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Abstract

The study of specific hardware circuits for the evaluation of floating-point el-
ementary functions was once an an active research area, until it was realized
that these functions were not frequent enough to justify dedicating silicon to
them. Research then turned to software functions. This situation may be
about to change again with the advent of reconfigurable co-processors based on
field-programmable gate arrays. Such co-processors now have a capacity that
allows to accomodate double-precision floating-point computing. Hardware op-
erators for elementary functions targeted to such platforms have the potential
to vastly outperform software functions, and will not permanently waste silicon
resources. This article studies the optimization, for this target technology, of
operators for the exponential and logarithm functions up to double-precision.

Keywords: Floating-point elementary functions, hardware operator, FPGA, exponential, logarithm.

Résumé

L’implantation en matériel dans les processeurs des fonctions élémentaires en
virgule flottante a été un sujet de recherche actif jusqu’à ce que l’on constate
qu’il était plus efficace de les implémenter en logiciel et de consacrer le silicium
du processeur à des tâches plus fréquentes. Avec l’arrivée de co processeurs
reconfigurables de grande capacité, cette situation doit être reévaluée : ces co-
processeurs ont désormais une capacité suffisante pour accélerer de manière
importante le calcul d’une fonction élémentaire en virgule flottante double pré-
cision, sans pour autant devoir sacrifier pour cela des ressources de manière
permanente. Cet article étudie le reciblage vers cette technologie d’opérateurs
optimisés pour l’exponentielle et le logarithme jusqu’à la double précision.

Mots-clés: Fonctions élémentaires en virgule flottante, opérateur matériel, FPGA, exponentielle,
logarithme.



1 Introduction

Virtually all the computing systems that support some form of floating-point (FP) also include a floating-
point mathematical library (libm) providing elementary functions such as exponential, logarithm, trigono-
metric and hyperbolic functions, etc. Modern systems usually comply with the IEEE-754 standard for
floating-point arithmetic and offer hardware for basic arithmetic operations in single- and double-precision
formats (32 bits and 64 bits respectively).

The question wether elementary functions should be implemented in hardware was controversial
in the beginning of the PC era [15]. The literature indeed offers many articles describing hardware
implementations of FP elementary functions [8, 21, 10, 2, 18, 19, 20]. In the early 80s, Intel chose to
include elementary functions to their first math co-processor, the 8087.

However, for cost reasons, in this co-processor, as well as in its successors by Intel, Cyrix or AMD,
these functions didnot use the hardware algorithm mentioned above, but were microcoded: In effect, the
code for a libm was stored in the processor, with performance comparable to a software libm (one or two
orders of magnitude slower than the basic operators). Soon, new algorithms, benefiting from technology
advances, allowed to write software libm which were more accurate and faster than the hardware version.
For instance, as memory went larger and cheaper, one could speed-up the computation using large tables
(several kilobytes) of precomputed values. It would not be economical to cast such tables to silicon
in a processor: The average computation will benefit much more from the corresponding silicon if it
is dedicated to more cache, or more floating-point units for example. Besides, the hardware functions
lacked the flexibility of the software ones, which could be optimized in context by advanced compilers.

These observations contributed to the move from CISC to RISC (Complex to Reduced Instruction
Sets Computers) in the 90s. Intel themselves now also develop software libms for their processors that
include a hardware libm [1]. Research on hardware elementary functions has since then mostly focused
on approximation methods for fixed-point evaluation of functions [11, 16, 12, 6].

Lately, a new kind of programmable circuit has also been gaining momentum: The FPGA, for field-
programmable gate array. Designed to emulate arbitrary logic circuits, an FPGA consists of a very
large number of configurable elementary blocks, linked by a configurable network of wires. A circuit
emulated on an FPGA is typically one order of magnitude slower than the same circuit implemented
directly in silicon, but FPGAs are reconfigurable and therefore offer a flexibility comparable to that of
the microprocessor.

