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One or Two Frequencies?

The Empirical Mode Decomposition Answers
Gabriel Rilling and Patrick Flandrin∗, Fellow, IEEE

Abstract

This paper investigates howEmpirical Mode Decomposition(EMD), a fully data-driven technique

recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves

in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending

on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding

resolution properties of EMD turn out to be in good agreement with intuition and physical interpretation.

A refined analysis is provided for quantifying the observed behaviours, theoretical claims are supported

by numerical experiments, and possible extensions to nonlinear oscillations are briefly outlined.

Index Terms

Resolution, spectral analysis, time-frequency, Empirical Mode Decomposition.

EDICS Category: SSP-SPEC

I. I NTRODUCTION

One standard issue in spectrum analysis isresolution, i.e., the capability of distinguishing between

(more or less closely spaced) neighbouring spectral components. At first sight, this question might appear

as unambiguous, but a second thought suggests that it is the case only if some prior assumption on—or

modelling of—the signal under consideration is given. Indeed, if it is known that the signalx(t) to be

analyzed actually consists of two tones of, say, equal amplitudes1 with frequenciesf1 andf2, one can write

Manuscript submitted November 13, 2006. G. Rilling and P. Flandrin are with the Physics Department (UMR 5672 CNRS),

Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07 France. Tel.: +33 (0)4 72 72 81 60; Fax: +33 (0)4

72 72 80 80; E-mail: {grilling,flandrin}@ens-lyon.fr.

1We restrict in this Introduction to such an oversimplified case because situations with unequal amplitudes are computationnaly

more complicated, while their interpretation remains essentially unchanged, see Fig. 1. For the same sake of simplicity in the

discussion, phase differences are also ignored.
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Fig. 1. Beat effect— In each column, signals in the bottom row are obtained as the superposition of the waveforms plotted

in the top and middle rows. When the frequencies of the two superimposed tones are sufficiently far apart (left column), the

two-tones interpretation is meaningful whereas, when they get closer (right column), an interpretation in terms of a single tone

modulated in amplitude is clearly favored.

x(t) = cos 2πf1t + cos 2πf2t and address the question of detecting and estimatingf1 andf2. However,

from a mathematical point of view, one can equally writex(t) = 2 cos π(f1−f2)t cos π(f1+f2)t, with an

underlying interpretation in terms of a single tone modulated in amplitude rather than of a superposition

of two unimodular tones. As it is well-known, such an interpretation is especially relevant whenf1 ≈ f2,

a prominent example being given by the “beat effect” (see Fig. 1). In this respect, since, at some point,

close tones are no longer perceived as such by the human ear but are rather considered as a whole, one

can wonder whether a decomposition into tones is a good answer if the aim is to get a representation

matched to physics (and/or perception) rather than to mathematics. More generally, if onlyx(t) is given,

there might be no a priori reason to prefer one of the two representations, the effective choice being in

some sense driven by the way the signal is processed.

This question is addressed in this paper within the fresh perspective offered byEmpirical Mode

Decomposition(EMD) [4], [5], a relativeley recent technique whose purpose is to adaptively decompose

any signal into oscillatory contributions. Since EMD is fully data-driven, not model-based and only

defined as the output of an iterative algorithm (see Section II), it is an open question to know what kind

of separation can (or cannot) be achieved for two-tones composite signals when using the method. It
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is worth emphasizing that resolving closely spaced components is not here the ultimate goal, and that

poor resolution performance can indeed be accommodated provided that the decomposition is suitably

matched to some physically meaningful interpretation. As for earlier publications [2], [3], the aim of the

present study is primarily to contribute, within a well-controlled framework, to a better understanding of

the possibilities and limitations offered by EMD.

The paper is organized as follows. In Section II, basics of EMD are recalled. After having detailed

the two-tones signal model and the performance measure used for quantifying the resolution capabilities

of EMD, Section III presents key features of results obtained by numerical simulations. Section IV then

offers a theoretical analysis aimed at justifying the reported results, based on a careful study of extrema

properties and interpolation schemes. Possible extensions to stochastic and nonlinear situations are briefly

mentioned in the Conclusion.

II. EMD BASICS

It is not the purpose of this paper to re-introduce in detail EMD and discuss subtleties about its possible

variations and implementations: the interested reader is referred to [4] for the seminal contribution as

well as to [1], [9] for implementation issues or [5] for a survey of more recent advances.

