
HAL Id: ensl-00117433
https://ens-lyon.hal.science/ensl-00117433v1

Preprint submitted on 1 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and mid-point rounding cases of power(x,y)
Christoph Lauter

To cite this version:

Christoph Lauter. Exact and mid-point rounding cases of power(x,y). 2006. �ensl-00117433�

https://ens-lyon.hal.science/ensl-00117433v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Exact and mid-point rounding cases of

power(x,y)

Lauter, Christoph Quirin November 2006

Research Report No RR2006-46

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Exact and mid-point rounding cases of power(x,y)

Lauter, Christoph Quirin

November 2006

Abstract

Correct rounding of the power function is currently based on an itera-
tive process computing more and more accurate intermediate approxi-
mations to xy until rounding correctly becomes possible. It terminates
iff the value of the function is not exactly a floating-point number or an
midpoint of two floating-point numbers of the format. For other elemen-
tary functions such as ex, arguments for which f(x) is such an exact case
are, few. They can be filtered out by simple tests. The power function
has at least 235 such arguments. Simple tests on x and y do not suffice
here.
This article presents an algorithm for performing such an exact case test.
It is combined with an approach that allows for fast rejection of cases
that are not exact or mid-point. The correctness is completely proven.
It makes no usage of costly operations such as divisions, remainders or
square roots as previous approaches do.
The algorithm yields a speed-up of 1.8 on average in comparison to
another implementation for the same final target format. It reduces also
the percentage of average time needed for the exactness test from 38%
at each call to 31% under unlikely conditions.
The algorithm is given for double precision but adapts and scales per-
fectly for higher precisions such as double-extended and quad precision.
Its complexity is linear in the precision.

Keywords: Correct rounding, elementary functions, exact rounding cases, power function

Résumé

L’arrondi correct de la fonction power est actuellement basé sur un pro-
cessus itératif qui calcule une approximation intermédiaire à xy de plus
en plus précise et qui peut s’arrêter dès que l’arrondi correct devient
possible. Ce processus termine ssi la valeur de la fonction n’est pas
exactment un nombre flottant ou le milieu de deux nombres flottants
successifs. Pour d’autres fonctions élémentaires telles que ex, le nombre
d’arguments pour lesquels f(x) est un tel cas exact, est petit. Ils peuvent
donc être filtrés par de simples tests. La fonction power a au moins 235

de tels cas. Des tests simples sur x et y n’y suffisent plus.
Cet article présente un algorithme pour un tel test de cas exacts. Une
approche qui permet un rejet rapide de cas qui ne sont pas exacts ou
mi-ulps s’ajoute à l’algorithme donné. Sa correction est complètement
prouvée. Il n’utilise pas d’opérations coûteuses telles que divisions, restes
ou racines carrées comme employées par les approches précédentes.
L’algorithme permet d’obtenir une accéleration du calcul en moyenne
d’un facteur 1.8 par rapport à une autre implémentation pour le même
format final. Son utilisation réduit aussi le pourcentage de temps moyen
nécessaire pour le test des cas exacts de 38% pour chaque appel à 31%
sous des conditions improbables.
L’algorithme est donné pour la précision double mais il peut être adapté
parfaitement à des précisions plus grandes comme les précisions double-
étendue ou quad, sans qu’il y ait un problème de passage à l’échelle. Sa
complexité est linéaire dans la précision.

Mots-clés: Arrondi correct, fonctions élémentaires, cas d’arrondi exacts, fonction power

2

Exact and mid-point rounding cases of power(x,y) 1

1 Introduction

Correct rounding of a function means providing, given a rounding mode ◦ (x), for each argu-
ment x its rounded value ◦ (f (x)) exactly as if the function f(x) were computed in infinite
precision and then rounded. If some of the values of the function are not rational, the explicite
computation of an infinitely precise intermediate value is clearly impossible. Nevertheless,
the correct rounding of elementary, univariate, transcendental functions, such as e.g. ex or
sin(x), has been shown to be feasible and performant for at least double precision in the last
years [15, 6, 1, 4]. Previous state of the art allowed only the correct rounding of 5 basic
operations, addition, substraction, multiplication, division and square root extraction, ⊕, ⊖,
⊗, ⊘, sqrt.

In fact, the original version IEEE 754 standard [2] for binary floating-point arithmetic
requires only these last five operations to be correctly rounded in the four rounding modes the
standard defines. These modes are round-to-nearest-ties-to-even, round-up, round-down and
round-towards-zero. In contrast, the original standard does not tell anything on elementary
functions. However, the IEEE 754 standard is currently undergoing a revision process1.
The current draft of the revised standard comprises an annex requiring some transcendental
functions to be correctly rounded.

