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Time-frequency learning machines

Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to new algorithms, with improved performance and lower computational cost, for non-linear analysis in high dimensional feature spaces. Our paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.

I. Introduction

Time-frequency and time-scale distributions provide a powerful tool for non-stationary signal analysis. Unlike conventional spectral methods, they reveal the time-varying spectral content of one-dimensional signals by mapping them into a two-dimensional time-frequency domain. Substantial theoretical work has been carried out in this direction and has yielded many different classes of time-frequency distributions, parametric or otherwise, in which optimal solutions for a given signal or task can be selected. As an example, distributions dedicated to signal analysis are studied in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF][START_REF] Jones | An adaptive optimal-kernel time-frequency representation[END_REF][START_REF] Gosme | Adaptive diffusion of time-frequency and time-scale representations: a review[END_REF] whereas optimal distributions for signal detection are considered in [START_REF] Flandrin | A time-frequency formulation of optimum detection[END_REF][START_REF] Sayeed | Optimal detection using bilinear time-frequency and time-scale representations[END_REF].

Since the pioneering work of Aronszajin [START_REF] Aronszajn | Theory of reproducing kernels[END_REF], pattern recognition based on reproducing kernel Hilbert spaces (RKHS) has gained wide popularity. The most prominent recent developments include support vector machines (SVM) [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF], kernel principal component analysis (KPCA) [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF], kernel Fisher discriminant analysis (KFDA) [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF], and its generalization to multiclass problems, kernel generalized discriminant analysis (KGDA) [START_REF] Baudat | Generalized discriminant analysis using a kernel approach[END_REF]. A key property behind such algorithms is that they can be expressed in terms of inner products only, involving pairs of input data. Replacing these inner products with a reproducing kernel provides an efficient way to implicitly map the data into a high, even infinite, dimensional RKHS and apply the original algorithm in this space. Because calculations are then carried out without making direct reference to the non-linear mapping of input vectors, this principle is commonly called the kernel trick. Kernelbased algorithms are computationally very efficient, and generally have their generalization performance guaranteed by Statistical Learning Theory [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF][START_REF] Cucker | On the mathematical foundations of learning[END_REF].

With the exception of [START_REF] Davy | Optimised support vector machines for nonstationary signal classification[END_REF][START_REF] Rakotomamonjy | Non-parametric regression with wavelet kernels[END_REF], there are very few works combining kernel learning machines and time-frequency analysis, although the interest in pattern recognition based on time-frequency representations remains strong. In [START_REF] Davy | Optimised support vector machines for nonstationary signal classification[END_REF],

the authors solve a signal classification problem using a SVM and a reproducing kernel expressed in the time-frequency domain. Reproducing wavelet kernels are considered in [START_REF] Rakotomamonjy | Non-parametric regression with wavelet kernels[END_REF] for non-parametric regression. Clearly, time-frequency analysis still has not fully benefited from the rapid development of kernel learning machines. In this paper, we show that some specific reproducing kernels allow any kernel learning machine to operate in the time-frequency domain. For the sake of simplicity, we begin by describing our approach applied to the Wigner distribution. Next we apply it to other time-frequency distributions. But before, let us briefly review the basics concepts of kernel learning machines.

II. Kernel learning machines: a brief review of basic concepts

Most kernel learning machines are statistical learning algorithms that take advantage of the geometric and regularizing properties of RKHS, which are established by the kernel trick and the representer theorem [START_REF] Kimeldorf | Some results on Tchebycheffian spline functions[END_REF][START_REF] Schölkopf | A generalized representer theorem[END_REF]. In this section, we briefly introduce these concepts through an example.

A. Example of kernel-based method: the KPCA algorithm Problems commonly encountered in machine learning start with a training set A n containing n instances x i ∈ X and, in a supervised context, their labels or desired outputs y i ∈ Y. The objective of the exercise is usually related to feature extraction, density estimation or classification. Linear methods have played a crucial role in the development of machine learning because of their inherent simplicity from conceptual and implementational points of view. However, in many fields of current interest such as biological engineering and communications, it is necessary to deal with non-linear complex phenomena. A possible way to extend the scope of linear learning machines is to map the input data from X into a feature space F via a non-linear mapping φ(•). The n instances φ(x i ) are then used as training samples. Clearly, this basic strategy may fail when F is a very high, or even infinite, dimensional space. As shown below with the KPCA algorithm, kernel learning machines overcome this limitation by using a powerful computational shortcut.