In a nutshell, the EMD rationale can be summarized by the motto “signal = fast oscillations super-

imposed to slow oscillations”, with iteration on the slow oscillations considered as a new signal. This

shares much with the wavelet philosophy, up to the noticeable difference that the “fast” vs. “slow”

distinction is directly controlled by the signal itself, and not by some filtering operations prescribed

a priori [2]. More precisely, the decomposition is carried out at the scale of local oscillations, with

the “slow oscillations” part obtained as the mean value of an upper and a lower envelope computed

as (cubic splines) interpolations between maxima and minima, respectively. Subtracting this component

from the original signal, we get what is called anIntrinsic Mode Function(IMF). The procedure can

then be applied to the slow oscillations part, considered as a new signal to decompose, and successive

constitutive components of a signal can therefore be iteratively extracted. In practice, this extraction has

to be refined by asifting process, i.e., an inner loop that iterates upon the “fast oscillations” part, until

the latter can be considered as zero-mean according to some stopping criterion. Once this is achieved,

the fast oscillation is considered as the effective IMF and the corresponding, slow oscillations residual

is computed. It follows from this sketchy description of EMD that the key ingredient of the algorithm is

what will be referred to in the following as thesifting operatorS(.), which acts as

(Sx)(t) , x(t)−mx(t), (1)
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wheremx(t) stands for the mean value of the upper and lower envelopes of the analyzed signalx(t),

and whose iteration yields the first IMF.

From a physical point of view, an IMF is a zero-mean oscillatory waveform, not necessarily made

of sinusoidal functions and possibly modulated in both amplitude and frequency. Going back to the toy

example sketched in Fig. 1, the zero-mean criterion makes of the composite signal in the right column a

reasonable candidate for being already an admissible IMF, with no need for any further decomposition.

This agrees with the beat effect interpretation and contrasts with the situation in the left column, where

two zero-mean contributions are clearly visible, making of their identification a meaningful objective. It

appears therefore that EMD might be effective in the separation problem, as it has been formulated, and

it is the purpose of this paper to switch from intuition and experimental facts to well-supported claims.

III. E XPERIMENTS

In order to understand how EMD decomposes a multicomponent signal into monocomponent ones, one

can first remark that, because of the recursive nature of the algorithm, we only have to understand how

the first IMF is extracted from the original signal. We will here adopt this perspective, with two-tones

signals (in the spirit of Fig. 1) used for the tests. This will allow for analytically tractable analyses, and

offer an in-depth elaboration on the preliminary findings reported in [9].

A. Signal model

As far as simulations are concerned, signals are discrete-time in nature and, in the situation we are

interested in here, the most general form for a discrete-time two tones signal is:

x[n] = a1 cos(2πf1n + ϕ1) + a2 cos(2πf2n + ϕ2), n ∈ Z.

We will however not use such a form with 6 parameters, since only 3 are needed without loss of generality.

Concerning first the amplitudesa1 and a2, it is obvious that the behaviour of EMD only depends on

their ratioa , a2/a1. A similar simplification applies as well to the two frequency and phase parameters

{f1, f2} and {ϕ1, ϕ2} insofar as both frequencies are much smaller than the sampling frequencyfs.

As reported in [8], [9], [11], sampling effects may turn the analysis much more complicated when the

frequencies of the sinusoids get close to the Nyquist frequency (f1, f2 & 0.25fs). Therefore, we will

only address the case wheref1, f2 � fs, allowing us to consider that we work with continuous-time

signals. In that case, the covariance of EMD with respect to time shifts and dilations makes its behaviour
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only sensitive to the relative parametersf , f2/f1 and ϕ , ϕ2 − ϕ1, thus leading to the simpler

continuous-time model:

x(t; a, f) = cos 2πt + a cos(2πft + ϕ), t ∈ R. (2)

As we can moreover restrain ourselves to the casef ∈]0, 1[, the cos 2πt term will be referred to in the

following as the higher frequency component (HF) and thea cos(2πft+ϕ) term as the lower frequency

component (LF).

B. Performance measure

Given the above model, the questions of interest are: (1) “When does EMD retrieve the two individual

tones?”, (2) “When does it consider the signal as a single component?” and (3) “When does it do

something else?”

