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Abstract

Standard exposition of Empirical Mode Decomposition (EMD) is usually done within a
continuous-time setting whereas, in practice, the effective implementation always operates
in discrete-time. The purpose of this contribution is to summarize a number of results aimed
at quantifying the influence of sampling on EMD. The idealized case of a sampled pure tone is
first considered in detail and a theoretical model is proposed for upper bounding the approx-
imation error due to finite sampling rates. A more general approach is then discussed, based
on the analysis of the nonlinear operator that underlies the EMD (one step) sifting process.
New explicit, yet looser, bounds are obtained this way, whose parameters can be estimated
directly from the analyzed signal. Theoretical predictions are compared to simulation results
in a number of well-controlled numerical experiments.

1 Introduction

In most expositions of “Empirical Mode Decomposition” (EMD), it is implicitly assumed that

the considered signals are given in continuous-time and, indeed, the rationale underlying EMD

is more intuitive this way [1]. In practice however, EMD is usually implemented in discrete-time

and applied to digital time series (see, e.g., [3,7]), either because the analyzed data is intrinsically

discrete, or because it results from the sampling of some underlying continuous-time process.

Considering a continuous-time signal, the sampling step which is required prior applying EMD is

expected to affect the resulting decomposition in some way, and it is therefore the purpose of this

paper to address some of the issues raised by sampling in the context of EMD, so as to help in a

well-controlled (and, hopefully, robust) use of the technique in practical situations. More precisely,

the paper is organized as follows. Section 2 provides a detailed analysis of the influence of sampling

in the simplified case of a single tone. Under a number of assumptions that are critically examined,

an upper bound is derived for the approximation due to finite sampling rates, and the relevance of

the theoretical model is supported by numerical simulations. The analysis is further generalized

beyond tones in Section 3, on the basis of a study of the elementary sifting operator involved

in the EMD. This results again in a predicted bound for the error, that it shown to depend on

parameters that can be estimated from the data. A set of numerical simulations with synthetic

signals is then performed for assessing the performance of the theoretical upper bound model.
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Figure 1: EMD of a tone—Qualitative influence of sampling. The analyzed tone is plotted in
dotted line and its sampled version in full blue line (top diagram). Due to the finite (though
admissible in Shannon’s sense) sampling rate, the upper and lower envelopes as well as their local
mean (plotted in red dashed lines) are oscillating. As a result of this oscillation, the 1st extracted
IMF (middle diagram) does not exhaust the description of the signal as it would be expected for
a continuous-time tone, and a non-zero residual oscillation is introduced (bottom diagram).

2 EMD of a tone

Let us start with the simplest example of a continuous-time tone, i.e., a waveform x(t) defined as

the sinusoidal, unit period, signal:

x(t) = cos 2πt. (1)

In this idealized situation, the analyzed signal fulfils — by construction — all the requirements

for being an “Intrinsic Mode Function” (IMF) [1], and EMD is in this case expected to act as the

identity operator, with the signal itself as the unique output IMF and no residual. Whereas this

interpretation obviously holds true in continuous-time, it turns out that the picture is dramatically

changed when sampling enters the play. In fact, EMD is basically constructed on signal extrema,

and the extrema of a sampled signal generally differ from those of its continuous-time counterpart:

it follows that the local mean (defined as the mean of the envelopes interpolating the extrema)

may present some sampling related artefacts, as illustrated in Figure 1.

2.1 Sampling error as a function of the sampling frequency

In order to evaluate the influence of sampling, we introduce sampled versions of (1) as:

xfs,ϕ[n] = x

(
n

fs
+ ϕ

)
= cos

(
2π
fs
n+ 2πϕ

)
(2)

with n ∈ Z, where fs and ϕ stand for the sampling frequency and phase, respectively. Since the

original signal (1) is already an IMF, we then propose to evaluate the influence of the sampling
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parameters fs and ϕ by using as an error criterion the simple (l1) discrepancy function:

ex(fs, ϕ) =
∑N
n=1 |xfs,ϕ[n]− dfs,ϕ[n]|∑N

n=1 |xfs,ϕ[n]|
, (3)

where dfs,ϕ[n] stands for the first IMF computed from the discrete-time version (2) of the continuous-

time tone (1). We will also define and use another quantity ēx(fs), which is the phase averaged

version of ex(fs, ϕ):

ēx(fs) = Eϕ {ex(fs, ϕ)} =
∫ 1

0

ex(fs, ϕ) dϕ, (4)

with ϕ a random variable uniformly distributed over the interval [0, 1[.

