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Multitaper Time-Frequency Reassignment
for Nonstationary Spectrum Estimation

and Chirp Enhancement
Jun Xiao and Patrick Flandrin, Fellow, IEEE

Abstract—A method is proposed for obtaining time-frequency
distributions of chirp signals embedded in nonstationary noise,
with the two-fold objective of a sharp localization for the chirp
components and a reduced level of statistical fluctuations for
the noise. The technique consists in combining time-frequency
reassignment with multitapering, and two variations are pro-
posed. The first one, primarily aimed at nonstationary spectrum
estimation, is based on sums of estimates with different tapers,
whereas the second one makes use of differences between the same
estimates for the sake of chirp enhancement. The principle of the
technique is outlined, its implementation based on Hermite func-
tions is justified and discussed, and some examples are provided
for supporting the efficiency of the approach, both qualitatively
and quantitatively.

Index Terms—Chirps, multitapers, reassignment, time-fre-
quency.

I. INTRODUCTION

I N NONSTATIONARY contexts, it is well-known [8] that
Fourier-based methods of (time-varying) spectrum estima-

tion are classically faced with intrinsic limitations and different
kinds of tradeoffs: 1) from a statistical point of view, the usual
bias-variance tradeoff inherent to any estimation procedure is
amplified when analyzing nonstationary stochastic processes,
since time-averaging—aimed at reducing variance—introduces
some bias not only in the frequency direction but also in time and
2) from a geometrical perspective, windowing—aimed at guar-
anteeing a form of local stationarity—ends up with a different
kind of tradeoff related to the time-frequency (TF) localization
in the case of chirp-like signals. Such difficulties have been rec-
ognized long ago, and numerous studies have tried to address
the problem. As far as localization is concerned, Wigner-based
approaches have been developed and shown to outperform win-
dowed (Fourier or wavelet-based) methods, at least in the case of
noise-free single chirps [8]. In more realistic situations of multi-
chirps, a dramatic improvement over both Fourier and Wigner-
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based methods has come from the use of the reassignment tech-
nique [2], with an efficiency that is however limited to the cases
where the signal-to-noise ratio is high enough. Turning to the es-
timation issue in a statistical sense, different attempts have been
made to take advantage of the idea of multitapering, pioneered
by Thomson in a stationary setting [13], and thanks to which an
improved statistical stability can be obtained without a time-av-
eraging step. Numerous extensions of multitaper techniques to
nonstationary situations have been proposed; see, e.g., [5], [10]
and, for a more comprehensive covering of the topics and of the
literature, [4], [15], and the references therein. When extended
in a direct way, the “classical” method of multitapering suffers,
however, still from the TF localization tradeoff previously men-
tioned. Some attempts have been made to circumvent this lim-
itation, in particular by identifying chirp-like components and
excising them prior applying the multitaper machinery [4]. The
purpose of this paper is to avoid such a complication and to
rather combine multitapering (for a sake of variance reduction)
with reassignment (for localization) [16].

More precisely, this paper is organized as follows. In
Section II, the issue of nonstationary spectrum estimation is
briefly addressed and the key concepts of reassignment and
multitapering are recalled. A first combination of both ideas is
discussed in Section III-A, whose aim is to improve statistical
stability while preserving TF localization. This is achieved
by summing estimates based on different tapers, the rationale
being that such estimates tend to behave as well-localized,
weakly correlated, surrogate data whose sum combines coher-
ently chirp components and incoherently noise contributions.
A companion perspective is then envisioned in Section III-B,
which exploits differences between estimates, the idea being
in this case to get rid of noise by masking those regions where
different tapers lead to significantly different estimates. Quanti-
tative performance evaluations are provided for supporting the
efficiency of the approach, and possibilities and limitations of
both variations are illustrated in Section III-C by a number of
numerical experiments.

The algorithms related to this paper and the specific proce-
dures used for producing most of the figures can be freely ob-
tained as Matlab routines . These must be explicitly considered
as part of the paper, since they not only allow the readers to
reproduce the claimed numerical results in a spirit of “repro-
ducible research” (see, e.g., [1]), but also to make their own vari-
ations on their production.