In order to address the first question, we can consider the quantity:

c
(n)
1 (a, f, ϕ) ,

‖d(n)
1 (t; a, f)− cos 2πt‖L2(T )

‖a cos(2πft + ϕ)‖L2(T )
, (3)

where d
(n)
1 (t; a, f) , (Snx(.; a, f))(t) stands for the first IMF extracted fromx(t; a, f) with exactly

n sifting iterations, based on an observation of durationT � 1/f . When the two components are

correctly separated, the fine to coarse nature of the decomposition ensures that the first IMF necessarily

matches the HF componentcos 2πt. Provided this, the second IMF is bound to match the LF component

because the first slow oscillations residual from which the second IMF is extracted already is the LF

component. Therefore a zero value of (3) indicates a perfect separation of the two components. Finally,

the denominator is chosen so that the criterion has a value close to 1 when the two components are badly

separated.

C. Results

Fig. 2 summarizes experimental results obtained for〈c(10)
1 (a, f, ϕ)〉ϕ, the averaged value overϕ of

c
(n)
1 (a, f, ϕ), with n = 10 sifting iterations.2 Examining this figure evidences two rather well separated

domains with contrasting behaviours, depending on whether the amplitude ratio is greater or smaller than

unity. While it seems rather natural that, for a given amplitude ratio, EMD resolves the two frequencies

2The corresponding standard deviation is not shown because it is generally very small, except in some very specific cases

involving frequency synchronizations. The number of 10 iterations is arbitrary but its order of magnitude is guided by common

practice [5].
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Fig. 2. Performance measure of separation for two-tones signals— A 3D version of the averaged criterion (3) withn = 10

sifting iterations is plotted in the top diagram. Its 2D projection onto the(a, f)-plane of amplitude and frequency ratios is plotted

in the bottom diagram, with the critical curves predicted by theory superimposed as dashed (af = 1), dash-dotted (af2 = 1)

and dotted (af sin (3πf/2) = 1) lines. The black thick line stands for the contour〈c(10)
1 (a, f, ϕ)〉ϕ = 0.5.

only when the frequency ratio is below some cutoff, a less usual feature, coming from the highly nonlinear

nature of EMD, is that the cutoff frequency also depends on the amplitude ratio, in a non-symmetrical

way. What turns out is that this dependence essentially applies when the amplitude of the HF component

gets smaller than that of the LF one, and vanishes in the opposite case. Moreover, there is a critical

cutoff frequency ratio (fc ≈ 0.67 in the present case) above which it is impossible to separate the two

components, whatever the amplitude ratio.

Those findings will be given a theoretical justification in the following Sect. IV. In particular, we
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will show in Sect. IV-B.1.b that the behaviour of EMD is very close to that of a linear filter when the

amplitude ratio tends to zero and remains close as long asa ≤ 1. The transfer function of this equivalent

filter will be analytically characterized, and it will be shown that its cutoff frequency only depends on

the number of sifting iterations.

IV. T HEORY

A. About extrema

Extrema play a crucial role in the EMD algorithm, and it is important to discuss precisely what can be

known about their locations and/or distributions. There are two asymptotic cases where we know exactly

the locations of extrema: if the amplitude of one of the components is infinetly larger than that of the

other one (a → 0 or a → ∞), then the locations of the extrema in the sum signal are exactly those of

the extrema in the larger component. When the amplitude ratio is finite, locating precisely the extrema

becomes tricky, but in almost all situations, we can still obtain the average number of extrema per unit

length (or extrema rate)re(a, f). This information will in fact serve as a basis for a theory that, while

only asymptotically exact, adequately accounts for the behaviour of EMD for almost all frequency and

amplitude ratios.

Proposition 1: If af < 1, re(a, f) = 2, i.e., the extrema rate is exactly the same as that of the HF

component, whereas, ifaf2 > 1, re(a, f) = 2f , i.e., it is exactly that of the LF one.