The main problem that has longtime prevented the standardization of correctly rounded
elementary functions is the so-called Table Marker’s Dilemma [12, 11]. In finite time the
infinitely exact value ŷ = f(x) of a transcendental function f(x) can only be approximated.
Correct rounding ◦ (f (x)) of the function is possible only if it can be shown that for some
approximation y = ŷ·(1 + ε), the rounding of the approximation, ◦ (y) is equal to the rounding
of the exact value. Formally it means ◦ (f (x) · (1 + ε)) = ◦ (f (x)). The roundings may be
different if the the approximation interval [ŷ · (1− ε) ; ŷ · (1 + ε)] induced by ε contains a
so-called rounding boundary, i.e. a discontinuity of the rounding function ◦(x). For round-to-
nearest mode, rounding boundaries are the exact midpoints between floating-point numbers of
the format to be rounded to. It can be shown that for elementary functions f(x) there exists
always some ε such that |ε| ≤ ε implies correct rounding of an approximation with relative
error ε. The actual value of ε is a priori unknown and difficult to compute. The dilemma is
that the accuracy ε of the intermediate result before rounding may be much higher than the
final accuracy of the result after rounding. The rare theoretical estimates of ε are extremely
pessimistic [13].

Nevertheless, for a particular given input x, the minimal value of ε necessary to guarantee
the correct rounding of f(x) may not be too small. An approach for overcoming the Table
Maker’s Dilemma is Ziv’s onion peeling strategy [12, 15]. In an iterative process the given
function is approximated more and more precisely, i.e. ε is decreased, until the rounding
becomes possible because no rounding boundary lies in the approximation interval. If it can
be shown that for a given input x, f(x) is not exactly equal to a rounding boundary, there
exists always a value ε 6= 0 such that the process terminates.

Such an iterative approach provides good average performance results. In binary arith-
metic, the fact that f(x) is near to a rounding boundary implies that there is a long series of
zeros or ones in the infinite precision significant of f(x) [12]. The bits after some rank in this
significant can be considered to be randomly distributed [8]. Hard cases of the Table Maker’s
Dilemma with very small ε are thus extremely rare. Hence average performance is pratically

1http://grouper.ieee.org/groups/754/

http://grouper.ieee.org/groups/754/

2 Christoph Quirin Lauter

not affected by the consecutive iterations of the process because the first step decides the
rounding in the very most cases.

Means are known that allow computing ε for simple, univariate, elementary functions for
a rounding to double precision [14]. In this case the iterative process can be statically limited
to some number of iterations, typically 2. The result is then known to be roundable at least
after the second step. This concept is e.g. at the base of the crlibm library for correct
rounding elementary functions in double precision [1]. If ε is known, filtering out arguments
with images lying on rounding boundaries may be not necessary. The function log10 (x) in
double precision is an example [1].

In other cases, in order to guarantee the termination of Ziv’s iterative process, filtering
exact and mid-point cases is necessary. It is very simple for most elementary, transcendental
functions, such as ex, sin(x), 2x etc. Since floating-point numbers are algebraic, the images of
almost all inputs are transcendental due to Lindemann’s theorem [9]. These transcendental
images can thus not be rounding boundaries, which are floating-point numbers in a 1 bit more
precise format. For example, ex ∈ Fp only for x = 0 or 2x ∈ Fp only if x ∈ Z.

The power function, defined as power: Fp × Fp → Fp, (x, y) 7→ ◦p (xy), is different from
usual elementary, transcendental functions in many ways. Firstly, from a theoretical point
of view, for all x, y ∈ Fp, xy is algebraic. Secondly, the function is bivariate, thus defined
on at least 2117 inputs in double precision. This makes the computation of ε by current
exhaustive research methods impossible [14, 10]. Ziv’s iterative process must thus be used for
correct rounding. The third and most important point is that there exists a relatively great
number of arguments x, y such that xy is a rounding boundary in some rounding mode. For
double precision there are at least 235 such inputs. This makes direct tabulation completely
impossible. Those cases are nevertheless relatively rare with regard to the whole definition
domain of the function. They are not related to another in some simple, say linear, way.

Filtering out inputs x, y with images xy on rounding boundaries, i.e. floating-point num-
bers or mid-points between them, is necessary not only for guaranteeing the termination of
the correct rounding process. If the IEEE 754 inexact bit is to be set correctly, filtering cases
where xy is a floating-point number in the target format, i.e. an exact result, is necessary.

As far as known to the authors, in addition to our crlibm library, for which support of
the power function is currently being developed, there are two libraries offering a correctly
rounding power function: MPFR2 and Sun’s libmcr3. Both implementations make tests for
exact and mid-point cases. The tests are implemented in a relatively different way. Both use
relatively costly base operations such as square root extraction, divisions and even integer
number tests such as GMP’s4 test for perfect squares.

In this article we will present an approach for a correct rounding of the power function.
Further and mainly, we will give an algorithm for detecting exact and mid-point cases of
xy reusing an approximation to xy computed by a first iteration of Ziv’s process. The al-
gorithm does not make usage of any special base operations; it is based only on additions,
multiplications, shifts and tests. Inexact cases will be detected and rejected as fast as possible.

