enumerate all the sign conditions thanks to Theorem 1 until we find one
that fulfills the list of choices c. ⊓⊔

The proof of Theorem 3 now follows easily from Proposition 3 and Lemmas 7
and 8.

5.4 A Polynomial-time Algorithm for PARR Problems

Remember that A ∈ PAR0
R

and (Cn) is a uniform family of polynomial-depth
algebraic circuits deciding A.

Lemma 9. There is a (boolean) algorithm using work space polynomial in n
which, on input i (the rank of a satisfiable sign condition), decides whether the
elements of the sign condition S are accepted by the circuit Cn.

Proof. We follow the circuit Cn level by level. For test gates, we compute the
polynomial f to be tested. Then we enumerate the polynomials f1, . . . , fs as
in Proposition 2 for the circuit Cn and we find the index j of f in this list.
By consulting the j-th bit of the i-th satisfiable sign condition with respect to
f1, . . . , fs (which is done by the polynomial-space algorithm of Theorem 1), we
therefore know the result of the test and can go on like this until the output
gate. ⊓⊔

Theorem 4. Let A ∈ PAR0
R
. There exists a polynomial-time algorithm with

uniform VPSPACE0 tests that decides A.

Proof. A is decided by a uniform family (Cn) of polynomial depth algebraic
circuits. On input x̄, thanks to Theorem 3 we first find the rank of the sign
condition of x̄ with respect to the polynomials f1, . . . , fs of Proposition 2. Then
we conclude by Lemma 9. ⊓⊔

Theorem 2 follows immediately from this result. One could obtain other ver-
sions of these two results by changing the uniformity conditions or the role of
constants.

12 Pascal Koiran and Sylvain Perifel

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

2. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society, 21(1):1–46, 1989.

3. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Num-
ber 7 in Algorithms and Computation in Mathematics. Springer, 2000.

4. P. Bürgisser and M. Lotz. The complexity of computing the Hilbert polynomial of
smooth equidimensional complex projective varieties. Technical report, University
of Paderborn, 2005. arXiv:cs.SC/0502044 v 1, 8 Feb 2005.

5. J. F. Canny. Generalized characteristic polynomials. In Proc. ISSAC’88, pages
293–299, 1988.

6. O. Chapuis and P. Koiran. Saturation and stability in the theory of computation
over the reals. Annals of Pure and Applied Logic, 99:1–49, 1999.

7. P. Charbit, E. Jeandel, P. Koiran, S. Perifel, and S. Thomassé. Finding a vector
orthogonal to roughly half a collection of vectors. Available from http://perso.ens-
lyon.fr/pascal.koiran/publications.html. Accepted for publication in Journal of

Complexity, 2006.
8. R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.
9. F. Cucker and D. Grigoriev. On the power of real Turing machines over binary

inputs. SIAM Journal on Computing, 26(1):243–254, 1997.
10. D. Grigoriev. Topological complexity of the range searching. Journal of Complexity,

16:50–53, 2000.
11. P. Koiran. Valiant’s model and the cost of computing integers. Computational

Complexity, 13:131–146, 2004.
12. P. Koiran and S. Perifel. Valiant’s model: from exponential sums to exponen-

tial products. In Mathematical Foundations of Computer Science, volume 4162 of
Lecture Notes in Computer Science, pages 596–607. Springer-Verlag, 2006.

13. F. S. Macaulay. Algebraic theory of modular systems. Cambridge tracts, 19, 1916.
14. G. Malod. Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon

1, July 2003.
15. G. L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation of

straight-line code and arithmetic circuits. SIAM J. Computing, 17(4):687–695,
1988.

16. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
17. B. Poizat. Les petits cailloux. Aléas, 1995.
18. J. Renegar. On the computational complexity and geometry of the first-order

theory of the reals, part 1. Journal of Symbolic Computation, 13:255–299, 1992.
19. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on

Theory of Computing, pages 249–261, 1979.
20. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation

of polynomials using few processors. SIAM Journal on Computing, 12(4):641–644,
1983.

VPSPACE and a Transfer Theorem over the Reals 13

A An Example

Algebraic geometry is a natural source of examples for the study of polynomi-
als from a computational point of view. For instance, the Hilbert polynomial
is studied in [4] from the point of view of discrete complexity theory. Here we
study a different example: the computation of the resultant of a system of mul-
tivariate polynomials. A system of n+1 homogenous equations in n+1 complex
variables has a nontrivial solution if and only if its resultant is zero. We sketch
the construction of the resultant below. More details can be found for instance
in [13] or [5].