In order to prove those claims (illustrated in Fig. 3), the first step is to show that the sign of the second

derivative of the two-tones signal at its extrema is actually the same as that of the second derivative of

the HF component ifaf < 1 and that of the LF component ifaf2 > 1. To this end, let us assume that

x(t; a, f) admits an extremum att = t0:

∂tx(t; a, f)|t=t0 ∝ sin 2πt0 + af sin(2πft0 + ϕ) = 0. (4)

The second derivative ofx(t; a, f) is:

∂2
t x(t; a, f) ∝ cos 2πt + af2 cos(2πft + ϕ), (5)

and what we want to justify is that

|af2 cos(2πft0 + ϕ)| < | cos 2πt0| if af < 1,

|af2 cos(2πft0 + ϕ)| > | cos 2πt0| if af2 > 1.
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Squaring the above equations and replacingcos2 2πt0 in both of them by its value from (4), we obtain:

a2f4 cos2(2πft0 + ϕ) + a2f2 sin2(2πft0 + ϕ) < 1 if af < 1,

a2f4 cos2(2πft0 + ϕ) + a2f2 sin2(2πft0 + ϕ) > 1 if af2 > 1,

which hold true sincea2f4 < a2f2 < 1 if af < 1 and 1 < a2f4 < a2f2 if af2 > 1. Given this

result, there can only be one extremum between two successive zero-crossings of the second derivative

of the HF (resp. LF) component ifaf < 1 (resp.af2 > 1) because its type (maximum or minimum)

is determined by the sign of the second derivative of the HF (resp. LF) component. Thus there can

only be one extremum per half-period of the HF (resp. LF) component, hence the extrema rates and the

conclusion of the proof.

In the intermediate domain whereaf > 1 andaf2 < 1, computing the extrema rate is more involved

and a tedious calculation ends up with an expression that operates a transition between the two former

domains according to:

re(a, f) = 2f +
4
π

[
sin−1

(
1
af

√
1− a2f4

1− f2

)

−f sin−1

√
1− a2f4

1− f2

]
.

From the EMD point of view, these informations are already decisive. Indeed, it seems rather natural

that EMD can only extract a component if it “sees” extrema that are related to it. Therefore, it seems

unlikely to recover the HF component in theaf2 > 1 area as the signals extrema are more related to

the LF component. On the other hand, recovering the HF component in theaf < 1 area seems feasible

a priori. As extracting the highest frequency component into the first IMF is what we intuitively expect

EMD will do, we can think of theaf < 1 area as a “normal” case while theaf2 > 1 area can be viewed

as “abnormal”. We will see in the following that quite strange behaviours can indeed be observed in

that area. However, the existence of such an “abnormal” domain is far from a complete drawback as it

allows in particular to preserve nonlinear periodic waveforms as single IMFs instead of scattering their

harmonics over several ones.

The two curves,af = 1 and af2 = 1, have been superimposed to the diagram Fig. 2 in order to

visualize the link between them and the behaviour of EMD. It appears indeed that theaf2 = 1 curve

tightly delimits the upper side of the transition area in the right side of the figure. On the other hand,

the af = 1 curve delimiting the lower side is not as tight as soon asf < 1/3. A refinement resulting in

a closer theoretical boundary whenf < 1/3 will be proposed in Sect. IV-C.
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(a)

(b)

(c)

Fig. 3. Locations of the extrema in the two-tones signal— In each graph are plotted the derivative of the HF component and

the oppositeof the derivative of the LF component so that each crossing corresponds to an extremum in the composite signal.

(a) af < 1: as the amplitude of the derivative of the HF component is greater than that of the LF component, there is exactly

one crossing between two successive extrema of the HF component; (b)af > 1 and af2 < 1: no regular distribution of the

crossings can be guaranteed ; (c)af2 > 1: as the maximum slope of the derivative of the LF component is greater than that of

the HF component, there is exactly one crossing between two successive extrema of the LF component.

Finally, in order to better support the theory exposed in the next section, some control can be added

to the extrema locations. Indeed, if we take into account that the crossings in Fig. 3 (a) can only

occur in the shaded band, then it results that each crossing is distant from a zero-crossing of the HF

component by at most1/(2π) sin−1(af). In terms of extrema, this exactly means that, whenaf < 1, each

extremum is distant from an extremum of the HF component by at most1/(2π) sin−1(af). Likewise,

when af2 > 1, each extremum can be shown to be distant from an extremum of the LF component

by at most1/(2πf) sin−1(1/af). In both cases, these statements give some quantitative control on the

extrema locations supporting the idea that these are close to those of one of the two components as soon

asaf gets sufficiently smaller than 1 or alternativelyaf2 sufficiently larger than 1.

B. A model for EMD when the extrema are equally spaced

Based on the above statements regarding extrema, the model proposed here relies on the only assump-

tion that extrema are located at the exact same places as those of one of the two components (the HF

one whenaf < 1 or the LF one whenaf2 > 1).