KPCA is a non-linear form of principal component analysis (PCA) which allows to extract features that are nonlinearly related to the input variables. Consider a set of n data points φ(x i ) mapped into a feature space F and centered at the origin, that is, n i=1 φ(x i ) = 0. PCA is performed in F by solving the eigenvalue problem ΣΦ = µΦ with Φ = 0, where Σ = 1 n n j=1 φ(x j ) φ(x j ) ⊤ is the covariance matrix. If F is infinite-dimensional, note that φ(x j ) φ(x j ) ⊤ may be seen as the projection operator onto direction φ(x j ). The problem becomes n j=1 φ(x j ), Φ φ(x j ) = nµ Φ, where • , • is the inner product in F. Observe that any solution Φ k with µ k = 0 must lie in the span of φ(x 1 ) . . . , φ(x n ), and can then be expanded as follows

Φ k = n i=1 a i,k φ(x i ). ( 1 
)
As detailed in [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF], substituting this expression into the eigenvalue equation and multiplying it from the right by φ(x j ), we obtain the following eigenvalue problem: 1 Ka k = λ k a k , where K is the n-by-n Gram matrix whose (i, j)-th entry is φ(x i ), φ(x j ) , and λ k = nµ k . The components of the k-th eigenvector a k of K are the a i,k 's defined in equation [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF].

Finally, the k-th principal component can be extracted from any φ(x) by projecting it onto Φ k , namely,

φ(x), Φ k = n i=1 a i,k φ(x), φ(x i ) . ( 2 
)
1 The eigenvalue problem for non-centered data points φ(x i ) in feature space F is given by: (K -1nK -K1n + 1nK1n)a k = λ k a k , with

K(i, j) = φ(x i ), φ(x j ) and 1n(i, j) = 1 n [9].
The most interesting characteristic of this algorithm is that the non-linear mapping φ(•) only appears in the form of inner products φ(x i ), φ(x j ) . Suppose we are given a kernel function κ : X × X → C with the property that there exists a map φ : X → F such that for all x i , x j ∈ X , we have κ(x i , x j ) = φ(x i ), φ(x j ) . For a survey, see e.g. [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. The so-called kernel trick consists of substituting each inner product φ(x i ), φ(x j ) by κ(x i , x j ). The power of this principle lies in that the inner products in the feature space F are computed without explicitly carrying out or even knowing the mapping φ(•), which results in computationally efficient algorithms. Classic examples of valid kernels are the q-th degree polynomial kernel κ(x i , x j ) = (1 + x i , x j ) q and the Gaussian kernel κ(x i , x j ) = exp(-x i -x j 2 /2σ 2 ), where σ is the kernel bandwidth. Note that the feature space corresponding to the latter is infinite dimensional.

B. The kernel trick, the representer theorem

The kernel trick can be used to transform any linear data processing technique into a non-linear one, on the condition that the algorithm can be expressed in terms of inner products only, involving pairs of the input data. This is achieved by substituting each inner product x i , x j by a kernel κ(x i , x j ), leaving the algorithm unchanged and incurring essentially the same computational cost. In conjunction with the kernel trick, the representer theorem [START_REF] Kimeldorf | Some results on Tchebycheffian spline functions[END_REF][START_REF] Schölkopf | A generalized representer theorem[END_REF] is a solid foundation of kernel-based methods such as SVM, KFDA, KGDA and KPCA. Consider the learning machine L(x) = φ(x), Φ and the regularized risk functional

n i=1 V (L(x i ), y i ) + λ L 2 , (3) 
with V (L(x), y) the cost of predicting L(x) when the desired output is y, and λ a positive parameter. The representer theorem states that, under very general conditions on the loss function V , any Φ ∈ F minimizing the criterion (3) admits a representation of the form

Φ = n i=1 a i φ(x i ). ( 4 
)
This leads to the well-known kernel expansion L(x) = n i=1 a i κ(x, x i ). As an example, note that expressions (1) and ( 2) arise as a direct consequence of this theorem when it is applied to the problem of PCA in feature space.