The article is organized as follows: in next section 2 some notations are defined. In
section 3 our approach for correctly rounding the power function is explained. In section 4
the algorithm is given and explained. Its correctness will be proven in section 5. Section 6

2http://www.mpfr.org/
3http://www.sun.com/download/products.xml?id=41797765
4http://www.swox.com/gmp/

http://www.mpfr.org/
http://www.sun.com/download/products.xml?id=41797765
http://www.swox.com/gmp/

Exact and mid-point rounding cases of power(x,y) 3

shows some performance results. Conclusions can be found in section 7.

2 Notations

In the following, we will denote by Fp the set of floating-point numbers with unbounded
exponent range and a precision of the significant of p bits. In particular, we will denote by
F53 the set of the double precision numbers.

We define the rounding operator ◦p : R → Fp by ◦p (x̂) = x ∈ Fp such that ∀x′ ∈
Fp . |x′ − x̂| > |x− x̂|. Thus, ◦p (x) denotes the rounding to nearest in precision p. We will
denote by ⌊x⌉ the integer n ∈ N nearest to x. The operation ⌊·⌉ is a rounding and therefore
principally subject to the Table Maker’s Dilemma.

Remark that for x, y ∈ Fp, xy is an exact or mid-way case for Fp iff xy ∈ Fp+1 holds.

3 A correctly rounded power function

Arguments (x, y) ∈ F
2
54 for exact or mid-point cases xy ∈ F54 of the double precision power

function cannot be simply tested. The reason is that they are since not trivially distributed
in F

2
53 and are of great number. They are nevertheless relatively rare in comparison with the

whole set of valid inputs to the function.

In fact, a simple estimate shows that there are about 2117 inputs to the power function
in double precision. There are at least 226 perfect squares that can be written on 53 bits
significants and at least 29 correspondant exponents. Hence at least 235 nontrivial exact inputs
to the power function are exact cases. Nevertheless, as exact cases must be representable on
at most 54 bits and 210 exponents, there cannot be more than 264 of them. The probability
pr1 of an exact case is thus less than pr1 ≤ 264−117 = 2−51, assuming random distribution of
the inputs.

In order to optimize average performance, it is useful to start Ziv’s iteration process with
a first approximation p = xy · (1 + ε) and to try to reject as many as possible inexact cases
by a simple rounding test [5] on the approximation p. Exact, midpoint and hard-to-round
cases behave similar with respect to a rounding test comparing the result to a 1

2 · ulp value.
If the approximation is not sufficiently precise then the relatively costly check for exact and
mid-point cases must be executed. However this is the only case for its execution.

The average execution time t in such an approach is t = t1 + (pr1 + pr2) · (t2 + t3) where
t1 is the time needed for the first approximation, t2 is the time for the exact case check, t3
is the time for the higher Ziv process iterations and where pr1 is the probability for an exact
case and pr2 the one for a hard-to-round case. Supposing random distribution of the bits of
the infinite precision significant, pr1 +pr2 is proportional to ε̂ ·2p where ε̂ is the bound for the
relative error ε of the first approximate, |ε| ≤ ε̂, and p is the target precision to be rounded
to [5]. For double precision with ε̂ = 2−60 and p = 53, pr1 + pr2 ≈ 1

100 .

In contrast, in an approach where exact cases are filtered before approximating the func-
tion the average execution time will be t = t2 + (1− pr1) · (t1 + pr2 · t3). Since pr1 ≈ 2−51

and t2 is not negligible with regard to t1, the first approach is more performant.

For this reason, our algorithm for the power function implements the approximate-and-
test approach. The power function in the MPFR library follows this principle, too. The library
libmcr uses the other approach where input are first checked for exactness.

4 Christoph Quirin Lauter

The probability pr2 ≈ 1
100 of hard-to-round cases that are worse than the first approxima-

tion accuracy ε̂ = 2−60, is much higher than the probability of an exact case. The exact case
detection algorithm should thus try to reuse the intermediate result p = xy · (1 + ε) in order
to reject as fast as possible the inexact, hard-to-round cases.

All exact and mid-point cases for double-precision are in F54. One observes that the
rounding (in any rounding mode) to double precision, i.e. 53 bits, and the rounding to
nearest to a 54 bit format cannot be subject to the Table Maker’s Dilemma simultaneously.
In fact, if the Table Maker’s Dilemma occurs on the rounding ◦53 (x̂), the infinite precision
significant of x̂ has a long series of consecutive zeros or one starting at the 55th bit. If the
Table Maker’s Dilemma simultaneously occured on ◦54 (x̂), there would be a zero or one at the
55th bit and followed by a series of ones respectively zeros starting at the 56th bit [12]. The
first approximation is accurate to at least 2−60 in relative error. The rounding ◦54 (xy) can
thus be computed correctly on all inputs where the rounding test checking for table maker’s
dilemma cases rejects rounding to 53 bits.

Hence the exact and mid-point test can use the information ◦54 (xy). Since xy = ◦54 (xy)
iff xy ∈ F54, the test whether xy ∈ F54 reduces to testing if ◦54 (p) = ◦54 (xy) is equal to xy.

In practice, this additional information allows for very efficient filtering of inexact cases as
will be shown below. The power implementation in MPFR nevertheless does not use it. This
is one of the main contributions of this work.

