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Abstract

The development of numerical algorithms requires bounding the image
domain of functions, in particular of functions ε(x) associated to an
approximation error. This problem can often be reduced to computing
the infinite norm ‖ε(x)‖∞ of the given function ε(x). For instance,
the development of elementary function operators in hard- and software
makes use of such algorithms.
Implementations for computing in practice highly accurate floating-point
approximations to infinite norms are known and available. Nevertheless,
no highly precise, sufficiently fast and certified or self-validating algo-
rithms are available. Their results could be seen as an element in the
correctness proof of safety critical or provenly guaranteed implementa-
tions.
We present an algorithm for computing infinite norms in interval arith-
metic. The algorithm is optimised for functions representing absolute
or relative approximation errors that are ill-conditioned because of high
cancellation. It can handle even functions that are numerically unsta-
ble on floating-point numbers because they are defined there only by
continuous extension.
In addition the given algorithm is capable of generating a correctness
proof for an infinite norm instance by retaining its computational tree.

Keywords: infinite norm, optimisation, interval arithmetic, certified algorithm, error
analysis, approximation error



Résumé

Le développement d’algorithmes numériques nécessite de borner cer-
taines fonctions, en particulier les fonctions représentant une erreur d’ap-
proximation. Ce problème se réduit au calcul de la norme infinie ‖ε(x)‖∞
de la fonction d’erreur ε(x). Par exemple, le développement de fonctions
élémentaires, tant au niveau logiciel que matériel, utilise ce genre de
calcul.
Il existe déjà des implémentations de la norme infinie fournissant une
très bonne approximation de la valeur réelle de la norme. Cependant, il
n’existe pas d’algorithme capable de fournir un résultat à la fois précis et
sûr. On entend par sûr, un algorithme qui renvoie une valeur majorant la
norme réelle et qui fournit par ailleurs un certificat prouvant la validité
de cette majoration.
Nous proposons un algorithme de calcul de la norme infinie utilisant
l’arithmétique d’intervalle. Cet algorithme est optimisé pour les fonc-
tions correspondant à une erreur relative ou absolue, c’est-à-dire des
fonctions numériquement très mal conditionnées du fait d’importantes
cancellations. Notre algorithme peut aussi, dans une certaine mesure,
travailler avec des fonctions numériquement instables à proximité de
certains points flottants où elles ne sont définies que par continuité.
Enfin, notre algorithme peut retenir l’arbre des calculs qu’il a effectués
afin de produire une preuve de correction du résultat de son calcul.

Mots-clés: norme infinie, optimisation, arithmétique d’intervalles, algorithme certifié,
analyse d’erreur, erreur d’approximation
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1 Introduction

The development of a numerical algorithm, such as scientific code[8, 6], elementary func-
tion implementation[1] or control applications, consists generally of three steps. Firstly, the
given problem is expressed as a mathematical model. This mathematical model may still
make usage of high level concepts or functions that are not directly supported by current
combinations of processors, programming languages etc. such as composed, non-elementary
functions. Secondly, the mathematical model is simplified to match already more closely the
available hardware and software system. In this step, approximations take place. For exam-
ple, transcendental functions may be approximated by rational functions. Further composed
functions may be replaced by a combination of approximations of elementary functions. In a
third step, the simplified and approximated rational mathematical model is implemented in
a floating-point environment, provided, for example, by the IEEE 754 standard[2]. Floating-
point numbers generally are finite dyadic approximations to real numbers in a finite range
around zero.

All three steps of modelling a given problem imply errors. The mathematical model does
not exactly match reality. Simplified to a rational model, it is subject to approximation
errors. Finally, floating-point computations induce round-off error. In order to be certain
of the significance of a numerical result, quantities appearing in the given model must be
bounded. Computed values must be proven to be contained in the finite range of the floating-
point environment. In addition, approximation and round-off errors must be shown to be less
than a priori specified bound.