III. Time-frequency learning machines: general principles

The reason for time-frequency analysis is to give a mathematical core to the intuitive concept of time-varying Fourier spectrum for non-stationary signals. For a survey, see [START_REF] Boashash | Time-frequency signal analysis and applications[END_REF][START_REF] Flandrin | Time-Frequency/Time-Scale Analysis[END_REF] and references therein. Most of the parametric distributions of current interest belong to the Cohen class, which has proven useful in identifying non-stationarities in signals produced by a host of real-world applications. In this section, we investigate the use of kernel learning machines for pattern recognition in the time-frequency domain. To clarify the discussion, we will first focus on the Wigner distribution, which plays a central role in the Cohen class. This will be followed by an extension to other time-frequency distributions.

A. The Wigner distribution

Among the myriad of time-frequency representations that have been proposed, the Wigner distribution is considered fundamental in a number of ways. Its usefulness derives from the fact that it satisfies many desired mathematical properties such as the correct marginal conditions and the weak correct-support conditions [START_REF] Boashash | Time-frequency signal analysis and applications[END_REF][START_REF] Flandrin | Time-Frequency/Time-Scale Analysis[END_REF]. This distribution is also a suitable candidate for time-frequency-based detection since it is covariant to time shifts and frequency shifts and it satisfies the unitarity condition [START_REF] Flandrin | A time-frequency formulation of optimum detection[END_REF]. Let X be a subspace of L 2 (C), the space of finite-energy complex signals, equipped with the usual inner product x i , x j = t x i (t) x * j (t) dt and its corresponding norm. The Wigner distribution of any signal x ∈ X is defined as

W x (t, f ) = x(t + τ /2) x * (t -τ /2) e -2jπf τ dτ. (5) 
By applying conventional linear pattern recognition algorithms directly to time-frequency representations, we seek to determine a time-frequency pattern Φ(t, f ) so that

W x , Φ = W x (t, f ) Φ(t, f ) dt df (6) 
optimizes a given criterion of the general form (3 

κ W (x i , x j ) = W xi , W xj , (7) 
and note that W xi and W xj do not need to be computed since, by the unitarity of the Wigner distribution, we have

κ W (x i , x j ) = | x i , x j | 2 . (8) 
Any kernel learning machine proposed in the literature can then be used with the kernel (8) to perform pattern recognition tasks in the time-frequency domain. The solution L(x) = n i=1 a i | x, x i | 2 guaranteed by the representer theorem allows for a time-frequency distribution interpretation, L(x) = W x , Φ W , with

Φ W = n i=1 a i W xi . (9) 
We should again emphasize that the coefficients a i are estimated without calculating any Wigner distribution. The time-frequency features are obtained from a decomposition into time-domain ones, which is an interesting consequence of the kernel trick and the representer theorem that is worth mentioning. The time-frequency pattern Φ W can be subsequently evaluated with [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF], in an iterative manner, without suffering the drawback of storing and manipulating a large collection of Wigner distributions. The inherent sparsity of the coefficients a i produced by most of the kernel learning machines, a typical example of which is SVM, may speed-up the calculation of Φ W .

B. Example of time-frequency learning machine: the Wigner-based KPCA

We proceed now to illustrate the concept of time-frequency learning machines outlined above through an example involving KPCA, described in Section II-A, and the Wigner distribution. There have been so many contributions related to eigenvalue and singular value decompositions of time-frequency distributions that we can only mention one of the first papers [START_REF] Marinovitch | The singular value decomposition of the wigner distribution and its applications[END_REF] and recent applications [START_REF] Bernat | Decomposing ERP time-frequency energy using PCA[END_REF][START_REF] Mamar | Probabilistic classifiers and time-scale representations: application to the monitoring of a tramway guiding system[END_REF]. Consider a collection of n signals x 1 , . . . , x n , each of length d, and properly aligned. KPCA can be adapted to operate directly on their Wigner distributions by using the kernel κ W (x i , x j ). The central step of the algorithm is to perform eigendecomposition of the Gram matrix

K W -1 n K W -K W 1 n +1 n K W 1 n , with K W (i, j) = κ W (x i , x j ) and 1 n (i, j) = 1 n .
Let the eigenvectors and eigenvalues be denoted by a k and λ k , respectively, with λ 1 ≥ λ 2 ≥ . . . The k-th principal component can be extracted from any signal x as follows

L k (x) = W x , Φ k = n i=1 a i,k κ W (x, x i ), (10) 
with Φ k = n i=1 a i,k W xi , and a i,k the i-th component of a k . As shown in [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF], the normalization requirement Φ k = 1 leads to the condition λ k a k 2 = 1. We call Φ k the k-th eigendistribution. Note, however, that it is not a valid time-frequency distribution in that no signal with time-frequency transform Φ k necessarily exists. This approach is summarized in Table I.