1) Caseaf < 1:

November 13, 2006 DRAFT
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a) Derivation of the model:The model assumes that maxima are located at integer time instants

k, k ∈ Z while minima are located at half-integer onesk+1/2, k ∈ Z. The extrema being equally spaced,

the set of maxima (or minima) can be seen as a specific sampling of the initial signal at the frequency of

the HF component, which is 1 in our simplified model. In the Fourier domain, the Dirac combs associated

with the maxima and minima samplings are:

Xmax/min(ν) =
∑
k∈Z

(±1)kδ(ν − k), (6)

where the(−1)k term comes from the time shift between the two samplings. Convolving these with the

signal in the Fourier domain, we obtain the Fourier representations of the maxima/minima sets (resp.

Smax andSmin):

Smax/min(ν) =
(
Xmax/min ∗ x̂

)
(ν).

If we then use an interpolation scheme that, when the knots are equally spaced, can be expressed in

terms of digital filtering (e.g., Shannon, splines,...) with frequency responseI(ν) for unit spaced knots,

the envelopes (emax(t) andemin(t)) have the Fourier representations:

êmax/min(ν) = I(ν)
(
Xmax/min ∗ x̂

)
(ν).

This implies that
êmin(ν) + êmax(ν)

2
= I(ν) (Xmean ∗ x̂) (ν),

where Xmean(ν) =
∑

k∈Z δ(ν − 2k), the two interleaved samplings being replaced by another one

with double frequency. It is worth noticing that the samplings (6) introduce aliasing as soon as the

signal contains frequencies above the corresponding Nyquist frequency0.5 (such effects have been first

reported in [7]) but, in the present case, the cancellation of the odd indices in the Dirac combs cancels the

aliasing effects provided the spectrum of the signal is zero outside of[−1, 1]. While this last condition is

obviously met in the case of the two-tones signal whenaf < 1, it will not be the case in the following

whenaf2 > 1, and furthermore if we consider nonlinear waveforms.

Finally, we end up with a Fourier representation of the first iteration of the sifting operator given by

(Ŝx)(ν) = x̂(ν)− I(ν) (Xmean ∗ x̂) (ν). (7)

As our only assumption was about the locations of extrema, this representation (or a properly dilated

one) holds as soon as the extrema locations are nearly equally spaced.
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b) Expressions of the IMFs:The signal (2) initially contains four Fourier components at1,−1, f,−f

with coefficientsc±1 = 1/2 and c±f = ae±iϕ/2. After one iteration of the sifting operator, the latters

becomec
(1)
±1 = 1/2 and c

(1)
±f = (1 − I(f))ae±iϕ/2, while some new Fourier components appear at

2k ± f, k ∈ Z∗, because of the extrema sampling. Fortunately, the associated coefficientsc2k±f =

−I(2k ± f)ae±iϕ are generally very small asI(ν) is typically close to zero when|ν| > 1. Therefore,

those aliased components can generally be neglected, thus implying that the model (7) can be well

approximated by a simplelinear filter with frequency response1− I(ν). As I(ν) typically stays in the

range[0, 1] for usual interpolation schemes, the signal after one iteration is then close to a two-tones

signal (2), with the same frequency ratiof , a smaller amplitude ratioa(1) < a and the same phase. Thus,

the conditionaf < 1 is even better satisfied after one iteration and so the model (7) still holds for all

the possible following sifting iterations. This allows us to finally express the first IMF obtained aftern

iterations in the linear approximation as

d
(n)
1 (t; a, f) = (Snx(.; a, f))(t)

= cos 2πt + (1− I(f))n a cos(2πft + ϕ), (8)

and consequently the second (and last) IMF as

d
(n)
2 (t; a, f) = x(t; a, f)− d

(n)
1 (t; a, f)

= (1− (1− I(f))n) a cos(2πft + ϕ).

In the case of cubic spline interpolation, which is by far the most commonly used for EMD, it follows

from [12] that the frequency response for unit spaced knotsI(ν) is given by

Ic.s.(ν) =
(

sinπν

πν

)4 3
2 + cos 2πν

.