2.2 Bounding the sampling error

The influence of sampling on the EMD of a pure tone has already been partly considered in previous

publications [3–6], and it has been observed (from simulation experiments) that the criterion (3)

admits an upper bound inversely proportional to the square of the sampling frequency1. The

purpose of this section is to justify this observed behaviour. More precisely, we will prove that:

ex(fs, ϕ) ≤ π

4

(
1− cos

π

fs

)
≤ π3

8f2
s

, (5)

the first bound being furthermore tight when ϕ = 0 and fs = 2k + 1, k ∈ N.

In order to do so, we will have to make some assumptions, which consist in the following three

approximations:

1. The upper envelope interpolating the maxima takes values between the smallest maximum

and 1. Similarly, the lower envelope takes values between −1 and the greatest minimum.

2. The first IMF is obtained through a unique sifting step.

3. The l1-norm of xfs,ϕ[n] is exactly 2N/π.

The first approximation allows us to control the value of the envelopes by just considering the

extrema. Actually, this approximation can also be exact depending on the interpolation used to

compute the envelopes. As a matter of fact, this is the case for linear interpolation and for the

built-in MATLAB pchip (a.k.a. cubic) interpolation. Unfortunately, it is only an approximation

for the cubic spline interpolation, which is by far the most commonly used. Nevertheless, this

approximation holds well in the specific case of sinusoidal signals.

The second approximation is a bit more questionable. In fact, it generally takes more than

one sifting step to obtain an admissible IMF. However, the first sifting step is always the most
1In fact, the experiments conducted in [3,4] adopted a reversed perspective as compared to the approach followed

here: the sampling frequency was indeed kept fixed (and arbitrarily set to unity) and the frequency of the analyzed
tone was varied. It followed that the error measure was evaluated as a function of the tone frequency, with an
observed upper bound proportional to its square.
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important one, and the following steps just improve slightly the final result. It has nevertheless

to be noticed that this may not be the case for any input signal: for some signals indeed, the first

sifting step can reveal new extrema and, therefore, the next sifting step may be as important as

the first one. In the specific case of sinusoidal signals, there are however no new extrema revealed

by any sifting step, and neglecting the sifting steps after the first one is therefore a reasonable

hypothesis.

Finally, the third approximation is nearly exact for almost all sampling frequencies provided

there is a large number of periods in the signal. The only exceptions occur for sampling frequencies

that are simple rational numbers but, even in these cases, the discrepancy is rather small.

Assuming that the three above approximations hold, the proof of (5) proceeds as follows. Using

first the third hypothesis, we can write (3) as:

ex(fs, ϕ) =
∑N
n=1 |xfs,ϕ[n]− dfs,ϕ[n]|∑N

n=1 |xfs,ϕ[n]|

=
π

2N

N∑
n=1

|mfs,ϕ[n]| , (6)

where mfs,ϕ[n] is the local mean of xfs,ϕ[n], which is also the mean of the envelopes emin[n] and

emax[n] thanks to the second hypothesis. Using then the first hypothesis, we know that emax[n]

is positive and emin[n] negative. Thus,

|mfs,ϕ[n]| =
∣∣∣∣emax[n] + emin[n]

2

∣∣∣∣
=
||emax[n]| − |emin[n]||

2

≤ 1− α
2

,

where −α is an upper bound for the values of the minima or, alternatively, α is a lower bound

for the maxima. The value of α is rather easy to obtain as it corresponds to the case where two

consecutive sampling points hit the continuous-time sinusoid symetrically with respect to one of its

extrema. We get therefore α = cos(π/fs) and, using finally the common formula “cosu ≥ 1−u2/2”,

we obtain the last part of the desired result (5).