Round-off errors induced by a floating-point arithmetic are discrete, non-analytical, dis-
continuous functions of the inputs of the different basic arithmetical operators. Their bound-
ing has been studied for example in [6]. Automatic tight boundings can be computed and
proven using for example the Gappa∗ tool[4]. In this article we will not further consider them.

Values and approximation errors in a given model can be considered as almost everywhere
continuous functions ε : R

n → R of the inputs. Bounding them means computing their
extrema on a given domain I ⊆ R

n. If quantities, especially errors, are mostly symmetric or
strictly positive or negative, sufficient bounding may be achieved by computing the infinite
(or infinity) norm (infnorm) of the function ε defined as

‖ε(x)‖I
∞ = sup

x∈I

|ε(x)|

Computing the infinite norm of a function ε, given as a expression or a numerical oper-
ator, is for itself a numerical problem. High-quality, approximate, floating-point solutions to
the infinite norm computational problem exist. General techniques and considerations are
described in [10]. In the case where ε is a multivariate function, computing an infinite norm
is a particular case of global optimisation. In this article we will consider only univariate
functions ε : R → R. We attract the reader’s attention to [5] concerning the multivariate
case.

Tools like Maple† or Matlab‡ implement general purpose numerical approximation algo-
rithms for computing an infinite norm of a univariate function. Both algorithms are not clearly
specified in terms of the quality of the returned approximation. Matlab uses hardware, i.e.

∗
available at http://lipforge.ens-lyon.fr/www/gappa/

†
cf. www.maplesoft.com

‡
cf. www.mathworks.com

http://lipforge.ens-lyon.fr/www/gappa/
www.maplesoft.com
www.mathworks.com
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IEEE 754 double precision, and is hence limited to well-conditioned infnorm problems. The
infnorm algorithm in Maple’s numapprox package tends to provide overestimations of the in-
finite norm’s true value but can be shown also to return underestimations on some particular
functions.

Such approximate solutions may be sufficient in the development phase of a numerical
implementation. But whenever it comes to prove its correctness, in particular if the imple-
mentation is safety critical, numerical approximations do no longer suffice. An algorithm
that provides a certified or self-validating result such as an interval with guaranteed lower
and upper bounds of the computed approximation of the infinite norm is needed here.

The authors’ work has been motivated by infinite norm problems in the development of
correct rounding transcendental elementary functions such as ex, log x, sinx. The correct
rounding, i.e. bit-exact result, correctness proof mainly relies on showing a maximal ap-
proximation and round-off error bound[4]. Similar problems in the context of safety critical
implementations of combined transcendental functions have been considered for example in[3].
The computation of well-specified approximations to infinite norms are also at the base of
works like[11].

In this article we present an algorithm for computing a upper and a lower bound for
infinite norms on univariate functions ε(x) ∈ C2 in self-validating and hence certified way.
The algorithm is especially optimised for functions ε(x) that are ill-conditioned because of
cancellation and numerically unstable at some floating-point numbers because they are defined
only by continuous extension at these points. The implementation of the algorithm is still
under development and is integrated into a software tool§.

This article is organised as follows: in the next section 2, we give the specifications of
our algorithm and explain these design choices. In section 3.1 we give the algorithm as well
as a correctness proof sketch. This general algorithm makes use of some particular interval
arithmetic evaluation techniques that we present in section 3.2. These techniques are used in
particular for bracketing the zeros of a function. Section 3.3 clarifies this point. Our algorithm
is capable of retaining its computational tree for generating a proof of the generated result.
The main considerations on this point are given in section 4. Some examples in section 5 lead
the reader to our conclusions in section 6.