Combining this with (8) finally yields a theoretical model for the left side (af < 1) of Fig. 2, which is

compared to simulations for different numbers of iterations and amplitude ratios in Fig. 4. According to

these results, both the model and the simulations point out that EMD performs as a linear filter (high-pass

for the first IMF, low-pass for the second one) whose cutoff frequency only depends on the frequency of

the HF component and on the number of sifting iterations. It appears moreover that the model remains

very close to the simulation results even whenaf gets close to 1 (i.e., when the model assumption of

equally spaced extrema clearly becomes questionable), thus supporting the claim that EMD acts almost

as a linear filter over the whole rangeaf < 1.
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Fig. 4. Equivalent filter model for EMD— Experimental results for〈c(n)
1 (a, f, ϕ)〉ϕ (full line curves) are compared to

theoretical predictions whena = 10−2 (dashed curve) anda = 1 (dash-dotted curve), forn = 1, 3 and10 sifting iterations. In

the small box are plotted the exact value of the cutoff frequency (full line curve) and its approximation (9) (dashed curve), as

a function of the number of sifting iterations.

c) Approximation of the cutoff frequency:A natural definition for the cutoff frequencyf (n)
c (where

n stands for the number of iterations) is the value for which the response of the EMD equivalent filter

is half its maximum:

(1− I(f (n)
c ))n = 1/2.

There is unfortunately no analytical solution to this equation in the case of cubic spline interpolation,

but a good approximation is given by the following asymptotic formula:

f (n)
c =

(
1 +

(
ln 2
n

) 1
4

)−1

+ O
(
n−

5
4

)
. (9)

As pointed out by this expression, the cutoff frequency is a non-decreasing function of the number of

iterations that furthermore tends to 1 whenn tends to infinity. The increase is however very slow and

therefore the cutoff frequency remains significantly lower than 1 for reasonable numbers of iterations:

typically f
(n)
c . 0.75 when n . 100 (see Fig. 4). Since this cutoff frequency is related to a notion

of relative frequency resolution, our results agree with the practical observations that suggest a rather

poor value for the latter, typically about0.5. Moreover, the enhancement of that resolution whenn is

increased, though rather weak, is consistent with empirical observations stating that increasingn increases
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the number of IMFs and smoothes the envelopes variations. Indeed, both features are consistent with a

decrease of each IMF bandwidth, at least locally.3

2) Caseaf2 > 1:

a) Simulations: In the areaaf2 > 1, we know from the simulation results (Fig. 2) that EMD can

never retrieve the two tone components. Thus, the next question of interest here is the second one: does

EMD consider the signal as a single modulated component or not? If the answer is ‘yes’, the first IMF

should be the original signal, so that we can address the question by examining the following distance

measure (the choice for normalization will become clear later):

c
(n)
2 (a, f, ϕ) ,

‖d(n)
1 (t; a, f)− x(t; a, f)‖L2(T )

‖ cos 2πt‖L2(T )
. (10)

As can be observed in Fig. 5, the behaviour of EMD whenaf2 > 1 seems to depend mostly on the

frequency ratio. More precisely, it appears that the value of〈c(10)
2 (f1, f2, ϕ)〉ϕ is either close to one or

close to zero depending on whetherf is close to(2k)−1 or (2k + 1)−1, k ∈ N∗. This means that EMD

effectively considers the signal as a single component whenf is close to(2k +1)−1 but does something

else whenf is close to(2k)−1. We will show in the next section that in the latter case, the aliasing

effects resulting from the extrema sampling actually give birth to a new lower frequency component.

b) The model:As before, the model assumes that the extrema are equally spaced and therefore the

former reasoning applies. We then end up with a formulation which is basically the same as in (7), with

a few adjustments:

(Ŝx)(ν) = x̂(ν)− I(ν/f) (Xmean ∗ x̂) (ν), (11)

with Xmean(ν) =
∑

k∈Z δ(ν − 2kf)ei2kϕ.

c) Expressions of the IMFs:If we now apply this model to the two-tones signal, the four Fourier

coefficients atc±1 = 1/2 and c±f = ae±iϕ/2 become after one sifting iterationc±1 = (1 − I(1/f))/2

and c±f = ae±iϕ/2. As in the former case, the component which has its extrema close to those of the

multicomponent signal is leaved unchanged by the sifting operator while the other one has its amplitude

decreased. However, the decrease is almost nonexistent here because1/f > 1 and thereforeI(1/f) ≈ 0.