The obtained upper bound is furthermore reached for sampling frequencies fs = 2k+ 1, k ∈ N

and phase ϕ = 0. In this case indeed, the upper and lower envelopes are constants with respective

values 1 and − cos(π/fs), and the π3/8 coefficient in the f−2
s bound is thus optimal. This concludes

the proof.

Figure 2 (left diagram) illustrates the behaviour of the actual error (3) as a function of the

sampling frequency, as well as the effectiveness of the upper bound (5).
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Figure 2: EMD of a tone—Quantitative influence of sampling. The left diagram displays (full blue
lines) the actual maximum and minimum (with respect to the phase) error (3) as a function of
the sampling frequency in the case of a tone with N = 2048 data points, the superimposed dashed
red line corresponding to the (tightest) upper bound given by (5). The right diagram displays the
same way (full blue line) the associated phase-averaged error (4), the superimposed dashed red
curve corresponding to the model (10).

2.3 A model for the phase-averaged sampling error

Based on the same set of hypotheses, we can propose for the phase-averaged sampling error a

model which is closer to the observed experimental results. Unlike the previous analysis, this

model does not give, per se, an upper bound for ēx(fs) but rather an order of magnitude for it

and, thus, for ex(fs, ϕ). An advantage of this new model (which, as for the upper bound model, is

only based on some considerations about the extrema of the sampled signal) is however its ability

to describe the overall shape of the sampling error and, in particular, to justify its decay around

sampling frequencies that match even integers.

Let us first notice that the sampling phase being a random variable uniformly distributed over

[0, 1[, the process xfs,ϕ[n] is stationary. If we ignore boundary conditions issues, we can assume

that dfs,ϕ[n] and mfs,ϕ[n] are stationary processes as well. Therefore, using (6), we can simplify

the expression of ēx(fs) and get, for any n:

ēx(fs) =
π

2
Eϕ {|mfs,ϕ[n]|} . (7)

The next step is therefore to estimate locally the value of the local mean of the signal. At this end,

the main idea is to approximate the values of the envelopes by the values of the nearest extrema.

It follows that the absolute value of the local mean can be approximated by:

|mfs,ϕ[n]| ≈ 1
2

∣∣∣∣cos
(

2π
fs
nmax + 2πϕ

)
+ cos

(
2π
fs
nmin + 2πϕ

)∣∣∣∣ ,
5



where nmax (resp. nmin) refers to the index of the nearest maximum (resp. minimum).

Knowing that a maximum of the sampled signal is distant from the corresponding maximum

of its continuous-time counterpart by at most half a sampling period, there exists necessarily an

integer k such that

ϕmax ≡
nmax
fs

+ ϕ− k ∈
[
− 1

2fs
,

1
2fs

]
.

Moreover, if ϕ varies uniformly over [0, 1[, so does ϕmax over [−1/(2fs), 1/(2fs)[ and, therefore:

Eϕ {|mfs,ϕ[n]|} ≈ 1
2

Eψ
{∣∣∣∣cosψ + cos

(
2πñ(ψ)
fs

+ ψ

)∣∣∣∣} , (8)

where ψ is a random variable uniformly distributed over [−π/fs, π/fs[ and ñ(ψ) refers to the

index of the first minimum of cos(2πn/fs + ψ). If we let K be the integer part of fs/2 and

ψ̃ = π − (2K + 1)π/fs, we can express ñ(ψ) as follows:

ñ(ψ) =

{
K if ψ > ψ̃ ;
K + 1 if ψ < ψ̃.

Replacing ñ(ψ) by its value in (8) yields:

Eϕ {|mfs,ϕ|} ≈
fs
4π

∫ π/fs

−π/fs

∣∣∣∣cosψ + cos
(

2πñ(ψ)
fs

+ ψ

)∣∣∣∣ dψ,
≈ fs

4π

[∫ π/fs

ψ̃

∣∣∣∣cosψ + cos
(

2πK
fs

+ ψ

)∣∣∣∣ dψ
+
∫ ψ̃

−π/fs

∣∣∣∣cosψ + cos
(

2π(K + 1)
fs

+ ψ

)∣∣∣∣ dψ
]
.