2 Specifications of our infnorm algorithm

Let f : R 7→ R be a function to be shown to be correctly implemented, i.e. approximated
within a specified error bound. Let p : R 7→ R be the approximation to f used in the im-
plementation. So the absolute (respectively relative) approximation error of p with regard to

f is a function ε : R 7→ R defined as ε(x) = p(x) − f(x) (respectively ε(x) = p(x)−f(x)
f(x) ). In

the framework of elementary function development, f is a transcendental function and p a
polynomial with floating-point coefficients[1, 3]. If p and f are continuous and continuously
differentiable functions that are not identically zero on no sub-interval and if ε is finite ev-
erywhere (which is the case in practical implementations), ε is almost everywhere continuous
and continuously differentiable.

The first requirement our algorithm shall fulfil is implied by the fact that we want a
certified result:

§
available under the GPL at http://lipforge.ens-lyon.fr/projects/arenaireplot

http://lipforge.ens-lyon.fr/projects/arenaireplot
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Requirement 1. The algorithm implementing the infinite norm of a function must always
give an upper-bound of the real value of the infnorm of the function.

It would be possible to always answer +∞ but this would be perfectly useless in practice.
In order to estimate the order of magnitude of the error made by a certified infinite norm
algorithm, a lower bound for the actual value is needed. This can be obtained with this second
requirement:

Requirement 2. The algorithm shall give a lower-bound of the real value of the infnorm
of the function. Thus if the orders of magnitude of the upper and the lower bounds are the
same, it can be concluded that the result of the algorithm is accurate enough for the problem
in consideration.

Since p approximates f , the order of magnitude of ε(x) is much lower than the order
of magnitude of p or f . In other words, the functions ε(x) = p(x) − f(x) (respectively

ε(x) = p(x)−f(x)
f(x) ) are ill-conditioned due to the cancellation in the subtraction p(x) − f(x).

This observation leads to a third requirement to our algorithm:

Requirement 3. The algorithm shall take in input functions defined by an explicit expression
tree. Ill-conditioned functions defined in this way shall be overcome by the usage of high
intermediate precision and re-correlation[5, 3] techniques for interval arithmetic.

Let us still make one observation on the functions ε(x) = p(x)−f(x)
f(x) we are especially

interested in. Suppose that in the given domain I = [a; b] the infinite norm ‖ε(x)‖I
∞ is to

be computed on, f(x) has a zero z, i.e. f(z) = 0. If p(z) = 0 at the same point z and
lim
x→z

p′(x)− f ′(x) = c1 and lim
x→z

f ′(x) = c2 exist, ε(z) = c = c1
c2

∈ R is nevertheless well-defined

at z by continuous extension. In consequence ‖ε(x)‖I
∞ 6= ∞ even if the pole at z of ε(z) and

pure interval arithmetic might suggest the opposite.

We formulate thus the following additional requirement:

Requirement 4. If the expression tree for ε(x) has some pole on a floating-point number in
the given input domain that may be extended by continuity, the algorithm for computing the
infinite norm of ε on I shall return an upper bound different from +∞.

In order to ensure that the algorithm respects its specifications, it should be carefully
proven. However, the implementation could contain bugs. Moreover, some users of the algo-
rithm want to provide proofs for the results of intermediate computations in the development
of an algorithm they had been using an infinite norm algorithm for. This yields to a last
requirement:

Requirement 5. The algorithm shall give, in addition to the result, a formal proof which can
be checked externally and which ensures that the interval result is really bounding the value of
the infinite norm ‖ε(x)‖∞.

Naturally, we want our algorithm to have the best possible performance using the least
memory possible.
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3 The algorithm

We are going to present now our infinite norm algorithm. Let us remember that the algo-
rithm requires the function ε(x), given as an expression tree, to be at least C2 and formally
differentiable.

In the following, if ε is a function and I an interval, ε[I] will denote the set

ε[I] = {y ∈ R, ∃x ∈ I, y = ε(x)} .

It is well-known that this set is an interval when ε is continuous.