4 Detecting exact and mid-point rounding cases

The algorithm for detecting exact and mid-point rounding cases must check whether for given
x, y ∈ F53 and z = ◦54 (xy) ∈ F54, xy = z. For negative y the test becomes simple because only
rationals with integer powers of 2 in the denominator can be represented in floating-point.

For positive y, defining x = 2E ·m, y = 2F · n, z = 2G · k, E,F,G ∈ Z, m,n, k ∈ N, the
test xy = z becomes equivalent to showing that 2E·2F ·n · m2F ·n = 2G · k. When assuming
additionally that m, n and k are odd, the test can be decomposed into two tests, namely
E · 2F · n = G and m2F ·n = k (cf. section 5, lemma 5.1).

The test E · 2F · n = G, i.e. E · y = G is not very costly. In contrast, it rejects a high
number of hard-to-round inexact results that have not been filtered by the rounding test.
Hard-to-round cases with a final rounding error of less than 2−60, such that E · y is integer,
are already relatively rare. G is not the IEEE 754 exponent of z = ◦54 (xy) but a particular
exponent value such that k = 2−G · z is odd. By this reason the test is an effective filter for
most hard-to-round inexact cases because E · y = G becomes extremly unlikely in pratice.
Tested on at least 240 random arguments, our algorithm executed the test about 232 times
but did not pass it once. We could construct only one example on which xy is not exact but
on which the test passes. It is the input x = 2−928 · 5794621699391487, y = 2−5 · 33.

In our algorithm, the following test for m2F ·n = k gets executed very rarely (with a
probability of ≈ 2−80) on random input. Both MPFR and libmcr do not take advantage of
this simple average performance improvement chance.

The second test for m2F ·n = k decomposes into two main cases depending on the sign of
F . If F is positive or 0, 2F ·n is integer and can be shown to be bounded by a small value (cf.

section 5, lemma 5.2). The value m2F ·n can be exactly computed by repeated multiplication
or repeated squaring and multiplying relatively easily and in a performant way.

If F is negative, it can be shown that for m,n, k ∈ 2N + 1, the egality m2F ·n = k holds

Exact and mid-point rounding cases of power(x,y) 5

iff m2F ∈ N is satisfied (cf. section 5, lemma 5.3). Testing m2F ·n = k reduces thus to testing

if there exists j ∈ N such that j = m2F
, computing j and testing jn = k. The last test is

equivalent to testing m2F ·n = k for F = 0 and m = j; this test has been explained above.

Different ways exist to perform the basic test whether m is of the form j2i
, i, j ∈ N, i.e. a

multiple or higher perfect square.

4.1 Testing if an integer m is of the form j2i

, i, j ∈ N

Both libraries MPFR and libmcr perform the test m2F ∈ N respectively their equivalent form
of the test, by repeated square root extraction followed by additional tests. They either check
at each step that no rounding error occured on square root extraction or test if a number is
a perfect square. This is done by different means: testing if the inexact flag has not been set
during the operation, checking conditions on a double-length mantissa approximating

√
mi.

The test if the given number is a perfect square is done by number theoretical algorithms
implying divisions and remainders. All these operations are extremely expensive.

From a less number theoretical point of view, the test m2F ∈ N means computing j′ = m2F

and testing if the result j′ is an integer. Since m2F
can only be approximated, it seems to be

impossible. Nevertheless if it is possible to compute the integer j nearest to m2F
, i.e. m2F

itself if it is integer, and to perform the inverse operation j2−F
exactly, the test reduces to(⌊

m2F
⌉)2−F

= m. It means that the algorithm implicitely tests whether the rounding error

m2F −
⌊
m2F

⌉
has been equal to 0.

The values F and m can be bounded by very small values. The inverse operation j2−F

can, thus, be performed exactly by repeated squaring. It can be shown that if one of the
intermediate results cannot be hold on a target precision floating-point variable, m2F

cannot
be integer. The Dekker sequence for exact multiplication can easily be adapted for this kind
of operation [7].

Computing
⌊
m2F

⌉
efficiently seems to be impossible, too. On the operation j = ⌊j′⌉ =

⌊
m2F

⌉
the Table Maker’s Dilemma may occur. This is, nevertheless, of no importance in this

case. It does not occur on numbers m2F ∈ N because ⌊·⌉ is a fixed point rounding to the

nearest. If it occured, the fractional part of m2F

would be near to 1
2 , so far from 0 as for

integer m2F
. If it occurs on other values, the rounding error does not become 0, however, and

the algorithm returns false anyway.

In order to guarantee that j = ⌊j′⌉ is correctly rounded for values m2F ∈ N, the relative

error ε of the approximation of j = m2F

, j′ = m2F · (1 + ε) must just be bounded by
approximately half the machine error of the target precision. For all target precisions p

(here p = 53) m is an integer bounded by 2p − 1. The value m2F
is, therefore, bounded by√

2p − 1 because F ≤ −1. The egality ⌊n + δ⌉ = ⌊n⌉ holds for n ∈ N if the absolute error

δ = m2F · ε is bounded by less than 1
2 . Hence roughly, the following bound must be satisfied:

|ε| ≤ 2−2 · 1√
2p−1

≈ 2
−p

2
−2.