1053-587X/$25.00 © 2007 IEEE
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II. NONSTATIONARY SPECTRUM ESTIMATION

Defining a time-varying “spectrum” for a nonstationary
process is a question that has no unique answer.1

Among the various possibilities stands first the Wigner–Ville
Spectrum (WVS), whose definition reads as follows:

where and refer to time and frequency, respectively, and
stands for the expectation operator. This definition,

though not unique, presents the advantage of extending the
usual concept of power spectrum density (PSD) and making
it time-dependent in a rather natural way. Without entering
into much details, it is worth recalling that the WVS reduces
to the PSD at every instant if the analyzed process happens to
be stationary. Moreover, it satisfies the important property of
preserving time and frequency supports, and its marginal distri-
butions are directly related to meaningful quantities (variance
in time, Loève’s distribution function in frequency).

If we now introduce the (nonrandom) quantity

which is referred to as the Wigner–Ville distribution (WVD), it
can be shown that, under mild conditions, the WVS of a process
is nothing but the ensemble average of the WVDs of its possible
realizations

(1)

Given one observed realization of a nonstationary process, es-
timating the WVS amounts to find a substitute for the unattain-
able ensemble average entering (1). One standard way is to as-
sume for a form of local stationarity in both time and fre-
quency, i.e., some locally slow evolution of the WVS in the two
directions. Such an assumption paves the road for a replace-
ment of the ensemble average at a given TF location by a local
smoothing over a neighboring domain. This idea can be formal-
ized by introducing a TF smoothing kernel and defining
as a WVS estimator the quantity

(2)

This expression, which coincides with Cohen’s class
for the observed realization, offers a unified setting

in which the two tradeoffs mentioned previously (regarding
fluctuations and localization) appear clearly. If we consider,
for instance, the toy example of a linear chirp embedded in
broadband noise, the fluctuations of the WVD due to noise will
be smoothed out provided that is low pass. However,
the WVD of the linear chirp (which has the unique property of
being perfectly localized along the instantaneous frequency)
will be smoothed out too. A way out is however possible by re-
considering the apparently contradictory issues of fluctuations
reduction and localization at the light of the two refinements
offered by reassignment and multitapering.

1The brief overview in this section summarizes classical results that are ex-
posed, e.g., in [8], where further references and details can be found.

A. Reassignment

The smoothing kernel in (2) is a priori arbitrary, and a possi-
bility is to choose as the WVD of some signal sup-
posed to be well localized in both time and frequency, a property
that carries over to its WVD. Doing so, it is easy to show that

, where is nothing but the
spectrogram of with window , a TF distribution that is
usually rather expressed as

(3)

where

stands for the short-time Fourier transform (STFT).
A spectrogram appears, therefore, as an estimator for the

WVS, with the well-known TF localization tradeoff attached to
this type of distribution: the shorter the window , the better
the time localization, but the poorer the frequency localization,
and vice versa. In this respect, however, the alternative inter-
pretation of the spectrogram as a smoothed WVD [according
to (2)] rather than as a squared STFT [according to (3)] gives
the clue for improving upon its localization limitations. Indeed,
if we recall that the WVD of a linear chirp perfectly localizes
on a TF line, the spreading of any corresponding spectrogram
just comes from the fact that, when centering the analysis
window at some TF point that does not belong to this line, a
non-zero contribution is nevertheless obtained as long as the
line passes through the local TF window (whose joint support
cannot be made arbitrarily small). Reasoning by a mechanical
analogy identifying energy with mass, the situation is as if
a whole distribution of mass within a domain (here, the TF
window) would be replaced by one single number (the total
mass) assigned to the geometrical center of the domain. Such
an assignment is clearly not well adapted to situations where
the distribution is not uniform over the domain, a much more
meaningful assignment being the center of mass within the
domain. This is precisely the essence of the “reassignment”
technique [2], [9], which consists in 1) evaluating for each TF
location, not only the integrated signal WVD within the TF
domain of the window (in other words, the spectrogram value
at this point), but also the center of mass of the signal WVD,
and 2) reassigning the spectrogram value to this location. In the
idealized case where one single linear chirp intersects the TF
window, it is clear that the center of mass necessarily belongs to
the line along which the WVD is localized, thus guaranteeing a
perfect localization of the spectrogram after its reassignment.