FPGAs have been used as co-processors to accelerate specific tasks, typically those for which the
hardware available in processors is poorly suited. This, of course, is not the case of floating-point
computing: an FP operation is, as already mentioned, typically ten times slower in FPGA than if
computed in the highly optimized FPU of the processor. However, FPGA capacity has increased steadily
with the progress of VLSI integration, and it is now possible to pack many FP operators on one chip:
massive parallelism allows to recover the performance overhead [17], and accelerated FP computing has
been reported in single precision [13], then in double-precision [3, 7]. Mainstream computer vendors such
as Silicon Graphics and Cray build computers with FPGA accelerators – although to be honest, they do
not advertise them (yet) as FP accelerators.

With this new technological target, the subject of hardware implementation of floating-point elemen-
tary functions becomes a hot topic again. Indeed, the literature reports that a single instance of an
exponential [5] or logarithm [4] operator can provide ten times the performance of the processor, while
consuming a small fraction of the resources of current FPGAs. The reason is that such an operator may
perform most of the computation in optimized fixed point with specifically crafted datapaths, and is
highly pipelined. However, the approach taken in [4, 5] uses a generic table-based approach [6], which
doesn’t scale well beyond single precision (its size grows exponentially).

In this article, we demonstrate a more algorithmic approach, which is a synthesis of much older
works, including the Cordic/BKM family of algorithms [14], the radix-16 multiplicative normalization
of [8], Chen’s algorithm [21], an ad-hoc algorithm by Wong and Goto [19], and probably many others.
All these approaches boil down to the same basic properties of the logarithm and exponential functions,
and are synthesized in Section 2. The specificity of the FPGA hardware target are summarized in
Section 3, and the optimized algorithms are detailed and evaluated in Section 4 (logarithm) and Section 5
(exponential).
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2 Iterative exp and log

Wether we want to compute the logarithm or the exponential, the idea common to most previous methods
may be summarized by the following iteration. Let (xi) and (li) be two given sequences of reals such
that ∀i, eli = xi. It is possible to define two new sequences (x′

i) and (l′i) as follows: l′0 and x′

0 are such

that x′

0 = el′0 , and

∀i > 0

{
l′i+1 = li + l′i
x′

i+1 = xi × x′

i

(1)

This iteration maintains the invariant x′

i = el′
i , since x′

0 = el′0 and xi+1 = xix
′

i = eliel′
i = eli+l′

i =

el′
i+1).

Therefore, if x is given and one wants to compute l = log(x), one may define l′0 = x, then read from
a table a sequence (li, xi) such that the corresponding sequence (l′i, x

′

i) converges to (0, 1). The iteration
on x′

i is computed for increasing i, until for some n we have x′

n sufficiently close to 1 so that one may
compute its logarithm using the Taylor series l′i ≈ x′

n − 1− (x′

n − 1)2/2, or even l′i ≈ x′

n − 1. This allows
to compute log(x) = l = l′0 by the recurrence (1) on l′i for i decreasing from n to 0.

Now if l is given and one wants to compute its exponential, one will start with (l′0, x
′

0) = (0, 1).
The tabulated sequence (li, xi) is now chosen such that the corresponding sequence (l′i, x

′

i) converges to
(l, x = el).

There are also variants where x′

i converges from x to 1, meaning that (1) computes the reciprocal
of x as the product of the xi. Several of the aforementioned papers explicitely propose to use the same
hardware to compute the reciprocal [8, 19, 14].

The various methods presented in the literature vary in the way they unroll this iteration, in what
they store in tables, and in how they chose the value of xi to minimize the cost of multiplications.
Comparatively, the additions in the l′i iteration are less expensive.

Let us now study the optimization of such an iteration for an FPGA platform.

3 A primer on arithmetic for FPGAs

We assume the reader has basic notions about the hardware complexity of arithmetic blocks such as
adders, multipliers, and tables in VLSI technology (otherwise see textbooks like [9]), and we highlight
here the main differences when implementing a hardware algorithm on an FPGA.

• An FPGA consists of tens of thousand of elementary blocks, laid out as a square grid. This grid also
includes routing channels which may be configured to connect blocks together almost arbitrarily.

• The basic universal logic element in most current FPGAs is the 4-input Look-Up Table (LUT), a
small 16-bit memory whose content may be set at configuration time. Thus, any 4-input boolean
function can be implemented by filling a LUT with the appropriate value. More complex functions
can be built by wiring LUTs together.