To show that KPCA is a potentially useful tool in time-frequency signal processing, a set of 1000 noisy signals of length 64 was generated. Each signal was made up of a linear chirp with normalized frequency increasing from 0.2 Hz to 0.45 Hz, a Gaussian pulse centered at time index 32 and normalized frequency 0.1 Hz, and an additive zero-mean white Gaussian noise with a standard deviation of 1. This resulted in a signal-to-noise ratio of -5.1 dB in the timefrequency domain. Wigner-based KPCA was performed to determine the eigendistributions Φ k . Their calculation was based on the discrete-time discrete-frequency Wigner distribution introduced in [START_REF] Chassande-Mottin | Discrete time and frequency Wigner-Ville distribution: Moyal's formula and aliasing[END_REF] since it satisfies most of properties of its continuous counterpart [START_REF] Sayeed | Optimal detection using bilinear time-frequency and time-scale representations[END_REF], in particular unitarity. The first eigendistribution Φ 1 represented in Figure 1(a) shows that significant information has been successfully extracted from noisy data. The two signal components can be clearly distinguished in it, as well as oscillating interferences that are characteristic of the Wigner distribution and often limit its expertise. This observation is corroborated by an increase in signal-to-noise ratio of 8.5 dB for Wigner distributions projected into the space spanned by the eigendistributions Φ 1 and Φ 2 .

(i, j) = κ W (x i , x j ) O(dn 2 ) 3. Perform eigendecomposition of K W -1 n K W -K W 1 n + 1 n K W 1 n O(n 3
Applying standard PCA directly to the set of Wigner distributions would lead to the same result. However, this approach usually suffers from the high computational cost of calculating the I, whose computational complexities are O(dn 2 ) and O(n 3 ), respectively. Figure 2 shows the computation time of both methods plotted as a function of n, with d fixed to 64. As expected, it is almost linear in n for PCA applied directly to Wigner distributions, and polynomial for Wigner-based KPCA. It can also be verified that the latter is computationally more efficient than PCA as long as n is less than d 2 , a condition often satisfied in practice. These conclusions remain valid for standard pattern recognition methods that require either inversion or eigendecomposition of covariance matrices, such as FDA and GDA.

C. Application to other time-frequency distributions

Obviously, the concept of time-frequency learning machine is not limited only to the Wigner distribution. In this subsection, we illustrate it with other popular time-frequency distributions, linear and quadratic.

The short-time Fourier transform is probably the most common example of linear time-frequency distribution. Denoting by w(t) an analysis window localized around the origin of the time-frequency domain, it is defined by

F x (t, f ) = x(τ ) w * (τ -t) e -2jπf τ dτ, (11) 
or, in an equivalent way, F x (t, f ) = x, w t,f with w t,f (τ ) = w(τ -t) e 2jπf τ . The kernel function κ

F (x i , x j ) = F xi , F xj , namely, κ F (x i , x j ) = w 2 x i , x j . ( 12 
)
can be used with any kernel learning machine proposed in the literature. The solution guaranteed by the representer theorem offers a time-frequency distribution interpretation:

L(x) = F x , Φ F with Φ F = n i=1 a i F xi .
The use of quadratic forms in non-stationary signal analysis is motivated by the need to collect information on the distribution of signal energy over time and frequency. Over the years, the Cohen class has received considerable attention because it contains all the distributions C x that are covariant with respect to time-frequency shifts applied to the signal.