Previous studies [2], [9] have shown that an efficient evalua-
tion of the local centers of mass can be made implic-
itly, according to

where the two additional windows needed in the computation
are defined from the mother window as
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and . Given the field of all above cen-
troids, the reassigned spectrogram attached to the
conventional spectrogram follows as:

B. Multitapering

In the case of stationary processes, the spectral characteriza-
tion is fully described by means of the PSD , which could
be thought of as

In practice, the previous quantity is unattainable when only one
realization of finite duration is given. The squared Fourier trans-
form (SFT) of a single observation is a crude, nonconsistent es-
timator, whose variance is of the order of the squared PSD [12].
Since an improvement can only come from averaging (almost)
uncorrelated estimations, an ergodic argument suggests to chop
the observation into (almost) disjoint blocks and average their
SFTs (a procedure sometimes referred to as the Welch method
of averaged periodograms). Adopting the notation of spectro-
grams, it turns out that the corresponding (Welch) estimator can
be written as

where the spacing between adjacent ’s is of
the order of the window length. Assuming that this spacing en-
sures an approximate decorrelation between blocks, one can ex-
pect that the variance is inversely proportional to the number of
blocks (i.e., roughly for an observation of duration ).
Although variance can be decreased this way by increasing ,
the finite duration constraint necessarily leads to shorten , in-
creasing, in turn, the bias in frequency since a window of dura-
tion has a frequency resolution of the order of .

In order to circumvent this tradeoff, Thomson suggested
[13] to still average SFTs stemming from (almost) uncorrelated
sequences in order to reduce variance, but to construct such
sequences by using for each of them the whole data set so as
to not sacrifice bias. The way to achieve this program consists
in projecting the observation on a family of basis functions

that are orthonormal over the observation
interval . This results in a (Thomson) estimator
that can be written as

(4)

with all windows extending over .

Assuming that the spectrum is flat over a given bandwidth
associated with the expected frequency resolution, the basis

can be obtained as the family of orthonormal functions (on the
given time interval) that maximize their energy in the given fre-
quency band. The solution to this problem is given by the family
of functions known as the prolate spheroidal wave functions or,
in a discrete-time setting, as the discrete prolate spheroidal se-
quences (DPSS) [12].

Extending the approach to nonstationary situations is ap-
pealing [10], [15]. The main reason is that the inconsistency
(and large variance) of a PSD estimator based on a crude SFT
directly carries over to spectrograms considered as WVS esti-
mators. The traditional way out would be to smooth over time
and frequency, but at the expense of further increasing bias.
In this respect, resorting to multitapers allows for a variance
reduction with a bias that only sticks to the common length
of the different windows. This is certainly an improvement as
compared to (smoothed) spectrograms with respect to statistical
efficiency, but the question of TF resolution still remains unim-
proved. Wedding multitapering with reassignment is, therefore,
proposed as the key for such an improvement.

III. MULTITAPER TIME-FREQUENCY REASSIGNMENT

A. Nonstationary Spectrum Estimation

1) Principle and Implementation: The direct application of
multitapering to nonstationary processes consists in making the
estimator (4) time-dependent according to [10], [15]

with the functions given again as a family of
short-time windows. What we propose here is to adopt the same
strategy, but applied to reassigned spectrograms, i.e., to consider
as a WVS estimator the quantity

(5)

The rationale for this approach can be justified in a twofold way:
1) as far as chirp components are concerned, reassignment in-
creases localization in a way that can be made independent of
the window, thus permitting (5) to act as a coherent averaging
and 2) in noise regions on the contrary, the same windows lead
to uncorrelated surrogate data whose TF distributions are dif-
ferent, (5) acting in this case as a form of incoherent averaging
tending to smooth the estimate.