Plugging this result into (7), we get after some algebra:

ēx(fs) ≈
fs
2

[
cos
(
Kπ

fs

)(
1− sin

(
(K + 1)π

fs

))
+ cos

(
(K + 1)π

fs

)(
sin
(
Kπ

fs

)
− 1
)]

. (9)

Finally, the above result can be greatly simplified by the use of the common approximations

“sinu ≈ u” and “1 − cosu ≈ u2/2 for small u’s. If we assume that π/fs � 1, we have then

|π/2−Kπ/fs| � 1 too and, therefore, (9) reduces to:

ēx(fs) ≈
π3

16f2
s

(2(K + 1)− fs)(fs − 2K). (10)

As it can be seen from this last equation, the model results in a parabolic approximation of

ēx(fs) on each sampling frequency interval of the form {[2k, 2(k + 1)], k ∈ N}, thus justifying the

decay of ēx(fs) around frequencies that match even numbers. Moreover, the model accounts for

the “1/f2
s ” tendency reported above, as evidenced by the prefactor, and it is also equal to ēx(fs)

for every integer sampling frequency2.

The model (9) and its approximation (10) are plotted in Figure 2 (right diagram). It is worth

noticing that the last approximation holds well for the whole frequency range.
2Unlike what is said in [4], the corresponding model in this paper is also exact under the very same conditions,

up to a missing
√

2 factor.
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3 Generalization beyond tones

To address properly the sampling issue, we first have to define some minimum requirements on

the sampling parameters for a continuous-time signal to be processed by EMD. As extrema play a

major role in the sifting operator, a natural requirement would be for a discrete-time signal to keep

as many extrema as does its continuous-time counterpart. In fact, losing one extremum during

the sampling process usually means losing a pair of maximum/minimum, which in turns means

losing one local oscillation for the EMD. To ensure that there is no loss of extrema, the minimum

requirement is for the sampling period to be at most one half of the minimum distance between

extrema in the signal. In all the following, we will implicitly consider that this requirement is

met.3

3.1 A bound on the sampling error for the elementary sifting operator

Given a continuous-time signal x(t) with a minimum distance ∆ between its extrema, we will

consider as before its discretized versions {xfs,ϕ[n] = x(n/fs + ϕ), n ∈ Z}, with the aim of

characterizing the behaviour of their EMD as a function of the sampling frequency fs > 2/∆.

More particularly, we will be mainly interested in the deviation between the sampled IMFs and

the theoretical, continuous-time, ones. When dealing with sinusoidal signals however, we based

ourselves on three hypotheses (see Sect.2.2). Among these, the second one, saying that the first

IMF is obtained through a unique sifting step, is a fair approximation for sinusoidal signals but

becomes a really strong assumption for more general cases. Indeed, some extrema pairs are likely to

appear after any iteration of the sifting process, thus compelling us to consider all the sifting steps.

This unfortunately brings about two major issues to the analysis of the influence of sampling:

1. If an extrema pair appears at some point in the sifting process for a given set of sampling

parameters, there is no guarantee that a similar extrema pair will ever appear for another

set, even for same sampling frequencies and different phases. Moreover, the appearance of

an extrema pair for a given set of sampling parameters seems rather unpredictable.

2. We generally don’t know how many sifting steps are to be performed to extract the first IMF.

Moreover, as this is generally decided by a test within the sifting loop, the precise number

of iterations may depend on the analyzed discrete signal and therefore on the sampling

parameters.