3.1 General scheme of the algorithm

The algorithm for computing the infinite norm basically decomposes into six steps which will
are given in the following and detailed below:

infnorm: input a function ε ∈ C2(I) and a compact interval I = [a, b]:

1. formally differentiate the function ε;

2. search a list of intervals I1, · · · , Ip such that every zero of ε′ lies in at least one of the
Ik. Note that some Ik may not contain any zero of ε′ and reciprocally that two zeros
may belong to the same Ik;

3. add I0 = [a, a] and Ip+1 = [b, b] to the list;

4. compute J0, · · · , Jp+1 such that for each k, ε[Ik] ⊆ Jk.

5. compute the inner- and outer- enclosure of g[I] from the intervals J0, · · · , Jp+1, i.e. com-
pute intervals IE and OE such that

∀y ∈ IE, ∃x ∈ I, y = ε(x)

and such that
∀k, ∀y ∈ Jk, y ∈ OE

The computation of this enclosures will be explained below.

6. Return
[max{|IEℓ|, |IEr|}, max{|OEℓ|, |OEr|}]

as an interval containing ‖ε‖I
∞

Since the interval I = [a, b] is compact and ε is continuous, we know that ε reaches its
minimum at a point xm and its maximum at a point xM . Since ε is differentiable, xm is either
a bound of the domain (a or b) or ε′(xm) = 0. The same holds for xM . It follows that both
xm and xM are in some interval of the list I0, · · · , Ip+1.

Lemma 3.1. ε(xm) does not belong to the interior of IE. The same thing holds for xM .

Proof. Suppose that ε(xm) belongs to the interior of IE. Thus, there exists some z ∈ IE such
that z < ε(xm). By applying the definition of IE, we would have some x such that ε(x) = z
yielding contradiction since ε(xm) is minimal and ε(x) = z < ε(xm). The proof is the same
for xM .



Certified infnorm for numerical algorithms 5

Lemma 3.2. ε(xm) ∈ OE. The same holds for xM .

Proof. Since xm belongs to one of the Ik, ε(xm) belongs to ε[Ik] and then ε(xm) ∈ Jk.
Applying the definition of OE, ε(xm) ∈ OE. The proof is the same for xM .

Let us see now how to compute IE and OE. For OE we take the convex enclosure of the
union of the Jk which is defined by

OEℓ = min{J0ℓ, · · · , J(p+1)ℓ} and OEr = max{J0r, · · · , J(p+1)r}

where OE = [OEℓ, OEr]. It trivially satisfies the required property for OE.

Figure 1: The outer enclosure of the Jk.

For IE we take ]IEℓ, IEr[ where

IEℓ = min{J0r, · · · , J(p+1)r} and IEr = max{J0ℓ, · · · , J(p+1)ℓ}

where the subscript ℓ denotes the lower bound of an interval and the subscript r denotes the
upper bound.

Lemma 3.3. The previous way of computing IE actually provides an inner enclosure as
defined above.

Proof. Let IEℓ ≤ y ≤ IEr. Thus y ≥ min{J0r, · · · , J(p+1)r} holds. Let k be the index
for which the minimum is reached: y ≥ Jkr. Since ε[Ik] ⊆ Jk there exists u such that
ε(u) ≤ Jkr ≤ y. With the same argument, there exists v such that y ≤ ε(v). Since ε[I] is a
interval, y ∈ ε[I] and then ∃x ∈ I, y = ε(x) which is the required property.



6 S. Chevillard, C. Lauter

Figure 2: The (right bound of the) inner enclosure of the Jk.

The computation of IE and OE from the Jk can be performed incrementally as the Jk

are calculated.

It is clear that IE ⊆ OE and, hence, OE\IE consists in the union of two intervals:
[OEℓ, IEℓ] and [IEr, OEr]. By lemmata 3.1 and 3.2 the minimum and maximum of ε lie in
these intervals. It follows that

‖ε‖I
∞ ∈ [max{|IEℓ|, |IEr|}, max{|OEℓ|, |OEr|}] .

This is the value returned by the algorithm given above.