For our purpose, as we will use tables of precomputed values, it means that 4-input, n-output
tables make the optimal use of the basic structure of the FPGA. A table with 5 inputs is twice as
large as a table with 4 inputs, and a table with 3 inputs is not smaller.

• As addition is an ubiquitous operation, the elementary blocks contain additional circuitry dedicated
to carry propagation between neighbouring LUTs. This allows to implement an n-bit adder in n
LUTs only. Besides, carry propagation this way is much faster than if it would use the routing
channels. A consequence is that there is no need for carry-save representation of intermediate
results: the plain carry-propagate adder is smaller, and faster for all but very large additions.

• In the elementary block, each LUT is followed by a 1-bit register, which may be used or not. For our
purpose it means that turning a combinatorial circuit into a pipelined one means using a resource
that is present, not using more resources (in practice, however, a pipelined circuit will consume
marginally more resources).

• Recent FPGAs include a limited number of small multipliers or mult-accumulators, typically for
16 bits times 16 bits. In this work, we choose not to use them.
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4 A hardware logarithm operator

4.1 First range reduction and reconstruction

The logarithm is only defined for positive floating-point numbers, and does not overflow nor underflow.
Exceptional cases are therefore trivial to handle and will not be mentioned further. A positive input X
is written in floating-point format X = 2EX−E0 × 1.FX , where EX is the stored exponent, FX is the
stored significand, and E0 is the exponent bias (as per the IEEE-754 standard).

Now we obviously have log(X) = log(1.FX) + (EX −E0) · log 2. However, if we use this formula, the
logarithm of 1− ǫ will be computed as log(2−2ǫ)− log(2), meaning a catastrophic cancellation. To avoid
this case, the following error-free transformation is applied to the input:

{
Y0 = 1.FX , E = EX − E0 when 1.FX ∈ [1, 1.5),
Y0 = 1.FX

2
, E = EX − E0 + 1 when 1.FX ∈ [1.5, 2).

(2)

And the logarithm is evaluated as follows:

log(X) = log(Y0) + E · log 2 with Y0 ∈ [0.75, 1.5). (3)

Then log(Y0) will be in the interval (−0.288, 0.406). This interval is not very well centered around
0, and other authors use in (2) a value closer to

√
2, as a well-centered interval allows for a better

approximation by a polynomial. We prefer that the comparison resumes to testing the first bit of F ,
called FirstBit in the following (see Figure 1).

Now consider equation (3), and let us discuss the normalization of the result: we need to know which
will be the exponent of log(X). There are two mutually exclusive cases.

• Either E 6= 0, and there will be no catastrophic cancellation in (3). We may compute E log 2 as a
fixed-point value of size wF + wE + g (where g is a number of guard bit to be determined). This
fixed-point sum will be added to a fixed-point value of log(Y0) on wF +1+ g bits, then a combined
leading-zero-counter and barrel-shifter will determine the exponent and mantissa of the result. In
this case the shift will be at most of wE bits.

• Or, E = 0. In this case the logarithm of Y0 may vanish, which means that a shift to the left will
be needed to normalize the result1.

– If Y0 is close enough to 1, specifically if Y0 = 1 + Z0 with |Z0| > wF /2, the left shift may
be predicted thanks to the Taylor series log(1 + Z) ≈ Z − Z2/2: its value is the number of
leading zeroes (if FirstBit=0) or leading ones (if FirstBit=1) of Y0. We actually perform
the shift before computing the Taylor series, to maximize the accuracy of this computation.
This actually consists of two shifts, one on Z and one on Z2, as seen on Figure 1.

– Or, E = 0 but Y0 is not sufficiently close to 1 and we have to use a range reduction, knowing
that it will cancel at most wF /2 significant bits. The simpler is to use the same LZC/barrel
shifter than in the first case, which now has to shift by wE + wF /2.

Figure 1 depicts the corresponding architecture. A detailed error analysis will be given in 4.3.

4.2 Multiplicative range reduction

This section describes the work performed by the box labelled Range Reduction on Figure 1. Consider
the centered mantissa Y0. If FirstBit= 0, Y0 has the form 1.0xx...xx, and its logarithm will eventually
be positive. If FirstBit= 1, Y0 has the form 0.11xx...xx (where the first 1 is the former implicit 1 of
the floating-point format), and its logarithm will be negative.