In stationary spectrum estimation, multitapers are chosen
as DPSSs because the data is of finite duration and estimation
concerns frequency only. In the nonstationary case, there is
no a priori reason to dissymmetrize time and frequency by
choosing tapers that would be perfectly localized in the time
domain rather than in frequency. Indeed, it makes much more
sense to fully exploit the two degrees of freedom offered by
the TF plane and, as suggested in [4], to rather pick up those
functions that maximally concentrate in TF domains with
elliptic symmetry. As shown in [6] in the context of coherent
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states and in [7] within a Wigner framework, those functions
are the Hermite functions (HF), whose definition is given by

with . In practice, HFs can be computed
recursively, according to

where the stand for the Hermite polynomials
that obey the recursion

with the initialization and .
Not only the HFs are orthonormal, but they also guarantee

a perfect localization of the corresponding reassigned spectro-
grams in the case of a linear chirp, whatever . This can be easily
understood by noting that the WVD of an HF (which is basi-
cally a 2-D Laguerre function) has elliptic symmetry [4], [7].
Recalling that the WVD is covariant with respect to dilations
and rotations, it is enough to check that reassignment ends up
with a perfect localization in the case of a pure tone, which can
be done by an elementary calculation.

In the context of reassignment, HFs offer one further advan-
tage, as compared to DPSSs. In the standard implementation of
spectrogram reassignment, only the mother window has to
be given and the two additional windows and
that are needed are evaluated numerically [9]. This may cause
difficulties when differentiating tapers whose order is large,
since they are highly oscillating. This problem can be circum-
vented when using HFs since their successive derivatives also
obey a recursion that can be explicitly plugged in the algorithm,
namely

The effectiveness of this implementation of multitaper reas-
signment is illustrated in Fig. 1 which evaluates the spreading of
cumulative Hermite estimates in the case of a linear chirp and of
a white Gaussian noise (wGn). The measure used for this eval-
uation is a Rényi entropy of order , defined as [3]

for any normalized discrete TF distribution with
points in time and frequency bins.

In the case where the distribution is perfectly localized on,
say, the diagonal of the plane (the situation expected to happen
when reassigning the spectrogram of a linear chirp), we have
ideally and . This
situation contrasts with that of a wGn whose distribution is ex-
pected to spread uniformly all over the plane as

Fig. 1. Spreading of Hermite multitaper estimates. Both diagrams (Top: spec-
trogram; Bottom: reassigned spectrogram) display the Rényi entropies R of
Hermite multitaper TF estimates, as a function of the taper length, and param-
eterized by the maximum Hermite orderK , fromK = 1 (dashed–dotted line)
toK = 10 (solid line). A linear chirp signal and a sample of wGn (512 points
each) are considered, and the theoretical predictions corresponding to a perfect
localization and a uniform spreading (R = 9 and 18, respectively, see text)
are superimposed as dotted lines.

, thus leading to . In the multi-
taper spectrogram case (without reassignment), Fig. 1 evidences
that the spreading can approach the theoretical prediction in the
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Fig. 2. Comparison of noise WVS estimates. Each diagram represents a WVS estimate in the case of a wGn limited in time and frequency within the superimposed
rectangular domain. The first row consists of a spectrogram, its reassigned version and the WVD, based on one realization. The corresponding multitaper estimates
(ten Hermite functions) are given in the middle row, whereas the bottom row displays ensemble averages of such estimates (ten independent realizations), together
with the empirical WVS estimate on the same data set. In each diagram, time is horizontal, frequency vertical, and the energy is coded logarithmically with a
dynamic range of 30 dB.

noise case by increasing the maximum taper order , but at the
expense of increasing at the same time the spreading in the chirp
case, with a minimum value (for a taper length matched to the
chirp rate) that remains significantly large. This contrasts with
multitaper reassigned spectrograms which compare favorably
with the theoretical prediction for chirps for all Hermite tapers
over a wide range of orders and lengths. Comparison is less fa-
vorable in the noise case, but it is continuously improved when
increasing , without degrading the corresponding localization
for chirps.

2) Performance Evaluation: In order to go beyond the nu-
merical check previously described, a first example is concerned
with the idealized situation of a bandpass filtered wGn within a
time-limited support. Although not strictly attainable (because
of the uncertainty relation), the model for the WVS
of such an observation is the indicator function of a rectangle of
area within the TF plane.2 Fig. 2 illustrates what happens in
such a case by comparing the WVD and a sample (reassigned)
spectrogram with the corresponding multitaper estimates based
on Hermite functions. The two effects of reduced fluc-
tuations and support preservation are clearly visible, and en-
semble averages (based on ten independent estimates) are also
provided for supporting the effectiveness of the approach and

2As suggested by one of the reviewers, the evaluation could be carried out
with the admissible model of a Gaussian modulated Gaussian bandpass filtered
white Gaussian noise. This model is detailed in , together with the associated
Matlab codes, leading to results which proved to be similar to those reported
here.

its improved convergence rate as compared to an empirical es-
timate of the WVS.