The operation j′ = m2F · (1 + ε) can be performed by standard techniques used in ele-

mentary functions. In fact, m2F

can be computed as m2F

= 22F ·log2(m). Since x = 2E ·m,
log2 (m) = log2 (x) − E. In our two step approach in which xy is first approximated before
exact and midpoint cases are detected, xy will generally be computed approximately using

6 Christoph Quirin Lauter

xy = 2y·log2(x). So a very good approximation to log2 (x) will already be available. The pos-
sible cancellation in log2 (m) = log2 (x) − E is harmless since E is bounded roughly by the

exponent range of the target format. Computing j′ = m2F

reduces to a substraction, a mul-
tiplication by an integer power of 2 and approximating the function 2ξ on a relatively small
range with an accuracy of about half the target precision. For example, in our implementa-
tion, on highly pipelined machines like Intel’s Itanium system, 2ξ is available after about 6
floating point latencies. One square root is available after about 5 latencies [3] whereas up to
5 repeated would be needed. This reinforces the argument for not using repeated square root
extraction.

Let us give now our algorithm for testing cases m2F ∈ N. The bounds given in the
preconditions of the algorithm will be shown in section 5 at lemma 5.2.

Input: m ∈ (2N + 1) ∩ F53, m ≥ 3

F ∈ Z, −5 ≤ F ≤ −1

Output: (p, j) =

{ (
true,m2F

)
if m2F ∈ N

(false, 0) otherwise

j′ ← m2F · (1 + ε) where |ε| ≤ 2−30;1

j ← ⌊j′⌉;2

i← −F ;3

s← j;4

while i > 0 do5

th ← ◦53 (s · s); tl ← s · s− tl;6

if tl 6= 0 then return (false, 0);7

s← th;8

i← i− 1;9

end10

if s = m then return (true, j) else return (false, 0);11

Algorithm 1: isAHigherSquare

4.2 The detection algorithm

Let us give now our detection algorithm as presented above. It can be implemented using
only double precision arithmetic. Decomposition of numbers uses some bit manipulations.
Exact multiplication at line 22 uses the well-known Dekker sequence [7]. The correctness of

Exact and mid-point rounding cases of power(x,y) 7

the algorithm will be proven in the next section 5.
Input: x ∈ F53, x > 0, y ∈ F53, y 6= 0, y 6= 1

H ∈ Z, kh, kl ∈ F53 such that 2H · (kh + kl) = ◦54 (xy)
Output: a predicate P (x, y) = (xy ∈ F54)
if y < 0 then1

if ¬ (∃a ∈ Z . 2a = x) then return false;2

a← log2(x);3

if a · y 6∈ Z then return false else return true;4

else5

Let E,F,G ∈ Z, m,n ∈ (2N + 1) ∩ F53, r ∈ N ∩ F53 such that6

2E ·m← x; 2F · n← y; 2G · (2 · r + 1)← 2H · (kh + kl);7

if E · y 6= G then return false;8

if m = 1 then9

if r = 0 then return true else return false;10

end11

if F < 0 then12

if F < −5 then return false;13

(p, j)← isAHigherSquare(F,m);14

if p = false then return false;15

m← j; F ← 0;16

end17

if 2F · n > 35 then return false;18

z ← 1;19

t← 2F · n− 1;20

while t > 0 do21

ph ← ◦53 (z ·m); pl ← z ·m− ph;22

if pl 6= 0 then return false;23

z ← ph;24

t← t− 1;25

end26

zh ← ◦53 (z ·m); zl ← z ·m− zh;27

if zh + zl 6= 2 · r + 1 then return false else return true;28

end29

Algorithm 2: detectExactCase

5 Correctness proofs of the algorithms

The correctness of our algorithms 1 isAHigherSquare and 2 detectExactCase can be
shown as follows. We establish the fact that the test xy = z decomposes into two tests:

Lemma 5.1
Assume that E,F,G ∈ Z, m,n, k ∈ 2N + 1. Thus the following holds

2E·2F ·n ·m2F ·n = 2G · k ⇔ E · 2F · n = G

∧ m2F ·n = k

8 Christoph Quirin Lauter

Proof (sketch)

Consider the fact that m2F · and k or mn and k2−F
are odd integers and E · 2F · n−G 6= 0 or

E ·n−G ·2−F 6= 0. Thus the equations 2E·2F ·n−G ·m2F ·n = k or 2E·n−G·2−F ·mn = k2−F

yield
to contradictions because their left-hand sides are even integers and their right-hand sides are
odd.

The algorithms check several bounding conditions on the inputs. These bounds can be
shown as follows.

Lemma 5.2
Let m ∈ 2N+1 be bounded by 3 ≤ m ≤ 253−1. Let n ∈ 2N+1 be bounded by 1 ≤ n ≤ 253−1.
Let r ∈ N be bounded by 0 ≤ r ≤ 253−1. Let F ∈ Z be an integer. Assume that m2F ·n = 2·r+1.
Thus 2F · n is bounded by 2F · n ≤ 35 and F is bounded by −5 ≤ F ≤ 5.