Let A0 be the first 5 bits of the mantissa (including FirstBit). A0 is used to index a table which

gives an approximation Ỹ −1
0 of the inverse of Y0 on 6 bits. Noting Ỹ0 the mantissa where the bits lower

1This may seem a lot of shifts to the reader. Consider that there are barrel shifters in all the floating-point adders: In

a software logarithm, you have many more hidden shifts, and you pay for them even when you don’t use them.
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Figure 1: Overview of the logarithm

than those of A0 are zeroed (Ỹ0 = 1.0aaaaa or Ỹ0 = 0.11aaaaa, depending on FirstBit), the first inverse
table stores

Ỹ −1
0 = 2−5

⌈
26

Ỹ0

⌉
(4)

The reader may check that these values ensure Y0 × Ỹ −1
0 ∈ [1, 1 + 2−4]. Therefore we define Y1 =

1 + Z1 = Y0 × Ỹ −1
0 and 0 ≤ Z1 < 2−p1 , with p1 = 4. The multiplication Y0 × Ỹ −1

0 is a rectangular

one, since Ỹ −1
0 is a 6-bit only number. A0 is also used to index a first logarithm table, that contains an

accurate approximation L0 of log(Ỹ −1
0 ) (the exact precision will be given later). This provides the first

step of an iteration similar to (1):

log(Y0) = log(Y0 × Ỹ −1
0 ) − log(Ỹ −1

0 ) = log(1 + Z1) − log(Ỹ −1
0 ) = log(Y1) − L0

and the problem is reduced to evaluating log(Y1).
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The following iterations will similarly build a sequence Yi = 1+Zi with 0 ≤ Zi < 2−pi . Note that the
sign of log(Y0) will always be given by that of L0, which is itself entirely defined by FirstBit. However,
log(1 + Z1) will be non-negative, as will be all the following Zi (see Figures 2 and 3).

Let us now define the general iteration, starting from i = 1. Let Ai be the subword composed of the
αi leading bits of Zi (bits of absolute weight 2−pi−1 to 2−pi−αi). Ai will be used to address the logarithm
table Li. As suggested in Section 3, we choose αi = 4 ∀i > 0 to minimize resource usage, but another
choice could lead to a different area/speed tradeoff. For instance, the architecture by Wong and Goto
[19] takes αi = 10. Note that we used α0 = 5, because α0 = 4 would lead to p1 = 2, which seems a worse
tradeoff.

The following iterations no longer use an inverse table: An approximation of the inverse of Yi = 1+Zi

is defined by

Ỹ −1
i = 1 − Ai + ǫi. (5)

The term ǫi is a single bit that will ensure that Ỹ −1
i × Yi ≥ 1. We define it as





when αi + 1 < pi ǫi = 2−pi−αi−1 (one half-ulp of Ai)

if αi + 1 ≥ pi

{
if MSB(Ai) = 0 ǫi = 2−pi−αi−1 (one half-ulp of Ai)
if MSB(Ai) = 1 ǫi = 2−pi−αi (one ulp of Ai)

(6)

This definition seems contrived, but is easy to implement in hardware. Besides, the case αi + 1 ≥ pi

happens only once in practice. From (5) and (6), it is possible to show that the following holds:

Lemma 4.1

0 ≤ Yi+1 = 1 + Zi+1 = Ỹ −1
i × Yi < 1 + 2−pi−αi+1 (7)

The proof is not difficult, considering (8) below, but is too long to be exposed here.
In other words, we ensure pi+1 = pi + αi − 1. Or, using αi bits of table address, we are able to zero

out αi−1 bits of our argument. This is slightly better than [19] where αi−2 bits are zeroed. Approaches
inspired by division algorithms [8] are able to zero αi bits (one radix-2αi digit), but at a higher hardware
cost due to the need for signed digit arithmetic.