Thus the four initial Fourier components are nearly leaved unchanged after the first iteration. This would

be fine if there were no aliased components as in the first case but, unfortunately, there are. Indeed, if

kf ∈ N is such that2kf − 1 < 1/f < 2kf + 1, there are two aliased frequenciesfa = 2kff − 1 and

3It has however to be remarked that, as argued in [10], increasing with no limit the number of sifting iterations would result

in IMFs with no amplitude modulation.
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Fig. 5. Performance measure of separation for two-tones signals— The averaged value of the criterion (10) is plotted for

n = 10 sifting iterations. Only theaf2 > 1 area is displayed because the criterion is meaningless otherwise. As in Fig. 2, the

black thick line stands for the contour〈c(10)
2 (a, f, ϕ)〉ϕ = 0.5.

its opposite that both lie in[−f, f ] and might therefore not be killed by the interpolation filterI(ν/f).

According to our model, the first IMF is then:

d
(1)
1 (t; a, f) = x(t; a, f)− I (fa/f) cos (2πfat + 2kfϕ) .

As this new component has smaller frequency and amplitude than the HF component, we can expect the

extrema in the IMF after one iteration to still be near those of the LF component. The aliased component

has therefore little impact and can be neglected too. According to this model, the IMF obtained aftern

iterations is then:

d
(n)
1 (t; a, f) = x(t; a, f)− λn cos (2πfat + 2kfϕ) , (12)

with λn = 1− (1− I (fa/f))n and, consequently,

d
(n)
2 (t; a, f) = λn cos (2πfat + 2kfϕ) .

Unlike the caseaf < 1, these expressions show that there is no possible linear filtering equivalent for

EMD whenaf2 > 1. As a matter of fact, the behaviour of EMD is rather odd as it just creates a new

lower frequency component which is added to the signal to obtain the first IMF, and then compensated

in the second one. Moreover, that new frequency is even more annoying when it comes to interpretation

as it might be mistaken for an intrinsic time scale of the signal while its relevance is rather questionable.
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Indeed, if EMD is followed by instantaneous frequency/amplitude estimation, as in the Hilbert–Huang

Transform framework [4], [5], this results in a first IMF with an instantaneous frequency that oscillates

aroundf while that of the second IMF oscillates aroundfa. Ultimately, the unfortunate EMD user might

uncover a component atfa, while the frequency of the corresponding intrinsic oscillation is in fact 1!

Quantitatively, the amplitudeλn of the new frequency component depends on the ratiofa/f . In a first

approximation,fa/f . f
(n)
c ⇒ λn ≈ 1 while, on the other hand,fa/f & f

(n)
c ⇒ λn ≈ 0. It results that

the new component has either an amplitude close to that of the original at frequency 1 whenf is close

to (2k)−1, k ∈ N∗ or an almost zero amplitude whenf is close to(2k + 1)−1. Moreover, as the cutoff

frequencyf (n)
c increases withn, the width of the bands whereλn ≈ 1 also increases withn.

C. Refinements whenf < 1/3

1) Extrema may appear during the sifting process:In Sect. IV-A, we showed that the two curves

af = 1 and af2 = 1 are the boundaries of a transition area for the extrema density. Among these

curves, we also noticed thataf = 1 delimits the lower side of the transition area but rather loosely when

f < 1/3. In that area, it appears that even if the extrema rate is slightly below2 (af & 1), EMD acts

as if the extrema were close to those of the HF component.The explanation for this behaviour is in

fact that some extrema may appear when iterating the sifting process. As a matter of fact, a close look

at the two-tones signal whenaf > 1 and af2 < 1 (see Fig. 6) shows that its extrema rate, which is

between those of the two tones, is not uniform: the extrema are mostly located around the extrema of

the LF component. Besides, the signal also exhibits strong inflections related to extrema pairs of the HF

component that clearly would yield extrema pairs in the sum signal if the amplitude ratio was smaller. As

the signal exhibits local minima (resp. maxima) around what appears to be the maxima (resp. minima) of

the LF component, its lower (resp. upper) envelope and, therefore, their mean roughly follow the shape

of the LF component. Subtracting this mean to the signal then naturally reveals the extrema that were

hidden as inflections, and it follows that the extrema rate may increase after one sifting iteration to match

the rate of the HF component, thus allowing us to use the model (7) for the remaining iterations.

2) A tighter boundary for the transition area:It follows from Proposition 1 that, for a givenf , the

number of extrema in the two-tones signal that lie in between two successive zero-crossings of the LF

component is close to1/f if a < 1/f and exactly 1 ifa > 1/f2. However, the threshold value ofa

below which this number is at least 2 is in fact lower than1/f2 and higher than1/f if f < 1/3. It is

graphically clear that this threshold̃a(f) follows from a tangency condition in the worst case situation.