Proof
In the first place let us show the upper bounds. Since r ≤ 253−1, we know that 2 ·r+1 ≤ 254.
Thus, m2F ·n ≤ 254 and 2F · n · log2(m) ≤ 54. Since m ≥ 3, we have log2(m) ≥ log2(3) > 0.
Hence, 2F ·n ≤ 54

log2(m) ≤ 54
log2(3) < 34.08 < 35. This is the upper bound to be shown for 2F ·n.

Since n ≥ 1, we have 2F ≤ 35 and therefore F ≤ 5.13. Since F is integer, we have the given
bound F ≤ 5.

Let us show now that F ≥ −5. Without loss of generality, we can suppose that F is
negative. Let pi, qi be prime numbers such that i 6= i′ ⇒ pi 6= pi′ ∧qi 6= qi′ . Let αi, βi ∈ N\{0}
be valuations such that m =

∏
i

pαi

i and 2 · r + 1 =
∏
i

q
βi

i Since F ≤ −1, 2−F is integer.

Thus we have mn = (2 · r + 1)2
−F

where mn and (2 · r + 1)2
−F

are integers. In consequence

the egality
∏
i

pαi·n
i =

∏
i

q
βi·2−F

i holds and there exists a permutation σ such that ∀i . pi =

qσ(i) ∧ αi · n = βσ(i) · 2−F . Since m is an odd integer and m ≥ 3, ∀i . pi ≥ 3 holds. Further

m ≤ 253 − 1 and therefore 3αi ≤ 253 and αi ≤ 53 · log(2)
log(3) ≤ 34. Let κi ∈ 2N + 1 be odd

integers and γi ∈ N valuations such that ∀i . αi = 2γi · κi. Such κi and γi exist for all αi

because αi ∈ N. Since ∀i . αi ≥ 1, the following upper bounds are satisfied: ∀i . κi ≥ 1. As
∀i . αi ≤ 34, the following holds 2γi ≤ 34 and γi ≤ log2(34) ≤ 5.09 Since γi ∈ N, γi ≤ 5. The
following identity has been shown to hold: 2γi · (κi · n) = βσ(i) ·2−F Since n and all κi are odd
integers, κi · n is odd. Further, βσ(i) is an integer. Thus, −F is upper bounded by γi which
is bounded by 5. So F ≥ −γi ≥ −5.

Remark that the upper bounds given for 2F · n and |F | are slowly increasing functions
of the target precision p. Actually, 2F · n = O (p) and |F | = O (log p). The worst-case
complexity and run-time of algorithms 1 and 2 isAHigherSquare and detectExactCases
are linear functions in these bounds. Therefore our algorithms can be extended for higher
precision target formats like the = 64 bit double-extended and p = 112 bit quad precision.
For example, for p = 112, 2F · n will be bounded roughly by 2F · n ≤ 71 and |F | ≤ 6.

The test m2F ·n = k can be decomposed into two tests, m2F
= j ∈ N and jn = k:

Lemma 5.3
Assume m,n, k ∈ 2N + 1, F ∈ Z, F ≤ −1.

Thus m2F ·n = k ⇔ ∃j ∈ N .
(
j = m2F ∧ jn = k

)
holds.

Exact and mid-point rounding cases of power(x,y) 9

Proof (sketch)
It suffices to remark that a 2−F -root of an integer m is integer only if all valuations of the
prime factor decomposition of m are divisible by 2−F and that n is odd. So, if j = m2F

is
not integer, there exists a valuation in the prime decomposition as well of m as of mn that is
not divisible by 2−F but all valuations of k2−F

are divisible by 2−F .

We are now able to give the correctness proof for our algorithm 1 isAHigherSquare.

Theorem 5.4
Algorithm 1 isAHigherSquare is correct.

It means ∀m ∈ F53 ∩ (2N + 1) . 3 ≤ m ≤ 253 − 1 and ∀F ∈ Z . − 5 ≤ F ≤ −1 the algorithm

terminates and returns
(
true,m2F

)
if m2F ∈ N and (false, 0) otherwise.

Proof (sketch)
Showing termination is not a problem. For proving correctness, it suffices to remark that the
integer j is computed without occurence of the Table Maker’s Dilemma for m2F ∈ N because
j′ is upper bounded by 227 ≥

√
253 − 1 and exact to at least 30 bits. Further, since j is integer

and j2−F
= m is upper bounded by 253 − 1, all j2i

, 0 ≤ i ≤ −F , are representable on 53 bits.
Thus, the algorithm does not return (false, 0) at line 7 and the loop computes s = j2−F

= m

exactly. The other way round, if m2−F 6∈ N, there is a nonzero rounding error on line 2 upon
computing ⌊j′⌉. So if by chance, all intermediate squarings at line 6 are exact, j2−F

= s 6= m.
Hence, the algorithm returns (false, 0).

The correctness of our algorithm 2 detectExactCases will be shown also for negative y

that we can classify as follows.