Because of these cumbersome issues, we will mainly focus on the effect of sampling on one sifting

step only, or on what we refer to as “the sifting elementary operator” (thereafter denoted S)

3It is worth noticing that this requirement is completely independent from Shannon’s sampling criterion for
band-limited signals: indeed, a band-limited signal can have arbitrary close extrema, whatever its frequency band.
For instance, t 7→ (1− ε) sin εft− ε sin ft has two extrema at ±

√
2ε/f for ε� 1.
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corresponding to the operation of subtracting to a signal the mean of its envelopes. More precisely,

we will investigate the case of a simplified elementary operator for which we can derive an upper

bound for the sampling effects. The obtained results will then be assessed by simulations using

the original operator.

3.1.1 Model

We start off with analyzing the effects of sampling on the extrema. If t0 is the position of a local

maximum in x(t), the condition fs > 2/∆ ensures that there is also a maximum in xfs,ϕ[n] for n

such that |n/fs + ϕ− t0| < 1/fs, i.e., that the closest sampling point — either on the right or on

the left — of the continuous-time maximum is a maximum for the sampled signal. More precisely,

we can define the index of the extremum in the sampled signal as the one (or one of the two) such

that n/fs + ϕ ∈ I0 ≡ [t0 − a, t0 + b] with a, b > 0, a+ b = 1/fs and x(t0 − a) = x(t0 + b).

Taking these uncertainties into account, the next step in the analysis is to evaluate their impact

on the envelopes emin(t) and emax(t). Usually, these envelopes are computed using a cubic spline

interpolation [1, 3]. In our model however, we will use piecewise linear interpolation (this is the

only simplification we consider for the elementary operator S). The reason for this is simply that

the value of a cubic spline interpolation between two knots depends not only on a few knots around

but also on all the knots defining the interpolation. In this context, calculating an uncertainty on

the value of the interpolation at a specific position, given uncertainties on all the knots, is rather

complicated. It turns out that evaluation is much simpler with a piecewise linear interpolation,

while guaranteeing that the obtained uncertainties generally match the observations.

If we then consider two consecutive maxima (t0, x(t0)) and (t1, x(t1)) in the continuous-time

signal, the corresponding maxima in the sampled signal are located within the rectangular boxes

{[ti −∆(i)
abs., ti + ∆(i)

abs.] × [x(ti) −∆(i)
ord., x(ti)]; i = 0, 1} (see Figure 3). In this context, it is clear

that the largest error for the envelope is obtained for the thick dash-dot line case. Integrating this

error over the range [t0, t1] (corresponding to the shaded surface in Figure 3), we get over this

range a bound (referred to as δemax(t)) on the sampling error for the upper envelope emax(t):∫ t1

t0

|δemax(t)|dt ≤
(t1 − t0)(∆(0)

ord. + ∆(1)
ord.)

2
+(t1−t0)

|x(t1)− x(t0)−∆(1)
ord. + ∆(0)

ord.|(∆
(1)
abs. + ∆(0)

abs.)

2(t1 − t0 − |∆(1)
abs. −∆(0)

abs.|)
,

which leads in turn to the looser bound:∫ t1

t0

|δemax(t)|dt ≤ (t1 − t0) ·
∆(0)
ord. + ∆(1)

ord.

2
+ |x(t1)− x(t0)| ·

∆(1)
abs. + ∆(0)

abs.

2

+
t1 − t0

t1 − t0 − |∆(1)
abs. −∆(0)

abs.|
·
∆(1)
abs. + ∆(0)

abs.

2
·|∆(1)

ord.−∆(0)
ord.|+

|∆(1)
abs. −∆(0)

abs.|
t1 − t0 − |∆(1)

abs. −∆(0)
abs.|
·|x(t1)−x(t0)|,

(11)

In the last formula, the first term can be read as the average uncertainty caused by the

uncertainties in ordinate only, its amplitude depending only on the behaviour of the signal around
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2∆abs.

2∆abs.

∆
(0)
ord.