Fig. 2 gives a qualitative account of the behavior of the
method, that can be supplemented by the quantitative measure

(6)

where stands for the WVS estimate ( or
), the -norm being here chosen so as to put em-

phasis on localization in the estimates.
Fig. 3 presents results with different domains, all rectangular

and centered in the analyzed TF region, but with different areas
. In the pure wGn case where the model support extends over

the whole plane (in this case, ), we observe for both
spectrograms and reassigned spectrograms that the error mea-
sure behaves asymptotically as when using
tapers. In the spectrogram case, this can be justified since, for
each taper, the values are known to be distributed with 2 de-
grees of freedom [12]. It follows from the orthogonality of the
tapers that the sum of the first Hermite spectrograms is also

distributed, but with degrees of freedom. Given a dis-
tribution with degrees of freedom
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Fig. 3. Error measures in WVS multitaper estimates. The figure plots, as a
function of the number of tapers K , the error measure (6) attached to multi-
taper (reassigned) spectrograms when the model is a wGn limited in time and
frequency over a rectangular domain of areaD. The simulations have been con-
ducted (with up to K = 15 Hermite tapers, each of length 127) on the basis of
ten independent realizations of 512 data points each, with 256 frequency bins
over the whole frequency range [0; 1=2). In the pure wGn situation (D = 256),
asymptotic decays inK (see text) have been superimposed as dotted lines.

its absolute mean deviation [the quantity on which the perfor-
mance measure (6) is based] can be evaluated by using prop-
erties of the incomplete Gamma function. A simple calculation
ends up with the result

and, for large ’s, we can apply Stirling’s formula from which
we get the asymptotic behavior

Specifying this result to the case where , we,
therefore, justify that the sum of spectrograms based on
orthogonal tapers has an absolute mean deviation which varies
as for large ’s, leading to the behavior for
the mean . Although no proof is available yet, the
experiments reported in Fig. 3 evidence a similar behavior for
multitaper reassigned spectrograms , but with a
higher level of fluctuations. However, when the area of the
domain is reduced, the situation evolves quite differently
for the two estimates: on the one hand, is smoother that

; on the other hand, is essentially confined to the
non-zero support of the model, whereas spreads outside
this domain. The criterion (6) can, therefore, be viewed as a
measure of a tradeoff between a “bias” term (due mostly to
the existence of non-zero values outside the model domain)
and a “variance” term (related to nonconstant values within the

domain). In the case of pure wGn, no bias in the aforemen-
tioned sense enters the measure and decreases when
is increased. When becomes smaller, the variance reduction
is balanced by a bias term increasing with , since the higher
the order of an Hermite taper, the larger its TF support. This
analysis applies to the spectrogram but not to the reassigned
spectrogram, since squeezing smeared spectra concentrates
the error on the fluctuations term which globally decreases
always the same way. This is illustrated in Fig. 3, evidencing
eventually crossings indicating that multitaper spectrograms
may be outperformed by their reassigned counterparts when
localized components are to be analyzed.

3) Variations: While preserving the basic idea, different vari-
ations upon the previously proposed method can be considered.
Indeed, the key point in the method is to combine different es-
timates, and the arithmetic means used in the “classical” multi-
taper approach as well as in (5) appears as one possibility only
among others. Comprehensive approaches have been reported
[11] on such generalizations in the general context of optimally
combining different TF distributions, given some criterion to
minimize. What has been shown is that arithmetic averaging
naturally results from the requirement that the combined dis-
tribution be at a minimum -distance of all distributions to be
combined. Changing the chosen distance ends up with different
ways of averaging and, e.g., replacing the -distance by a Kull-
back–Leibler divergence leads to a geometrical mean instead of
the arithmetic one.