Let f1, . . . , fn+1 ∈ C[X0, . . . , Xn] be a system of n + 1 homogeneous polyno-
mials. The resultant consists in the quotient of the determinants of two matrices
M and M ′:

R =
detM

detM ′
(1)

where the coefficients of M are among those of the fi’s, and M ′ is a submatrix
of M . The matrix M is called Macaulay’s matrix (a generalization of Sylvester’s
for two univariate polynomials) and is described as follows. Let di be the degree

of fi and d = 1 +
∑n+1

i=1 (di − 1). Denote by Mond the set of all monomials in

X0, . . . , Xn of degree d: the cardinal of Mond is N =
(

d+n
d

)

.
The matrix M has N rows and N columns, both indexed by the elements of

Mond. The row corresponding to the monomial x̄α represents the polynomial

x̄α

xdi

i

fi, where i = min{j; xdj

j divides x̄α}.

Finally, the submatrix M ′ consists in the rows and columns of M that are “not
reduced”, see [5]. What we will compute is not the resultant R itself but rather
a multiple of it, namely detM . Whenever detM ′ 6= 0, this does not change
anything if we are only concerned by the vanishing of R.

From now on, we will assume for simplicity that all the di are equal. We will
let n go to infinity, but the common value δ of the di will remain constant. A
system (f1, . . . , fn+1) of n + 1 homogeneous polynomials of degree δ in n + 1
variables is encoded by the list of the coefficients of the polynomials, i.e., by
k(n+1) variables (a1,1, . . . , a1,k, a2,1, . . . , an+1,k) where k =

(

n+δ
δ

)

is the number
of monomials of degree δ in n + 1 variables. Note that k is polynomial in n for
any fixed δ.

The matrix Macδ
n(f1, . . . , fn+1) is then defined as the Macaulay matrix M of

(f1, . . . , fn+1). This matrix is of size
(

n+d
d

)

, where d = 1 + (n + 1)(δ − 1). This
is exponential in n as soon as δ ≥ 2. Computing the determinant of M can be
done by a circuit of depth polylogarithmic in the size of M , thus polynomial in
n. The above considerations then prove the following proposition.

Proposition 5. For any fixed δ, the family (det(Macδ
n)) (the determinant of

the Macaulay matrix of a system of n + 1 homogeneous polynomials of degree δ
in n + 1 variables) is in uniform VPSPACE0.

14 Pascal Koiran and Sylvain Perifel

Likewise, the determinants of the matrices M ′ in (1) form a uniform VPSPACE0

family.

B The Non-Uniform Class VPSPACE

We begin with the definitions of the nonuniform classes VPSPACE0

and VPSPACE. Note that the only difference between VPSPACE0 and
uniform VPSPACE0 is the nonuniformity of the coefficient function.

Definition 4. The class VPSPACE0 is the set of all families (fn) of multivari-
ate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following requirements:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE/poly.

Now, the class VPSPACE is the set of all families (fn(x̄)) of multivariate
polynomials fn ∈ K[x1, . . . , xu(n)] such that there exist a family (gn(x̄, ȳ)) ∈
VPSPACE0 together with a family of tuples of constants (ā(n)) satisfying for all
n:

fn(x̄) = gn(x̄, ā(n)).

We introduce temporarily a degree-bounded version of VPSPACE: this will
prove useful for comparing VPSPACE to VP and VNP since the degree of the
polynomials in these last two classes are polynomially bounded. A family (fn) of
polynomials is in VPSPACE0

b if (fn) ∈ VPSPACE0 and the size of the coefficients
as well as the degree of fn are polynomially bounded. The class VPSPACEb is
then defined from VPSPACE0

b in the same way as VPSPACE is defined from
VPSPACE0 in Definition 4. This new class is interesting for our purpose due to
the following two lemmas.

Lemma 10.

VPSPACEb = VP ⇐⇒ VPSPACE = VPnb.

Proof. Assume first that VPSPACE = VPnb, and take a family (fn) ∈
VPSPACEb. Since VPSPACEb ⊂ VPSPACE, (fn) is in fact in VPnb by hy-
pothesis. Now, since the degree of (fn) is polynomially bounded, (fn) ∈ VP.