∆
(1)
ord.

t0 t1

Figure 3: Evaluating the uncertainty for the envelopes. For both maxima, the dashed boxes delimit
the areas where the corresponding maxima in the sampled signal can be located. The thick plain
line stands for the interpolation (piecewise linear in the model) based on the extrema in the
continuous-time signal. Then the dash-dot lines delimit the area where the interpolation based on
the extrema in the sampled signal can be located. Finally, the thick dash-dot line stands for the
case that leads to the largest error.

its extrema. This contrasts with the second term which, depending on the uncertainties in abscissa,

does not only depend on the behaviour of the signal around its extrema, but also on the relative

amplitudes of successive extrema. If the analyzed signal is, e.g., an amplitude modulated (AM)

sinusoidal signal, then the amplitude of the first term will only depend on the sampling frequency

and on the frequency of the AM signal, while the second one will depend on the frequency and

amplitude of the modulation too. Finally, the last terms, depending on both uncertainties, are

generally much smaller than the first two ones and can therefore be neglected in most cases.

If we compute the bound (11) on each range delimited by two consecutive maxima, we obtain

a bound for the L1-norm of the sampling related effects on the upper envelope. Repeating the

same operation for the lower envelope then results in a bound on the error for the mean of the

envelopes, which is simply half the sum of bounds on each envelope. Finally, this bound is also

valid for the elementary operator defined as the difference between the signal and the mean of the

envelopes.

3.1.2 Estimating the parameters from the signal

Given a signal x(t), computing the upper bound (11) requires only a limited set of parameters

(namely, the positions (ti, x(ti)) and the uncertainties ∆(i)
abs. and ∆(i)

ord. for each extremum) that

are rather easy to measure in continuous-time. However, if we only have a discrete version of

the signal, some of these parameters cannot be evaluated without prior additional information.
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Indeed, the (ti, x(ti)) can be estimated by the corresponding extrema values in the discrete signal:

t̂i = ni/fs + ϕ and x̂i = x̂(ti) = xfs,ϕ[ni], where ni is the index of the ith extremum in the

discrete signal. In these estimates the time instants ti are estimated with a precision of order

1/fs. This unfortunately implies that the uncertainties in abscissa ∆(i)
abs. ∈ [1/2fs, 1/fs[ cannot be

estimated with a decent precision, thus constraining us to use the upper bound 1/fs as a default

value for all extrema. Concerning the ∆(i)
ord. however, these can be estimated but only if we have

some additional information on the behaviour of the signal around its extrema. A natural way

to proceed is to make a regularity assumption on the signal: if we, e.g., require the signal to be

twice continuously differentiable, then we can use a second order Taylor expansion to estimate

the behaviour of the signal around its extrema. We can this way use the parabolic approximation

x(t) ≈ 1
2 (t− ti)2x′′(ti), which leads to ∆(i)

ord. ≈
1
2 |x

′′(ti)|/f2
s . Finally, the second derivatives x′′(ti)

can themselves be estimated using finite difference operators at the extrema of the sampled signal,

leading to x̂′′i . Putting these approximations back into (11) results in an estimate of the maximum

sampling error over the range [ti, ti+1] for the upper envelope:∫ ti+1

ti

|δemax(t)|dt ≤
(t̂i+1 − t̂i)|x̂′′i + x̂′′i+1|

4f2
s

+
|x̂i+1 − x̂i|

fs
+
|x̂′′i+1 − x̂′′i |

2f3
s

.

We are thus led to the central result of this paper, i.e., the existence of an upper bound for

the L1-norm of the sampling error for the elementary operator δS of the form:

‖δSx‖1 ≤
λ

fs
+

µ

f2
s

+
ν

f3
s

, (12)

where the integration for the L1-norm essentially extends to the observation interval of the analyzed

signal and with

λ =
1
2

(∑
i

∣∣x̂mi+1 − x̂mi
∣∣+∑

i

∣∣x̂Mi+1 − x̂Mi
∣∣) , (13)

µ =
1
8

(∑
i

(
t̂mi+1 − t̂mi

) ∣∣x̂m′′i + x̂m′′i+1

∣∣+∑
i

(
t̂Mi+1 − t̂Mi

) ∣∣x̂M ′′
i + x̂M ′′

i+1

∣∣) , (14)

ν =
1
4

∑
i

∣∣x̂m′′i+1 − x̂m′′i

∣∣+ ∣∣x̂M ′′
i+1 − x̂M ′′

i

∣∣ , (15)

where superscripts m and M refer to minima and maxima, respectively.