Let us now show how the Ik are found and in which way the Jk are computed out of them.
Clearly if every Jk were equal to ε[Ik], OE would precisely be equal to [ε(xm), ε(xM )]. Let Ik

denote the interval containing xM . If Jk is affected by arithmetical errors, we have ε[Ik] ⊂ Jk

and OEr is hence greater or equal to Jkr. It follows that the greater the overestimate of ε[Ik]
by the Jk, the greater the overestimate of the function’s image domain by OE will be.

Let Ik be an interval such that xM ∈ Ik. If Ik is exactly [xM , xM ]), we have ε[Ik] =
[ε(xM ), ε(xM )]. But if Ik is wider, ε[Ik] will be of the form [u, ε(xM )] with u the smaller as
Ik becomes the wider. Thus, the contribution of Jkℓ to IEr will be less or equal to u. In
consequence, the greater the overestimate of Ik, the greater the underestimate of the function’s
image domain by IE will be.

This shows that it is important to take care of the way the Ik and the Jk are computed.
We will focus on this point in the following two paragraphs.
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3.2 Interval evaluation of functions - computation of Jk

Our goal is to compute out of Ik an interval Jk as precisely as possible with regard to ε[Ik].
We can suppose that Ik is a small interval, i.e. in practice its diameter is a lot smaller than 1.
We use the library MPFI¶ which implements the interval arithmetic with arbitrary precision.
The precision used in the computations is a parameter of our algorithm. For each function f
known by MPFI, and for each interval I, the evaluation of f on I by MPFI produces an interval
J such that f [I] ⊆ J . We will denote by f(I) the interval computed by MPFI.

MPFI implements the standard functions +, −, /, ×,
√·, exp, sin, etc. For more complex

functions such as h(x) = exp(sin(x+ln(x))) we have to decompose the expression and evaluate
each subterm separately. For example, to compute h on I, we will first compute J1 = ln(I),
then J2 = I + J1, then J3 = sin(J2) and finally J4 = exp(J3). For each operation, MPFI is
very precise. In contrast, the interval evaluation of composed functions is subject to error
accumulation and cancellation effects caused by decorrelation. The final result of such an
evaluation may thus be inaccurate.

We can use the mean value theorem for obtaining an evaluation satisfying diam(J) =
O(diam(I)2) (instead of diam(J) = O(diam(I)) in the previous case), which performs well
for the used small Ik. Let z be a point in Ik (we choose the middle of Ik), for each x ∈
Ik, ∃c ∈ Ik, ε(x) = ε(z) + (x − z)ε′(c). It follows that ε[Ik] ⊆ ε(z) + (Ik − z)ε′[Ik]. So we can
compute ε′(Ik) using MPFI and then take for Jk the interval ε(z)+(Ik −z)ε′(Ik). The interest
of this method comes from the fact that the errors in the evaluation of ε′(Ik) are multiplied
by (Ik − z) which is a very small interval centred in 0.

Obviously, we can use this technique recursively and compute ε′(Ik) using ε′′(Ik) and so on.
This allows theoretically to obtain diam(J) = O(diam(I)n). A possible problem is that the
successive derivatives of ε are more and more complex expressions and their evaluation may
lead to so imprecise results whilst using great amounts of memory; thus, the technique may
become useless. At the moment, the number of step of recursion is just a parameter of the
algorithm that the user can fix following its intuition about the complexity of the successive
derivatives.

In order to limit the explosion of the expression of the successive derivatives of a function,
we implement an additional special optimisation for fractions ε(x) = f(x)

g(x) . As long as g(x)

has no zero in the given interval, instead of evaluating f(z)
g(z) + (x − z) · g(x)·f ′(x)−f(x)·g′(x)

g2(x)
, we

evaluate f(z)+(x−z)·f ′(x)
g(z)+(x−z)·g′(x) . This is more efficient since the induced expression trees are smaller

than the tree for g(x)·f ′(x)−f(x)·g′(x)
g2(x)

.