For the converse, take a family (fn) ∈ VPSPACE: remember that it can
be written as fn(x̄) = gn(x̄, ā(n)) for some constants ā(n) and (gn(x̄, ȳ)) ∈
VPSPACE0. For convenience, let us rename the u(n) variables of gn by
v1, . . . , vu(n), thus we have:

gn(v̄) =
∑

α

(

(−1)a(n,α,0)
2p(n)
∑

i=1

a(n, α, i)2i−1v̄α
)

,

VPSPACE and a Transfer Theorem over the Reals 15

where a is in PSPACE/poly. In this expression, p(n) is a polynomial and 2p(n)

bounds the size of the coefficients as well as the degree of gn. In order to use the
hypothesis, we have to somehow define a family (hn) ∈ VPSPACE0

b that will
“simulate” (gn). Let us define

(

hn(z1,1, . . . , z1,p(n), z2,1, . . . , zu(n),p(n), w1, . . . , wp(n))
)

,

where intuitively the variable zi,j is to replace v2j

i in gn, and wi will take the

value 22i

. More formally, hn is defined as follows:

– replace vk
i in gn by

∏

j∈Jk
zi,j , where the set Jk consists of the bits set to 1

in the binary representation of k;

– replace the coefficient 2i−1 in the term
∑2p(n)

i=1 a(n, α, i)2i−1 of gn by
∏

j∈Ji−1
wj , where the set Ji−1 consists of the bits set to 1 in the binary

representation of i − 1.

The degree of hn is then polynomially bounded and all the coefficients are among
−1, 0 and 1. Note furthermore that the coefficient function is still in PSPACE.
Therefore (hn) ∈ VPSPACE0

b, thus (hn) ∈ VP by hypothesis. It remains to

replace zi,j by v2j

i and wi by 22i

to show that (gn(v̄) = gn(x̄, ȳ)) ∈ VPnb, and
then to replace ȳ by the original constants in order to show that (fn) ∈ VPnb.

⊓⊔

Lemma 11. VPSPACEb contains VNP.

Proof. Let (HCn) be the family defined by

HCn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑

σ

n
∏

i=1

xi,σ(i)

where the sum is taken over all n-cycles σ over {1, . . . , n}. This polynomial
counts the number of Hamilton cycles in a graph given by its adjacency matrix.
(HCn) is VNP-complete, see [19] or [14]. Since VPSPACEb is closed under p-
projections and contains HCn, the lemma follows. ⊓⊔

C On the Hypothesis that VPSPACE has Small Circuits

In this section, we investigate some consequences of the hypotheses VPSPACE =
VPnb and uniform VPSPACE0 = uniform VP0

nb.

Proposition 6. Under the generalized Riemann hypothesis (GRH),

VPnb = VPSPACE ⇐⇒ [P/poly = PSPACE/poly and VP = VNP].

Moreover, the implication from right to left holds even without GRH.

16 Pascal Koiran and Sylvain Perifel

Proof. Assume first that P/poly = PSPACE/poly and VP = VNP. By
Lemma 10, the equality VPSPACE = VPnb is equivalent to the degree-bounded
analogue VPSPACEb = VP. Let (fn) ∈ VPSPACEb: its coefficient function is
in PSPACE/poly, thus in P/poly by our assumption. Since the set of coefficient
functions of VNP families contains ⊕P/poly (see [3]), hence P/poly, (fn) is in
fact in VNP. By our assumption again, it is in VP.

For the converse, assume now that VPSPACE = VPnb. Again, this is equiv-
alent to VPSPACEb = VP. Hence VNP = VP since VP ⊆ VNP ⊆ VPSPACEb

by Lemma 11. It remains to show that a language A in PSPACE/poly belongs
in fact to P/poly. A is recognized by a P/poly-uniform family of polynomial-
depth boolean circuits, and by Lemma 1 and Proposition 1 there exists a family
(fn) ∈ VPSPACE such that on any boolean input x̄ ∈ {0, 1}n, fn(x̄) ∈ {0, 1}
and fn(x̄) = 1 if and only if x̄ ∈ A.

By our assumption, (fn) ∈ VPnb, thus there exists a family of polynomial-size
arithmetic circuits (Cn), with arbitrary constants, that computes (fn). In order
to evaluate these circuits on boolean inputs with boolean circuits, the problem
now is to eliminate the constants. We proceed as in [3]. Let ȳ be the constants
for the circuit Cn, and call gn(X̄, Ȳ) the polynomial computed by Cn where the
constants are replaced by the new variables Ȳ . Thus gn(X̄, ȳ) = fn(X̄), therefore
the system S of equations in Ȳ defined by

S =
(

gn(x̄, Ȳ) = fn(x̄)
)

x̄∈{0,1}n

has a solution ȳ over C. All the equations in this system have integer coefficients,

degree bounded by 2q(n) and weight by 22q(n)

for some polynomial q, where the
weight of a polynomial is the sum of the absolute value of its coefficients.