Remark — Our previous studies showed that, in the specific case of sinusoidal signals, the

sampling error is upper bounded by a function proportional to f−2
s [4]. The bound (12) obtained

here generalizes this result since the parameters λ and ν are simply zero in the sinusoidal case.

Nevertheless, the µ coefficient computed with (14) for sinusoidal signals leads to a bound that is

looser than the one we obtained in [4], and there are two reasons for this. First, a sinusoidal signal

is symmetric with respect to each extremum: therefore, the uncertainty in abscissa ∆abs. can be

reduced to 1/(2fs), leading to the reduced parameter values: λ′ = λ/2, µ′ = µ/4 and ν′ = ν/8.
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Second, there is generally a partial compensation between the errors associated to the f−2
s terms

coming from the upper and the lower envelope. This can be easily controlled for the sinusoidal

case, allowing a bound reduced by one half and thus in agreement with our former results.

3.1.3 Validation

To assess the performance of the upper bound model (12), we need to measure the difference

between the continuous-time EMD of a continous-time signal and the discrete-time EMDs of

sampled versions of the same signal for various sampling parameters. To that end, we performed a

set of simulations using synthetic piecewise polynomial signals. As the extrema of a polynomial of

order less than 4 are analytically known, the continuous-time EMD of a piecewise polynomial can

be defined properly. In a first time however, we will only study differences between the discrete

and continuous-time elementary operators, as for the model, and the overall methodology can be

summarized by the following procedure:

1. synthetize a continuous-time piecewise polynomial oscillating signal x(t), t ∈ [0, L] such that

the minimum distance between two extrema is greater than 2, and L is such that the number

of extrema is large enough to neglect border effects.

2. apply the continuous-time elementary operator: y∞(t) ≡ (Sx)(t).

3. define the sampled signals: xfs,ϕ[n] ≡ x
(
n
fs

+ ϕ
)

for 0 ≤ n ≤ N(fs) ≡ bLfsc − 1 and

0 ≤ ϕ < 1
fs

(where b·c stands for the integer part).

4. apply the elementary sifting operator to each sampled signal: yfs,ϕ[n] ≡ (Sxfs,ϕ)[n].

5. for each sampling parameters set (fs, ϕ), compute the sampling error measure4:

e(fs, ϕ) ≡ 1
N(fs) + 1

N(fs)∑
n=0

∣∣∣∣yfs,ϕ[n]− y∞
(
n

fs
+ ϕ

)∣∣∣∣ . (16)

The test signals we used are piecewise cubic polynomials obtained through interpolation of a

random set of extrema. The main property of the underlying model is that it ensures that the

minimum distance between extrema is set by a parameter ∆. The details are of lesser importance

as the results seem to be weakly dependent on the model.

Simulation results are plotted in Figure 4 for two representative examples. As it can be seen

on the figure, the behaviour of the bound as a function of the sampling frequency can generally be

divided in two areas: for lower sampling frequencies, the bound usually behaves like f−2
s whereas,

for higher frequencies, it behaves like f−1
s (see Figure 4-(b)). There are specific cases however where

the f−1
s area does not exist, since the coefficient λ given by (13) is typically zero when all the

maxima/minima have the same amplitude (see Figure 4-(a)). This twofold behaviour also applies

4The choice made here of a l1-norm is not critical, other norms leading to similar results.
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to the measured sampling error, but either the f−1
s or the f−2

s area can be missing. Moreover,

when both are present, the critical sampling frequency delimiting these areas is generally not the

same as the corresponding critical frequency for the bound. The evolution of the bound however

usually gives a good outline for the evolution of the sampling error. Besides, the f−3
s behaviour

that we could expect from (12) has never been observed distinctly.

Quantitatively, the sampling error measured in our simulations is always rather far from the

bound. The latter usually is around 12 dB above in the f−1
s area and 25 dB in the f−2

s area.