Given positive numbers , their arith-
metic and geometric means, defined, respectively, as

are clearly such that

evidencing that geometrically averaging quantities essentially
amounts to arithmetically averaging their logarithms. In the con-
text of multitaper spectrum estimation, this corresponds to ap-
plying the machinery to log-spectra, a possibility that has been
explored in [14] in a stationary context, and that can be adapted
to nonstationary situations. Given the fact that reassigned spec-
trograms have a high variability, crude geometric means could
tend to favor the small (or even zero) values that might appear
in one individual estimate only. A possible improvement is first
jacknifing estimates based on arithmetic means prior their geo-
metric averaging. In other words, an alternative to the procedure
previously described is
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with

This variation is proposed as an option in the Matlab routines
available at , but it has been observed to lead to results (not re-
ported here) that were similar, or only incrementally improved.
It was however worth mentioning it since the use of log-distri-
butions that underlies the idea of geometrical averaging proved
useful in the companion approach described in Section III-B.

B. Chirp Enhancement

1) Principle and Implementation: Section III-A aimed at re-
ducing variability in nonstationary spectrum estimation while
preserving localization of chirp components, was based on an
idea of averaging, i.e., of an additive combination of estimates
obtained from different tapers. Making use of similar arguments
now based on differences, a companion perspective can be en-
visioned for a sake of chirp enhancement, i.e., of displaying at
best localized chirp components in the TF plane while getting
rid of noise. The rationale for this new approach can be justified
by the following two-fold argument: 1) as far as signal com-
ponents are concerned and as mentioned before, reassignment
increases localization whatever the window: reassigned spec-
trograms obtained from different tapers are thus expected to be
similar, so that their differences take on small values and 2) in
noise regions on the contrary, the same set of windows lead to
weakly correlated surrogate data whose TF distributions are sig-
nificantly different, leading in this case to large values for their
differences.

What we propose, therefore, is to consider such differences
between the estimates based on the different tapers. As for
“sums,” “differences” can be considered in a generalized sense
and, in accordance with the usual way of displaying spectra in
decibel units (see figures), logarithms of TF estimates will be
used. In fact, evaluating differences between log-distributions
just amounts to evaluating ratios between the distributions
themselves, leading to define as a measure of average differ-
ence between estimates based on successive tapers the quantity

(7)

It is this quantity that is proposed to be thresholded in order
to distinguish between the (“coherent”) signal components and
the (“incoherent”) noise regions. More precisely, the idea is 1)
to define a binary mask function taking on zero values for those
TF points where the criterion (7) differs significantly from unity
and 2) to multiply this mask with the average reassigned spec-
trogram , so as to end up with a masked distribu-
tion expected to preserve the chirp components
while erasing most of the noise. In practice however, we cannot
expect to completely get rid of noise by averaging a limited
number of difference distributions. Therefore, a threshold is pro-
posed to be first applied to the average reassigned spectrogram

so as to get a predenoised version .
Proceeding from this point as before, this preprocessing leads,
after masking, to a final, combined estimate . In-
terestingly, the binary nature of the two masking functions in-
volved in the two thresholding operations detailed before allows
to write

thus making of the combined estimate the geo-
metric mean of the two distributions based on the (thresholded)
sums and differences of the individual taper estimates.

A key question in the approach is of course the choice of
the thresholds. Since no theory is available yet for the prob-
ability distribution function of reassigned spectrograms (and,
a fortiori, of their ratios), a pragmatic approach is to set the
threshold values on the basis of numerical experiments. The
nominal values given in and used in the examples reported here
have been determined this way (for details about this determi-
nation, see ), and they proved to guarantee fairly robust estima-
tions in a large variety of experimental setups. The predenoising
threshold —applied to —was chosen according
to a given (“detection”) probability for rejecting the null hy-
pothesis of wGn. Similarly, the masking threshold —applied
to —was chosen so as to guarantee some pre-
scribed (“false alarm”) probability for the rectified quantity

in the wGn case. In practice, (re-
spectively, ) turned out to essentially depend on
(respectively, ), with typical values times the em-
pirical mean of for and for

when ranges in between 4 and 8.
2) Performance Evaluation: In order to test the relevance of

the proposed methodology, one of the simplest cases to con-
sider is concerned with a pure tone (signal with constant fre-
quency and amplitude) embedded in a background of zero-mean
wGn. Fig. 4 illustrates what happens in such a case with
10 dB. The two effects of reduced noise and support preserva-
tion of the localized signal component thanks to using differ-
ences are clearly visible, as well as the impact of predenoising
for the sake of a further noise reduction.