With αi = 4 on an FPGA, the main cost is not in the Li table (at most one LUT per table output
bit), but in the multiplication. However, a full multiplication is not needed. Noting Zi = Ai + Bi (Bi

consists of the lower bits of Zi), we have 1+Zi+1 = Ỹ −1
i × (1+Zi) = (1−Ai + ǫi)× (1+Ai +Bi), hence

Zi+1 = Bi − AiZi + ǫi(1 + Zi) (8)

Here the multiplication by ǫi is just a shift, and the only real multiplication is the product AiZi: The
full computation of (8) amounts to the equivalent of a rectangular multiplication of (αi + 2) × si bits.
Here si is the size of Zi, which will vary between wF and 3wF /2 (see below).

An important remark is that Lemma 4.1 still holds if the product is truncated. Indeed, in the
architecture, we will need to truncate it to limit the size of the computation datapath. Let us now
address this question.

We will stop the iteration as soon as Zi is small enough for a second-order Taylor formula to provide
sufficient accuracy (this also defines the threshold on leading zeroes/ones at which we choose to use the
path computing Z0−Z2

0/2 directly). In log(1+Zi) ≈ Zi−Zi
2/2+Zi

3/3, with Zi < 2−pi , the third-order
term is smaller than 2−3pi−1. We therefore stop the iteration at pmax such that pmax ≥ ⌈wF

2
⌉. This sets

the target absolute precision of the whole datapath to pmax +wF + g ≈ ⌈3wF /2⌉+ g. The computation
defined by (8) increases the size of Zi, which will be truncated as soon as its LSB becomes smaller than
this target precision. Figures 2 and 3 give an instance of this datapath in single and double precision
respectively. Note that the architecture counts as many rectangular multipliers as there are stages, and
may therefore be fully pipelined. Reusing one single multiplier would be possible, and would save a
significant amount of hardware, but a high-throughput architecture is preferable.

Finally, at each iteration, Ai is also used to index a logarithm table Li (see Figures 2 and 3). All
these logarithms have to be added, which can be done in parallel to the reduction of 1 + Zi. However,
the adders are smaller if the addition is performed in the order of decreasing i, in parallel with the
computation of Z2

max. The output of the Range Reduction box is the sum of Zmax and this sum of
tabulated logarithms, so it only remains to subtract the second-order term (Figure 1).
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Y0 : 1.0011001100110011001100110

Z1 : 00110011001100110011000010

Z2 : 010101011001100110000100001101

Z3 : 011010110100101011101110110

Z4 : 100110100000110110110010

Z4Sq : 0101110010

LogY4 : 100110100000110001000000

T0 : .0010101101111110100000001101011010101

T1 : 001010000011001001010011111100101

T2 : 010010000001010001000111100110

T3 : 010110000000001111001000001

LogY0 : .0010111010101100100111111111100100001

Figure 2: Single-precision computation of log(Y0) for Y0 = 1.2

Z0 : 0.11110011001100110011001100110011001100110011001100110

Z1 : 100111111111111111111111111111111111111111111111110010

Z2 : 110101111111111111111111111111111111111111111110010011100000

Z3 : 011101010111001111111111111111111111111111110010100001010011000100000

Z4 : 011010110100000010010001101111111111111110010100001101000111101111001

Z5 : 100110011111101101010110011100110111011000100001101011010010000110

Z6 : 100011111101100000100101001011111000000110100010101100101111110

Z7 : 101111101100000011100110000011101011101110100111010100110001

Z8 : 101101100000011100100000110100000000101001011011011000110

Z9 : 011100000011100100000100101000101000000000100100111101

Z9Sq : 0011000100110001111100001

LogY9 : 011100000011100100000100101000001111011010010101011100

L0 : -0.001011011110000110100101000101011100101011010110100101110011011111001001001100110

T1 : 100000100000101011101100010011110011101000100010001000111000000010111001111000

T2 : 110010001001110011100011100000100101011001101101111001011000011100100110100

T3 : 011010000000010101001000010110111001000110100100010010111100000000111110

T4 : 010110000000000001111001000000001101110111010111000111101110000101000

T5 : 100010000000000000100100001000000000110011001011010110100110111001

T6 : 011110000000000000000011100001000000000000100011001010000000000

T7 : 101010000000000000000000110111001000000000000001100000011110

T8 : 101010000000000000000000000110111001000000000000000001100

LogY0 : -0.000110100100001100011101010110111100110000011001001111100100101101101001100010101

Figure 3: Double-precision computation of log(Y0) for Y0 = 0.95.