This discrepancy comes mainly from the fact that the bound is obtained by considering a worst

case error everywhere whereas this worst case is rather improbable. To relate the bound to the

simulation results, we can consider a variation on the model giving an average value instead of an

upper bound for the errors in abscissa and ordinate for each extremum. Basically, we can take

averaged values of the errors with respect to the sampling phase:

∀i, ∆̄(i)
abs. = Eϕ{|ti − (nifs + ϕ)|},

∆̄(i)
ord. = Eϕ{|x(ti)− xfs,ϕ[ni]|},

where ni refers to the index of the extremum corresponding to (ti, x(ti)) in the discrete signal.

In order to estimate these quantities, we can use the local parabolic approximation again, thus

leading to:

∆̄(i)
abs. =

∆(i)
abs.

2
,

∆̄(i)
ord. =

∆(i)
ord.

3
.

Now, even with this average model, the sampling error estimate still lies several dB above the

simulation results. One reason for this is that we use 1/fs for the uncertainties in abscissa while

we know that the actual uncertainty with our test signals is generally smaller than 0.7/fs. If we

had used an average value α/fs, 1/2 ≤ α < 1 (instead of 1/fs), then the three parameters λ, µ

and ν defined by equations (13), (14) and (15) would have been replaced by:

λ′ = αλ, µ′ = α2µ and ν′ = α3ν. (17)

Combining these with the former average model, we get the following estimate for the average

sampling error (ASE):

ASE =
αλ

2
+
α2µ

3
+
α3ν

6
. (18)

The average model with corrected uncertainties in abscissa is much closer to the simulation

results but still some dB above. There are mainly two reasons for the remaining error. First,

there is a deviation coming from the use of a parabolic approximation around the extrema to

compute the uncertainties in ordinate. Second, the sampling error on the upper envelope generally
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Figure 4: Sampling error and bound estimate as a function of the sampling frequency. On both
graphs, each dot stands for a measure of sampling error according to (16). For each sampling
frequency and phase, a bound is also estimated according to (12) from the downsampled signal:
the mean of these with respect to the phase is plotted against sampling frequency as a full line.
Cases (a) and (b) correspond to rather close signals, the difference being that (a) has constant
maxima/minima amplitudes while (b) has random maxima/minima values centered around 1/-1
with variance 0.1. Asymptotic f−1

s or f−2
s behaviours are evidenced by dotted lines.

partially (sometimes totally) compensates for the sampling error on the lower envelope, whereas

the two corresponding bounds are just summed in the model. Unfortunately, the magnitude of the

compensation cannot be estimated properly from the discrete signal. Indeed, it locally depends on

the fractional part of the product of the sampling frequency by the distance between a maximum

and the next minimum in the continuous-time signal. However, the precision on the estimation

of the distance between a maximum and the next minimum is roughly 1/fs and, therefore, the

corresponding precision on the fractional part of the previous product is roughly 1, which is

insufficient.

4 Conclusion

The question of the influence of sampling on EMD has been addressed here in some detail, from

the derivation of theoretical results in simplified cases to the observation of effective behaviours

in more realistic situations. The existence of bounds on possible errors due to sampling allows

now for a quantitative approach which goes beyond the qualitative precautionary principle of

only applying EMD to “sufficiently oversampled” data. A number of questions are still left open,

among which stands first the analysis of what actually happens when iterating sifting as it is done

in practice, with the possible appearance of new extrema pairs within the process. Such a point

is under current investigation and will be reported elsewhere.

13



References

[1] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung

and H. H. Liu, “The empirical mode decomposition and Hilbert spectrum for nonlinear and

non-stationary time series analysis,” Proc. Roy. Soc. London A, Vol. 454, pp. 903–995, 1998.

[2] N. E. Huang, M. L. C. Wu, S. R. Long, S. S. P. Shen, W. D. Qu, P. Gloersen, and K. L.

Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,”

Proc. Roy. Soc. London A, Vol. 459, pp. 2317–2345, 2003.
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