Fig. 4 gives a qualitative account of the behavior of the
method, which can be supplemented by the quantitative
measure

(8)

where stands for the WVS estimate (
, or ), and is the

actual frequency of the tone. The criterion (8), which can be
interpreted as a contrast measure, is illustrated in Fig. 5 for dif-
ferent SNRs ranging from 40 to 40 dB. Comparing the crite-
rion for the four different estimates, two regimes are observed:
for 0 dB, the method of predenoising

is more efficient than the one based on differ-
ences only , whereas the latter
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Fig. 4. Comparison of WVS estimates: pure tone in stationary noise. Each diagram represents a WVS estimate in the case of one realization of a pure tone
embedded in wGn with SNR = 10 dB. The first row consists of a spectrogram (left), its reassigned version (middle), and the corresponding multitaper reassigned
estimate (based on four Hermite functions), whereas the bottom row displays the predenoised reassigned spectrogram (left), the masked reassigned spectrogram
(middle), and the final combined estimate (right). In each diagram, time is horizontal, frequency vertical, and the energy is coded logarithmically with a dynamic
range of 30 dB.

Fig. 5. Contrast in the case of a pure tone embedded in wGn. The figure plots,
as a function of SNR, the measure (8) for each WVS estimate (see text). The
simulations have been conducted (with four Hermite tapers, each of length 155),
on the basis of ten independent realizations of 512 data points each, with 256
frequency bins over the whole frequency range [0; 1=2). The dotted vertical line
corresponds to the SNR used in Fig. 4.

outperforms the former when 0 dB. This situation is uni-
formly improved when combining the two estimates according
to .

C. Examples

Only schematic examples have been considered so far and
this section is devoted to slightly more elaborated ones. In this
respect and for a sake of comparison, we first consider in Fig. 6
the case already discussed in [4] and [5], with both a (non-
linear) chirp component and a (bandpass) time-varying noise.
Concerning spectrum estimation, the effectiveness of the ap-
proach is clearly supported by this example which evidences the
good tradeoff achieved between TF localization along the chirp
and smoothness within the (time-varying) frequency band of the
noise. As far as chirp enhancement is concerned, the final com-
bined estimate identifies in a very localized way the frequency
trajectory while erasing most of the noise.

As a second example, we consider in Fig. 7 the case where
two chirps (a linear one added to the nonlinear one of the
previous example) are closely superimposed, with crossings of
their instantaneous frequencies in the TF plane, some transient
noise being added in a disjoint domain. The overall behavior of
the different estimates is similar to what has been observed in
Fig. 6, with the noticeable additional benefit for the combined
estimate of improving upon the suppression of the interference
terms existing between the two closely spaced chirps.

IV. CONCLUSION

A novel approach, combining reassignment and multita-
pering, has been proposed for better estimating time-varying
spectra with possibly localized components. The general
principles of the approach have been outlined and illustrated,
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Fig. 6. Comparison of WVS estimates: one chirp in time-varying noise. Each diagram represents a WVS estimate in the case of one realization of a nonlinear
chirp signal embedded in time-varying Gaussian noise with SNR = 5 dB. Same display as in Fig. 4, the limits of the noise TF domain being superimposed as
dotted–dashed lines.

Fig. 7 Comparison of WVS estimates: two chirps and transient noise. Each diagram represents a WVS estimate in the case of one realization of a two component
chirp signal superimposed to a transient Gaussian noise with SNR = 10 dB. Same display as in Fig. 4.

leaving room for many possible extensions. Some possible
variations (related to the choice of the averaging type) have
been mentioned but, in the specific context of reassignment,
other possibilities are offered which are worth to be explored
further such as, e.g., combining reassignment vector fields and

not only reassigned distributions. More fundamentally, both
the performance evaluation in the spectrum estimation context
and the tuning of parameters (such as thresholds) for chirp
enhancement call for a theoretical analysis of the statistics of
reassigned spectrograms.
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