These are taking the form

C x (t, f ) = Π(t ′ -t, f ′ -f ) W x (t ′ , f ′ ) dt ′ df ′ ( 13 
)
where Π is a weighting function. We can easily check that κ C (x i , x j ) = C xi , C xj is a valid kernel that can be used by any kernel learning machine. The solution can further be rewritten as

L(x) = Φ C , C x with Φ C = n i=1 a i C xi .
The advantage of κ C over κ W is that the correlative form ( 13) can be exploited to improve the readability of Φ C , that may be affected by the presence of troublesome oscillating interferences. Nevertheless, as can be seen on Figure 1 

Φ C (t, f ) = Π(t ′ -t, f ′ -f ) Φ W (t ′ , f ′ ) dt ′ df ′ . ( 14 
)
In the general case of non-unitary distributions, the calculation of κ C (x i , x j ) can be a time consuming part of training processes since it explicitly involves pairs of d-by-d time-frequency distributions. Computing the Gram matrix K C thus costs O(n 2 d 2 ). Definition [START_REF] Davy | Optimised support vector machines for nonstationary signal classification[END_REF] shows that extra computation cost of O(d 2 ) is also required to calculate time-frequency distributions other than the Wigner distribution, but the whole computation also takes time of order O(d 2 log d) per distribution [START_REF] Richard | Joint recursive implementation of time-frequency representations and their modified version by the reassignment method[END_REF]. Computation times of Wigner-based and Choï-Williams-based KPCA plotted in Figure 2 corroborate this analysis. It can also be observed that Choï-Williams-based KPCA is computationally more efficient than PCA as long as n is strictly less than d 2 , that is, as long as the size of Gram matrix is less than the size of covariance matrix.

In applications where computation time is a crucial factor, we suggest a simple heuristic procedure to derive rules of the form

L(x) = C x , Φ C . It consists of training the kernel learning machine with κ W (x i , x j ) = | x i , x j | 2 .
The time-frequency feature Φ C is then obtained from Φ W and equation ( 14). This strategy is clearly non-optimal when C x does not satisfy the unitarity condition. However, it greatly improves computational efficiency and also simplifies the use of signal-dependent methods of designing Π. Figure 1(c) provides an example of time-frequency-based PCA followed by the AOK algorithm [START_REF] Jones | An adaptive optimal-kernel time-frequency representation[END_REF]. This result demonstrates a significant visual improvement over those given in Figures 1(a)

and 1(b). A complete analysis of this heuristic falls beyond the scope of this paper and will be addressed in the future.

D. Signal classification with time-frequency learning machines

The last ten years have seen an explosion of research in supervised [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF][START_REF] Baudat | Generalized discriminant analysis using a kernel approach[END_REF][START_REF] Abdallah | An improved training algorithm for nonlinear kernel discriminants[END_REF] and unsupervised [START_REF] Schölkopf | Support vector method for novelty detection[END_REF] classification techniques based on kernels; see [START_REF] Vert | A primer on kernel methods[END_REF] for a recent survey. These include SVM, which map data into a high dimensional space where the classes of data are more readily separable, and maximize the distance -or margin -between the separating hyperplane and the closest points of each class [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. SVM basically involve formulating the margin maximization problem into dot product form in order to use kernels, and solving a quadratic programming problem to estimate the parameters a i of the test statistic

L(x) = n i=1 a i κ(x, x i ). (15) 
The excellent performance of SVM has inspired countless works in discriminant analysis. In particular, KFDA is a powerful method of obtaining non-linear Fisher discriminants. It also uses the kernel trick and the representer theorem to design, via an eigenvalue problem, kernel-based classifiers of the form (15) that maximize the Rayleigh coefficient of the between and the within class scatter matrices [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF][START_REF] Abdallah | An improved training algorithm for nonlinear kernel discriminants[END_REF]. KGDA is an extension to this approach for handling multiclass problems [START_REF] Baudat | Generalized discriminant analysis using a kernel approach[END_REF]. We are now going to illustrate the concept of time-frequency learning machines through supervised classification problems involving SVM, KFDA and KGDA. Figure 4 shows that the best performance was obtained with the Wigner distribution, which means that the filtering process (13) caused some loss of relevant information in the other distributions. Wigner-based learning machines were also computationally the most efficient. Along the Φ b -axis, the coordinates of the sine waves, parabolic chirps and gaussian pulses are negative, close to zero and positive, respectively.

IV. Conclusion

The theory of reproducing kernels enabled the development of new learning algorithms for pattern recognition, whose formulation is independent of the representation space of data. Their success was largely influenced by the emerging field of Statistical Learning Theory, which simultaneously provided fundamental bounds on achievable performance. In this paper, we have focused our attention on the new concept of time-frequency learning machines. It takes advantage of this progress for implementing universal learning machines that extract time-frequency information from signals. We have illustrated the efficiency of these novel techniques for non-stationary signal analysis through unsupervised and supervised learning problems. Time-frequency learning machines can be used in many other applications, such as blind source separation [START_REF] Bach | Kernel independent component analysis[END_REF] and filtering [START_REF] Engel | Kernel recursive least squares[END_REF], where kernel-based methods have proved their efficiency. Their extension to higher order distributions also seems feasible.