4.3 Error analysis

We compute E log 2 with wE + wF + g1 precision, and the sum E log 2 + log Y0 cancels at most one bit,
so g1 = 2 ensures faithful accuracy of the sum, assuming faithful accuracy of log Y0.

In general, the computation of log Y0 is much too accurate: as illustrated by Figure 2, the most
significant bit of the result is that of the first non-zero Li (L0 in the example), and we have computed
almost wF /2 bits of extra accuracy. The errors due to the rounding of the Li and the truncation of
the intermediate computations are absorbed by this extra accuracy. However, two specific worst-case
situation require more attention.

• When Z0 < 2−pmax , we compute log Y0 directly as Z0 − Z2
0/2, and this is the sole source of error.

The shift that brings the leading one of |Z0| in position pmax ensures that this computation is done
on wF + g bits, hence faithful rounding.

• The real worst case is when Y0 = 1 − 2−pmax+1: in this case we use the range reduction, knowing
that it will cancel pmax−1 bits of L0 one one side, and accumulate rounding errors on the other side.
Since we have max stages, each contributing at most 1.5 ulp of error, we need g = ⌈log2(1.5pmax)⌉
guard bits. For double-precision, this gives g = 4.

4.4 Remarks on the Li tables

When one looks at the Li tables, one notices that some of their bits are constantly zeroes: indeed they
hold Li ≈ log(1 − (Ai − ǫi)) wich can for larger i be approximated by a Taylor series. We chose to
leave the task of optimizing out these zeroes to the logic synthesizer. A natural idea would also be to
store only log(1 − (Ai − ǫi)) + (Ai − ǫi), and construct Li out of this value by subtracting (Ai − ǫi).
However, the delay and LUT usage of this reconstruction would in fact be higher than that of storing
the corresponding bits. As a conclusion, with the FPGA target, the simpler approach is also the better.
The same remark will apply to the tables of the exponential operator.
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5 A hardware exponential algorithm

5.1 Initial range reduction and reconstruction

The range reduction for the exponential operator is directly inspired from the method presented in [5].
The first step transforms the floating-point input X into a fixed-point number Xfix thanks to a barrel
shifter. Indeed, if EX > wE − 1 + log2(log 2), then the result overflows, while if EX < 0, then X is close
to zero and its exponential will be close to 1+X, so we can lose the bits of X of absolute weight smaller
than 2−wF −g, g being the number of guard bits required for the operator (typically 3 to 5 bits). Thus
Xfix will be a wE + wF + g-bit number, obtained by shifting the mantissa 1.FX by at most wE − 1 bits
on the left and wF + g bits on the right.

This fixed-point number is then reduced in order to obtain an integer E and a fixed-point number Y
such that X ≈ E · log 2+Y and 0 ≤ Y < 1. This is achieved by first multiplying the most significant bits
of Xfix by 1/ log 2 and then truncating the result to obtain E. Then Y is computed as Xfix − E · log 2,
requiring a rectangular multiplier.

After computing eY thanks to the iterative algorithm detailed in the next section, we have eX ≈
eXfix = eY · 2E , therefore a simple renormalization and rounding step may reconstruct the final result.

The left half of Figure 4 presents the overall architecture of the exponential operator. Details for the
computation of eY − 1 are given in the other half of the figure and presented in the next section.

5.2 Iterative algorithm for the fixed-point exponential

Starting with the fixed-point operand Y ∈ [0, 1), we want to compute eY − 1. Define Y0 = Y . Each
iteration starts with a fixed-point number Yi, which (as for the logarithm operator) is then split into Ai

and Bi of αi and βi bits respectively.

We then want to compute an approximation of eYi , which we note ẽYi using only the subword Ai.

To this effect, we address two tables by the αi bits of Ai, the first one containing the values of ẽYi − 1

rounded to only αi bits, and the second one holding Li = log
(
ẽYi

)
rounded to αi + βi bits.