By Theorem 4.4 of [3, p. 64], assuming GRH there exists a prime number

p ≤ 2n2q(n) such that S has a solution over Fp. There indeed exists such a p ≤ a
as soon as

π(a)

dO(n)
>

√
a log(wa),

where d and w are bounds on the degree and weight of the equations respectively,
and π(a) is the number of primes ≤ a. Thus there exists a polynomial-size arith-
metic circuit over Fp computing the polynomial gn(X̄, ȳ′) and this polynomial
takes the same values as fn(X̄) on boolean inputs.

Note that the size of p is polynomial, and a solution ȳ′ of this system S over
Fp also has polynomial size. Therefore a polynomial-size boolean circuit working
modulo p can now easily compute the value of gn(X̄, ȳ′) over Fp. This boolean
circuit has the same value on boolean inputs as fn. Hence A ∈ P/poly, and the
announced result is proved. ⊓⊔

We now turn in the next proposition to the most uniform version of the
hypothesis, which is stronger than that of Proposition 6. For the proof, we need
two definitions from [15] and [14].

Definition 5. The formal degree of an arithmetic circuit C is the formal degree
of its output gate, where the formal degree of a gate is defined recursively:

VPSPACE and a Transfer Theorem over the Reals 17

– the formal degree of an input gate is 1;
– the formal degree of a +-gate or a −-gate is the maximum of the formal

degrees of its inputs;
– the formal degree of a ×-gate is the sum of the formal degrees of its inputs.

Definition 6. The class VP0 is the set of families of polynomials computed
by a family of constant-free (i.e. using only 1 as a constant) polynomial-size
arithmetic circuits of polynomial formal degree.

Proposition 7.

Uniform VPSPACE0 = uniform VP0
nb =⇒ PSPACE = P-uniform NC.

Proof. Let us first prove that the hypothesis implies P = PSPACE. Let A be a
PSPACE language: it is decided by a uniform family of polynomial-depth boolean
circuits. By Lemma 1 and Proposition 1, we obtain a family of polynomials
(fn) ∈ uniform VPSPACE0 that agrees with the boolean circuits on boolean
inputs, i.e.,

∀x̄ ∈ {0, 1}n, fn(x̄) ∈ {0, 1} and [fn(x̄) = 1 ⇐⇒ x̄ ∈ A].

By our assumption, (fn) ∈ uniform VP0
nb so that there exists a uniform

family of polynomial-size arithmetic circuits that computes (fn). Of course, on
boolean inputs such circuits can be evaluated in polynomial time (working mod-
ulo 2 to avoid overflows). This implies that PSPACE = P.

Let us now prove that ⊕P ⊆ P-uniform NC under the hypothesis that
uniform VPSPACE0 = uniform VP0

nb. It is enough to show that the ⊕P-
complete language ⊕HamiltonPath (the problem of deciding whether there is an
odd number of Hamilton paths in a graph, see [16, p. 448]) is in P-uniform NC.
For a graph given by its boolean adjacency matrix (ai,j) (where ai,j = 1 iff there
is an edge between i and j), the number of Hamilton paths is

∑

1≤j<k≤n

∑

σ∈Sj,k

n−1
∏

i=1

ai,σ(i),

where Sj,k is the set of all the n-cycles σ ∈ Sn beginning in j and ending in k (j
is different from k in order to count paths in the graph and not cycles, and j is
smaller than k in order not to count twice each path, which would trivialize the
problem ⊕HamiltonPath). The polynomial

pn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑

j<k

∑

σ∈Sj,k

n−1
∏

i=1

xi,σ(i)

therefore outputs the number of Hamilton paths on the boolean encod-
ing x1,1 . . . x1,nx2,1 . . . xn,n of a graph G. This family of polynomials (pn)
is easily seen to be in uniform VPSPACE0, has polynomially bounded de-
gree, and its evaluation modulo 2 provides the answer to the question “G ∈
⊕HamiltonPath?”.

18 Pascal Koiran and Sylvain Perifel

By our assumption, (pn) ∈ uniform VP0
nb so that there exists a P-uniform

family of polynomial-size arithmetic circuits (Cn) that computes (pn). We are
going to build a family of circuits (Dn) that computes a family of polynomials
(qn) ∈ VP0 such that on boolean inputs, pn and qn have the same parity. Note
that despite the polynomial bound on its degree, (pn) needs not be already in
VP0 because the formal degree of Cn needs not be polynomial (indeed, constants
of exponential size might be computed by Cn). This is why we cannot directly
evaluate Cn in parallel with the algorithm of [15].