Lemma 5.5
Assume that x, y ∈ F53 such that x > 0, y < 0 and ◦53 (xy) 6∈ {NaN,+∞,−∞}.
Thus xy ∈ F54 iff ∃a ∈ Z . (2a = x ∧ a · y ∈ Z).

Proof
The existence of the indicated a clearly implies xy ∈ F54. The other implication can be as
follows: Assume that xy ∈ F54 but the contrary of the property to be implied. Since x, y ∈ F53

and xy ∈ F54, there exist odd integers m,n, k ∈ 2N + 1 and signed integers E,F,G ∈ Z such
that x = 2E · m, y = −2F · n and xy = 2G · k. This yields to m2F ·n = 2−G−E·2F ·n · 1

k
.

There are two case depending on the sign of F . If F ≥ 0 then 2F is an integer, 2F · n is an
integer and −G − E · 2F · n is a signed integer. There exists therefore an integer a ∈ N, a
signed integer b ∈ Z and an odd integer c ∈ 2N + 1 such that ma = 2b · 1

c
by the definitions

a = 2F · n, b = −G − E · 2F · n and c = k. If F < 0 then 2−F is integer, −G · 2−F , E · n
and −G · 2−F −E ·n are signed integers and k2−F

is an odd integer. So there exist an integer
a ∈ N, a signed integer b ∈ Z and an odd integer c ∈ 2N + 1 such that ma = 2b · 1

c
by a = n,

b = −G · 2−F − E · n and c = k2−F
.

If b ≥ 0, 2b is integer. Since ma is integer, 2b

c
is integer. As c is odd, gcd

(
2b, c

)
= 1. In

consequence, c is equal to 1, c = 1. If b < 0, 2−b and 2−b · c are integer. Since ma is integer,
1

2−b·c is integer. Hence, 2−b · c = 1 and thus, c = 1 because c is odd and 2−b is integer.

Since c = 1 and c = k or c = k2−F

, k is equal to 1 in all cases. This implies that xy = 2G ·1
is an integer power of 2. In consequence, x = 2

G
y . Since 2ξ is transcendental for all algebraic

10 Christoph Quirin Lauter

ξ that are not signed integers (see [9]), and since x is algebraic, there exists an a = G
y
∈ Z.

Thus, a ·y = G ∈ Z and x = 2
G
y = 2

a·y

y = 2a. This yields a contradiction with the hypotheses.

Here is finally the correctness proof of our algorithm for detecting exact cases.

Theorem 5.6
Algorithm 2 detectExactCase is correct.

This means ∀x ∈ F53, x > 0 and ∀y ∈ F53, y 6= 0, y 6= 1 such that 2−1075 ≤ xy ≤ 21024

and ∀kh, kl ∈ F53, ∀H ∈ Z such that 2H · (kh + kl) = ◦54 (xy) the algorithm returns true iff

xy ∈ F54.

Proof (sketch)
Showing termination is not a problem. The case where y < 0 can be proven by direct
application of lemma 5.5. Otherwise consider the following: after the execution of line 27,

zh + zl = m̃2
eF ·n where m̃ and F̃ are the values of the variables m and F taken at line 18.

The value m̃ is an integer bounded by 253 − 1 such that m̃i ≤ 253 − 1 for 0 ≤ i ≤ 2
eF · n− 1 if

xy ∈ F54 by 5.2. So for xy, at each iteration of the loop, z ·m = m̃i ∈ F53. Since j = m2F
by

theorem 5.4 if the control flow goes through line 14, zh +zl = m2F ·n where m, F and n are the
values computed at lines 6 and 7. Further, E · y = G, i.e. E · 2F · n = G. Thus, by lemmata
5.1, 5.2 and 5.3, xy = zh + zl and since zh + zl = 2 · r + 1 ∈ F54 if the algorithm returns true,
xy ∈ F54 in this case. If xy 6∈ F54 the algorithm returns either false at one of the lines 8, 13,
15, 18 and 23 or zh + zl = xy may not be equal to 2 · r + 1 because 2 · r + 1 ∈ F54. So it
returns false in any case. The special case m = 1 is trivial.

6 Performance results

The following comparative performance results of our power function in crlibm and of the
function in Sun’s libmcr have been observed. Timing measurements have been obtained on
a Intel Xeon 2.40GHz processor running on Debian Linux 2.6.10-server when compiling both
libraries crlibm and libmcr with gcc version 3.3.5.

On random values x ∈ F53, y ∈ F53 such that no infinity or NaN and no wrong rounding
occurs, the crlibm outperforms libmcr on average with 1746 time units with regard to
3235 time units. On maximum timings it is slightly less performant with 8456 time units in
comparison with libmcr’s 6388 time units. These maximum timings are mainly caused by
costly subnormal rounding of xy in its gradual underflow range. Additional analysis shows
that on not subnormal results that are not exact or midway cases, the result is available on
average after 1200 time units using crlibm and after only 2900 time units using libmcr. This
is a speed-up on average of a factor 2 in the favor of our power function.