We can check that Li is quite close to Yi, and that computing Yi+1 as the difference Yi − Li will
result in cancelling the αi − 1 most significant bits of Yi. The number Yi+1 fed into the next iteration is
therefore a 1 + βi-bit number.

Iterations are performed up to Yk, where Yk is small enough to evaluate eYk − 1 thanks to a simple
table or a Taylor approximation.

The reconstruction is then quite straightforward: considering that we have obtained the result eYi+1−1

from the previous iterations, we first compute the product of ẽYi − 1, from the first table addressed by

Ai, by eYi+1 − 1. This is done by a rectangular multiplier, since ẽYi − 1 is tabulated on αi bits only.

Finally adding the same ẽYi − 1 and eYi+1 − 1 to the product, we obtain:

(
ẽYi − 1

)
×

(
eYi+1 − 1

)
+

(
ẽYi − 1

)
+

(
eYi+1 − 1

)
= ẽYi · eYi+1 − 1

= ẽYi · eYi−Li − 1

= ẽYi · eYi · e− log
“geYi

”

− 1
= eYi − 1.

This way, the k steps of reconstruction finally give the result eY0−1 = eY −1. The detailed architecture
of this iterative method is presented Figure 4.

We have performed a detailed error analysis of this algorithm to ensure the faithful rounding of the
final result. Due to space restrictions, and considering its similarity with the one for the logarithm, this
analysis is not presented in this article.

6 Area and performance

The presented algorithms are implemented as C++ programs that input wE , wF and possibly the αi,
compute the various parameters of the architecture, and output synthesisable VHDL. Some values of
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Figure 4: Overview of the exponential
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area and delay (obtained using Xilinx ISE/XST 8.2 for a Virtex-II XC2V1000-4 FPGA) are given in
Table 1 (where a slice is a unit containing two LUTs).

As expected, the operators presented here are smaller but slower than the previously reported ones.
More importantly, their size is more or less quadratic with the precision, instead of exponential for the
previously reported ones. This allows them to scale up to double-precision. For comparison, the FPGA
used as a co-processor in the Cray XD1 system contains more than 23,616 slices, and the current largest
available more than 40,000, so the proposed operators consume about one tenth of this capacity. To
provide another comparison, our operators consume less than twice the area of an FP multiplier for the
same precision reported in [17].

Exponential

Format This work Previous [5]
(wE , wF ) Area Delay Area Delay

(7, 16) 472 118 480 69
(8, 23) 728 123 948 85
(9, 38) 1242 175 – –
(11, 52) 2045 229 – –

Logarithm

Format This work Previous [4]
(wE , wF ) Area Delay Area Delay

(7, 16) 485 82 627 56
(8, 23) 820 100 1368 69
(9, 38) 1960 159 – –
(11, 52) 3122 201 – –

Table 1: Area (in Virtex-II slices) and delay (in ns) of implementation on a Virtex-II 1000

These operators will be easy to pipeline to function at the typical frequency of FPGAs – 100MHz
for the middle-range FPGAs targeted here, 150MHz for the best current ones. The pipeline depth is
expected to be quite long, up to about 30 cycles for double precision. Such lengths are typical of FPGA
floating-point applications (a double-precision multiplier is reported at 20 to 39 cycles in [17]) – and
are less than the number of cycles it takes in software. As mentioned in [5] and [4], one exponential or
logarithm per cycle at 100MHz is ten times the throughput of a 3GHz Pentium.

7 Conclusion and future work

By retargeting an old family of algorithms to the specific fine-grained structure of FPGAs, this work
shows that elementary functions up to double precision can be implemented in a small fraction of current
FPGAs. The resulting operators have low resource usage and high troughput, but long latency. The long
latency is not really a problem for the envisioned applications. When used as co-processors, FPGAs are
limited by their input/output bandwidth to the processor, and bringing elementary functions on-board
will help conserve this bandwidth.

The same principles can be used to compute sine and cosine and their inverses, using the complex
identity ejx = cos x+ j sin x. Its architectural translation, of course, is not trivial. Besides the main cost
with trigonometric functions is actually in the argument reduction involving the transcendental number
π. It probably makes more sense to implement functions such as sin(πx) and cos(πx). A detailed study
of this issue remains to be done.
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