The idea here is that we can compute only the remainder modulo 2 of the
constants because we are only interested in the result modulo 2. Dn is then
built from Cn as follows. First, note that pn has degree n− 1. We compute each
homogeneous component separately: each gate α of Cn is split into n − 1 gates
α1, . . . , αn−1, the gate αi computing the homogeneous component of degree i
of α. The homogeneous components of degree 0 (i.e. the constants) are not
computed, only their remainder modulo 2 is taken into account. In other words,
we replace an even constant by the constant 0, and an odd one by 1. The P-
uniformity remains because we can compute in polynomial time the the constants
modulo 2. The last step of Dn is to compute the sum of the homogeneous
components of the output gate.

It is easy and well known how to compute these homogeneous components
at each step, while keeping a polynomial circuit size: we merely discard the
homogeneous components of degree > n − 1. With this construction, it is clear
that pn and qn coincide modulo 2, that the construction is P-uniform, and that
the formal degree of Dn is at most n − 1 because there is no constant in the
circuit any more. Hence (qn) ∈ VP0.

In order to decide ⊕HamiltonPath, we therefore only have to compute the
value of qn modulo 2 on the given input, that is, to evaluate a P-uniform circuit
of polynomial size s(n) and polynomially bounded formal degree n−1. Theorem
5.3 of [15] tells us that such a circuit can be evaluated modulo 2 by a logspace-
uniform algorithm in parallel time O(log(s(n)) log(ns(n))), i.e. O(log(n)2), and
with O(n2) processors, thus placing ⊕P in P-uniform NC2.

Hence, assuming that uniform VPSPACE0 = uniform VP0
nb we have proved

that

PSPACE = P ⊆ ⊕P ⊆ P-uniform NC2.

Note that this construction does not seem to be logspace uniform because
evaluating the constants modulo 2 is a P-complete problem.

Since we construct a circuit family which is only polynomial-time uniform,
one could also use the construction of [20] instead of the parallel algorithm of
[15]. Indeed, as pointed out in [15], the construction of [20] can be performed in
polynomial time. ⊓⊔

Remark 1. Despite its unlikeliness, the separation “PSPACE 6= P-uniform NC”
is not known to hold to the authors’ knowledge (by contrast, PSPACE can be
separated from logspace-uniform NC thanks to the space hierarchy theorem).

VPSPACE and a Transfer Theorem over the Reals 19

D Closure Properties

In the same spirit as Lemma 11 from Appendix B but for the unbounded version,
the following lemma is clear by Proposition 1.

Lemma 12. Uniform VPSPACE0 is closed under big sums and big products.

We can even make sums and products over a set more complicated than
{0, 1}, as proven in the following lemma.

Lemma 13. Let A be a language in PSPACE, (fn(x̄, ȳ)) a family in
uniform VPSPACE0 and p(n) a polynomial, where |ȳ| = p(n). Then the fam-
ilies (gn(x̄)) and (hn(x̄)) defined as follows are in uniform VPSPACE0.

gn(x̄) =
∑

ǭ∈A=p(n)

fn(x̄, ǭ) and hn(x̄) =
∏

ǭ∈A=p(n)

fn(x̄, ǭ).

Proof. It is enough to use Lemma 12 since we have

∑

ǭ∈A=p(n)

fn(x̄, ǭ) =
∑

ǭ∈{0,1}p(n)

χA(ǭ)fn(x̄, ǭ), and

∏

ǭ∈A=p(n)

fn(x̄, ǭ) =
∏

ǭ∈{0,1}p(n)

[χA(ǭ)fn(x̄, ǭ) + (1 − χA(ǭ))],

where χA, the characteristic function of A, is in uniform VPSPACE0 by Lemma 1
and Proposition 1 since A is decided by a uniform family of boolean circuits of
polynomial depth. ⊓⊔

E Proof of Proposition 2

C is sliced in levels corresponding to the depth of the gates: input gates are on
the level 0 and the output gate is the only one on level d.

Suppose that the results of the tests of the levels 0 to i− 1 are fixed: we can
then compute all the polynomials tested at level i. Since our agebraic circuits
have fan-in at most 2, there are at most 2d−i gates on level i of C: in particular,
at most 2d−i polynomials can be tested on level i. But the degree of a polynomial
computed at level i is at most 2i and the size of its coefficients is (nd)O(1)2i.
Therefore, by Theorem 1 there are at most (2d)O(n) possible outcomes for the
tests of level i, and they are moreover enumerable in space (nd)O(1). Therefore
we can compute all the (2d)O(n) possible outcomes of all the tests of level i
and proceed inductively. This gives an algorithm using work space (nd)O(1) for
enumerating all the polynomials that can possibly be tested in an execution of the
circuit. Since there are 2dO(n) possible outcomes at each level, the total number
of polynomials for the whole circuit (that is, for d levels) is (2dO(n))d = 2d2O(n),
as claimed in the statement of the theorem.