Although this condition admits no analytical solution, assuming that the tangency point coincides with
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Fig. 6. Example of a two-tones signal withaf & 1 and f < 1/3 — As it can be seen in (a), some extrema of the HF

component do not give birth to extrema in the composite signal (identified as marks on the horizontal line at the bottom of the

diagram) but only to inflexions surrounded by humps. However, since the lower and upper envelopes (light gray lines) roughly

follow the LF trend, their mean is close to the latter and subtracting it to the composite signal uncovers the hidden extrema:

this is evidenced in (b), which plots the first IMF after one sifting iteration and the associated distribution of its extrema.

the extremum of the HF component derivative leads to the approximation

ã(f) ≈ (f sin(3πf/2))−1

and, hence, to the improved boundary reported on Fig. 2.

D. Summary

Thanks to the previous analysis, we are finally able to answer the three initial questions of interest.

A schematic view of the EMD answers to the two-tones separation problem is proposed in Fig. 7,

where each area is labelled according to one of the3 following possibilities: (1) the two components

are well separated and correctly identified, (2) their sum is leaved unchanged and considered as a single

waveform, (3) EMD does something else, either halfway between (1) and (2), or with the possibility of

a decomposition in fake oscillations different from the effective tones.

V. CONCLUSION

This study has considered in detail the way EMD behaves in the simple case of a two-tones signal.

A number of experimental findings, well supported by a theoretical analysis, have been reported. This

allows for a better understanding of the method and of its relevance in terms of adequation between the
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Fig. 7. Summary of EMD answers to the two-tones separation problem— Depending on the frequency ratiof and the

amplitude ratioa, three domains with different behaviours can be distinguished: (1) the two components are separated and

correctly identified, (2) they are considered as a single waveform, (3) EMD does something else.

mathematical decomposition it provides and its physical interpretation. More precisely, one prominent

outcome of the study is that EMD permits to address in a fully data-driven way the question whether

a given signal is better represented as a sum of two separate, unmodulated tones, or rather as a single,

modulated waveform, with an answer that turns out to be in good agreement with intuition (and/or

perception).

A limitation of the present study is of course the model on which it is based, which can be thought

of as oversimplified and unrealistic. In this respect, it is worth pointing out some possible extensions

that would enlarge the perspective. The first one directly follows from the very local nature of EMD,

thanks to which conclusions drawn from the study of unmodulated tones still apply to slowly-varying

AM-FM situations. A second possible extension is related to Sect. IV-B.1, where it has been shown

that the behaviour of EMD can be efficiently described by an equivalent linear filter: a popular situation

where such a model has been pushed forward is broadband noise, where it has appeared that EMD acts as

quasi-dyadic filter bank [3], [6]. Unlike the two-tones case however, the equivalent filters for broadband

noise have only been characterized by numerical experiments, and no theory has been established yet.

It is clear however that the two situations are not disconnected, the spectral width of an equivalent

filter in the stochastic case being closely related to the ability of distinguishing between neighbouring

components in the deterministic case. In that sense, it is not surprising that the transfer function of the
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equivalent high-pass filter reported in [3], [6] for the first IMF has much to share with the response given

in Fig. 4. A more precise approach is of course necessary, and it is under current investigation. Finally,

another question of major interest is the possible applicability of the results obtained here to more general

cases involving nonlinear oscillations. Such extensions beyond tones are clearly out of the scope of this

paper, but it is worth mentioning some encouraging preliminary results in this direction. In fact, when

analyzing the separation of two tones, it appeared that it was possible to describe the behaviour of EMD

with a simple analytical model provided that the extrema were nearly equally spaced. As the model

only requires that last condition to hold, it can also be applied to components different from circular

waveforms, provided that the same extrema condition is verified. What turns out is that, whatever the

form of the periodic oscillations, there are still two remarkable areas in the frequency-amplitude ratios

plane where the behaviour of EMD depends almost only on the frequency ratio. In these areas, where

the extrema density is exactly that of one of the two components, the behaviour of EMD can still be

fairly approximated by simple, asymptotically exact models derived from (7), the critical frequency ratio

depending only on the number of iterations and not on the waveforms.
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