Another problem can arise: some functions have a so-called removable singularity: at some
point z, the function ε(x) is of the form f(z)

g(z) with f(z) = g(z) = 0. However, the function

may be prolongated by continuity. It is the case, for instance, for the function sin(x)
x

at 0.
Mathematically, the function remains well defined, but numerically, will perform very badly.
The round-off errors become very big; if using interval arithmetic, a division by an interval
containing 0 occurs and produces a NaN or an infinity. In order to solve the problem, we have
to detect this case and find a solution. If we can detect it (that is if we find a point z and we
can prove that f(z) = g(z) = 0), we can use a variant of the so-called L’Hôpital’s rule:

∀x ∈ I, ∃(c, d) ∈ I2,

¶
distributed under the LGPL at http://gforge.inria.fr/projects/mpfi/

http://gforge.inria.fr/projects/mpfi/
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f(x)

g(x)
=

f(z) + (x − z)f ′(c)

g(z) + (x − z)g′(d)
=

f ′(c)

g′(d)
.

Thus (f/g)[I] ⊆ (f ′/g′)[I]. Once again, we can use the rule recursively if f ′/g′ has a removable
singularity in the interval.

For detecting a removable singularity, we firstly test if the function to evaluate is a quotient.
If so, we evaluate an interval J containing the denominator g[I] (using Taylor and MPFI). If
J does not contain 0, we are sure that there is no singularity. If it contains 0, there is a
doubt: we search a floating-point (not interval) zero using the Newton-Raphson method. If
we do not find any, we cannot do anything. But if we find one z, it is a potential removable
singularity. We firstly evaluate g on the interval [z, z] using the described interval evaluator.
If the result is [0, 0] we know that z is a zero of g (if it is not, we cannot conclude). Since
we are now sure that z is a zero of g, we evaluate f on [z, z] the same way and if the result
is [0, 0], we know that L’Hôpital’s rule can be applied. In every other case, we just let the
normal interval evaluation continue, leading to a final result that is NaN or infinity.

It can be argued that this technique is useless because its detection is subject to too much
floating-point noise. If it works, it would just be luck. We must have simultaneously discovered
by a floating-point Newton-Raphson the precise real point z, obtain f([z, z]) = [0, 0] and
g([z, z]) = [0, 0]. This is right but it is the only way to be sure that we actually have a
removable singularity. Besides, let us recall that we need to be sure in order to prove the
correctness of our final result. Moreover, it works more often than it seems. Actually, if
the singularity is not at a floating-point number, the only way to show the infinite norm is
finite is to show formally that g(x) = 0. Further, the function would be so ill-conditioned
near the singularity, that it cannot be evaluated in practice. So, Newton-Raphson will almost
surely detect the point for functions that are practically evaluated e.g. in elementary function
libraries. In addition, z will probably be some simple point such as 0 or an integer and if the
functions are not to complicated, it is probable that for this special point, no round-off errors
at all occurs during all the computation. For example,

exp(arcsin(x)) − 1

arcsin(x)

works well because 0 is detected as a potential singularity, and MPFI knows that arcsin([0, 0]) =
[0, 0], exp([0, 0]) = [1, 1], etc.

Evaluation algorithm:

After this introductory discussion let us give our algorithm for evaluating a composed function
ε on a domain I for a result J satisfying diam(J) = O(diam(I)r+1.

evaluate: input an expression representing a function ε, an interval I, and a parameter
rec_level :

1. if rec_level> 0: differentiate ε ; compute the mid-point z of the interval I. Re-
turn evaluate(ε, [z, z], 0) +(I − z)· evaluate(ε′, I,rec_level−1) using MPFI for the
addition and the multiplication.