In ongoing studies, we are investigating kernel-based methodologies that could be advantageously used to solve recurrent problems in the field of non-stationary signal analysis. For instance, we have recently proposed a method for selecting time-frequency distributions appropriate for given learning tasks [START_REF] Honeiné | Optimal selection of time-frequency representations for signal classification: a kernel-target alignment approach[END_REF]. It is based on a criterion that has
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 1 Fig. 1. First eigendistribution Φ 1 obtained using (a) Wigner-based KPCA, (b) Choï-Williams-based KPCA and (c) AOK algorithm applied to the Wigner-based KPCA result. The experiments were carried out using a collection of 1000 signals, each of length 64, consisting of a linear chirp and a Gaussian pulse in an additive white Gaussian noise with a standard deviation of 1.
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 42 Fig. 2. Computation times of KPCA and PCA applied to time-frequency distributions, as a function of the number n of 64-sample signals.The Wigner distribution and the Choï-Williams distribution are considered. The former is a unitary distribution whereas the latter is not. All the codes were implemented in Matlab and run on a laptop PC with 1 GB RAM and Pentium M 1.60 GHz processor.
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 2 by-d 2 covariance matrix of n time-frequency distributions, each of size d-by-d, and performing its eigendecomposition. The complexities of these computationally intensive steps are O(d 4 n) and O(d 6 ), respectively. They replace instructions 2. and 3. of the Wigner-based KPCA algorithm depicted in Table

  (b) with an example of Choï-Williams-based KPCA, the same processing is simultaneously applied to interference terms and signal components, removing the former ones and spreading out the latter. The most popular quasi-interference-free distribution of the Cohen class is certainly the spectrogram. Formally defined as the squared magnitude of the short-time Fourier transform, the spectrogram is related to the kernel κ S (x i , x j ) = | x i , w t,f x j , w t,f | 2 dt df . Other examples of distributions include those that satisfy the unitary condition C xi , C xj = | x i , x j | 2 , e.g., the Wigner distribution, the Page distribution and the Rihaczek distribution. Kernel learning machines L(x) = Φ C , C x based on unitary distributions share the same kernel (8), and then have the same performance. They differ by their time-frequency pattern Φ C , which can be computed directly or using Φ W as follows:
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 3 Fig. 3. Discriminant information extracted by (a) Wigner-based KFDA and (b) Wigner-based SVM. The experiments were carried out using two classes of 1000 signals, each of length 64, consisting of a frequency-modulated waves with a parabolic modulation and a Gaussian pulse, respectively, in an additive white Gaussian noise with a standard deviation of 2.2.
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 4 Fig. 4. Error rates of time-frequency-based SVM and KFDA using various distributions of the Cohen class: Wigner (W), smoothed pseudo-Wigner (SPW), Margenau-Hill (MH), Choï-Williams (CW), Born-Jordan (BJ), reduced-interference with Hanning window (RIDH) and spectrogram (SP). Same data as in Fig. 3.
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 5 Fig. 5. The time-frequency patterns Φa and Φ b , in (a) and (b) respectively, were extracted by Wigner-based GDA in a three-class classification problem involving sine waves, frequency-modulated waves with a parabolic modulation and Gaussian pulses embedded in noise. In (c), the training data are represented in the ΦaΦ b plane.

  ). The principal difficulty encountered in solving such problems is that they are typically very high dimensional, the size of Wigner distributions calculated from the training set being quadratic in the length of signals. This makes pattern recognition based on time-frequency representations time-consuming, if not impossible, even for reasonably-sized signals. With the kernel trick and the representer theorem, kernel learning machines eliminate this computational burden. It suffices to consider the following kernel

The Time-Frequency Toolbox (TFTB) is downloadable from http://tftb.nongnu.org/.

recently emerged from the machine learning literature: the kernel-target alignment. Further work may contribute to strengthen these connections with the most recent methodological and theoretical developments of pattern recognition and Statistical Learning Theory, in order to offer new perspectives in the field of non-stationary signal analysis.