On values x ∈ F53, y ∈ F53 such that xy ∈ F54 without occurence of infinity, NaN or
subnormal rounding, Sun’s libmcr is faster than our crlibm on average and on maximum
timings with 1103 time units versus 1747 units respectively 1688 time units versus 2032
time units. This speed-down of crlibm of maximally 68% must be seen relatively to the
fact that libmcr effectuates an exact and mid-point case check on all non-trivial inputs
before approximating xy with a first intermediate precision and crlibm first approximates
the function. The check implemented in libmcr computes the value xy simultaneously while
checking if it is exact or mid-point. This allows libmcr to return xy if it is exact after 1103

Exact and mid-point rounding cases of power(x,y) 11

cycles on average. However it costs the library’s function the same cost when returning ◦ (xy)
if the case is not exact. Since the average timing on inexact results is 2900 time units, about
38% are spent for the exact case test at each call. In contrast, since an inexact case result is
available after 1200 time units on average with our algorithm and the exact case result after
the test is available after about 1750 time units, only about 31% are spent on testing the
exactness of a case on average, if the case is exact.

7 Conclusions and future work

We have given an approach for implementing a correctly rounded power function, ◦ (xy), and
an algorithm for detecting exact and mid-point rounding cases of this function in double
precision. The correctness of the algorithm is completely proven. It can be implemented
using only double precision arithmetic. It does not make usage of any costly operations
such as divisions, remainders or square root extraction. It follows the common principle of
returning fast answers on frequent cases and allows for reusing maximally already computed
approximations. Nevertheless, its worst case timings are bounded by practical observation as
well as by theoretical considerations.

Our algorithm perfectly adapts and scales to higher precisions, like e.g. double-extended
or quad precision. Its complexity and practical timings are linear in the target precision.

Performance results show that the proposed approach can speed up the average case
performance of the power function by a factor of about 1.8 inducing an additional cost of
only 31% on exact cases.

The given algorithm is optimized for rejecting as fast as possible all inexact values. Nev-
ertheless, some of its control flow paths seem to be executed very rarely or even no time
in practice. They are currently necessary for permitting a complete correctness proof. This
proof and in consequence the algorithm might be optimized still in the future.

References

[1] CR-Libm, a library of correctly rounded elementary functions in double-precision.
http://lipforge.ens-lyon.fr/www/crlibm/.

[2] ANSI/IEEE. Standard 754-1985 for binary floating-point arithmetic, 1985.

[3] M. Cornea, J. Harrison, and P.T.P Tang. Scientific Computing on Itanium-based Systems.
Intel Press, 2002.

[4] F. de Dinechin, D. Defour, and C. Lauter. Fast correct rounding of elementary functions
in double precision using double-extended arithmetic. Technical Report 2004-10, LIP,
École Normale Supérieure de Lyon, March 2004.

[5] F. de Dinechin, A. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th IEEE

Symposium on Computer Arithmetic, Cape Cod, Massachussets, June 2005.

[6] F. de Dinechin, Ch. Q. Lauter, and J.-M. Muller. Fast and correctly rounded logarithms
in double-precision. Theoretical Informatics and Applications, 2006. to appear.

[7] Theodorus J. Dekker. A floating point technique for extending the available precision.
Numerische Mathematik, 18(3):224–242, 1971.

http://lipforge.ens-lyon.fr/www/crlibm/

12 Christoph Quirin Lauter

[8] Shmuel Gal and Boris Bachelis. An accurate elementary mathematical library for the
IEEE floating point standard. ACM Transactions on Mathematical Software, 17(1):26–
45, March 1991.

[9] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford
University Press, 1979.

[10] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions
in double precision. In Neil Burgess and Luigi Ciminiera, editors, Proceedings of the 15th

IEEE Symposium on Computer Arithmetic, pages 111–118, Vail, Colorado, 2001. IEEE
Computer Society Press, Los Alamitos, CA.

[11] V. Lefèvre, J.-M. Muller, and A. Tisserand. The table maker’s dilemma. Technical
Report RR1998-12, Laboratoire de l’Informatique du Parallélisme, Lyon, France, 1998.

[12] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser,
Boston, 1997.

[13] Y. V. Nesterenko and M. Waldschmidt. On the approximation of values of exponential
and logarithm by algebraic numbers (in russian). Math. Zapiski, (2):23–42, 1996.

[14] D. Stehlé, V. Lefèvre, and P. Zimmermann. Worst cases and lattice reduction. In Jean-
Claude Bajard and Michael Schulte, editors, Proceedings of the 16th IEEE Symposium

on Computer Arithmetic, pages 142–147, Santiago de Compostela, Spain, 2003. IEEE
Computer Society Press, Los Alamitos, CA.

[15] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded
last bit. ACM Transactions on Mathematical Software, 17(3):410–423, September 1991.

	1 Introduction
	2 Notations
	3 A correctly rounded power function
	4 Detecting exact and mid-point rounding cases
	4.1 Testing if an integer m is of the form j2i, i,j N
	4.2 The detection algorithm

	5 Correctness proofs of the algorithms
	6 Performance results
	7 Conclusions and future work