2. else:

(a) if ε is not a quotient: ε is of the form op(h) (or h1 op h2). Return op(evaluate(h, I, 0))
performing op with MPFI (idem if there are two operands).
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(b) else ε = h1/h2. Let J2 = evaluate(h2, I, 0).

i. If J2 does not contain 0, let J1 = evaluate(h1, I, 0) and return J1/J2 per-
formed by MPFI.

ii. else test if L’Hôpital’s rule can be applied as explained above. If the test
succeeds, formally differentiate h1 and h2 and return evaluate(h′

1/h′
2, I, 0).

The actual implementation of this algorithm integrates some additional improvements
with regard to the performance and the accuracy of the produced results:

• Formally differentiated expressions are simplified exactly as well as possible. The sim-
plification comprises the evaluation of constant sub-expressions as long as no rounding
occurs, conversion of polynomial sub-expressions into Horner’s scheme, elimination of
additions and subtractions with 0, multiplications and divisions with 0 and 1 and some
other simple formal simplifications.

• If their necessity is known in advance, functions are differentiated only once for several
evaluations.

• Cancellation in additions and subtractions during interval evaluation of sub-expressions
are detected if possible by simple tests. Intermediate Taylor evaluations allow here for
improving the accuracy of the result.

3.3 Intervals bounding the zeros of a function - determination of Ik

We have seen that the intervals Ik should be small in order to contribute efficiently to the
inner enclosure. For the economy of useless computations, we should try to select only those
intervals which actually contain some zeros of the derivative. In contrast, for ensuring the
correctness of the algorithm, we have to be sure that every zero lies in a Ik.

In our approach we therefore fix an appropriate diameter δ as a parameter of the algorithm.
We use a bisection algorithm. At first, we evaluate ε′ on the whole interval I (using all the
optimisations of the evaluate function). If the returned interval J contains 0, we cut I in
two parts I1 and I2 and we recurse on each sub-interval.

If we find an interval I ′ such that J ′ does not contain 0 at one moment of this procedure,
then we are sure that ε′ has no root in I ′ and we can just eliminate the interval I ′. We stop
branching when we have an interval I ′ which diameter is less than δ.

At the end of the procedure, we get a list I1, · · · , It such that every zero of ε′ lies in one
Ik and which diameters are all less than δ.

Let z be a zero of ε′ and Ik = [a, b] the selected interval in which it lies. In practice, the
algorithm computes very often additional intervals Ik−1 and Ik+1 that actually do not contain
any zero of ε′ and are of the form [a′, a] and [b, b′] because ε[Ik−1] and ε[Ik+1] are too close to
zero to be discarded by interval evaluation. In contrast, if ε has a removable singularity in z,
the evaluation of ε(Ik−1) and ε(Ik+1) will be very unstable since ε is ill-conditioned near z
and may yield to imprecise results. However, if we join the intervals, obtaining one interval
I ′ = Ik−1 ∪ Ik ∪ Ik+1, we can apply L’Hôpital’s rule on the whole interval I ′ which yields to
better results, even if the interval is three times wider than the previous one.

Thus, we replace every series of consecutive intervals in the list I1, · · · , It by their union
unless the union becomes more than 4 times greater in diameter than the parameter δ fixed
previously. This yields to the final list I1, · · · , Ip used in the following of the algorithm.
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Remark that instead of using a bisection to bracket the zeros of the derivative ε′(x) of the
given function, the interval Newton method as described in [5] could also be used. We would
have to require the input functions ε to be at least C3 in this case.

4 Generating a proof for infinite norm results

Interval arithmetic, satisfying the so-called inclusion property, has strong links to numerical
proving of mathematical properties. As shown in [3], libraries for certifying interval computa-
tions in proof checkers, such as for example the Prototype Verification System (PVS) [9] exist.
The general idea consists in retaining the complete computational and decisional tree of an
instance of an interval algorithm, for instance, our infinite norm algorithm, and to generate a
lemma for each invocation of an interval function or logical element such as bisection, Taylor
series expansion, L’Hôpital’s rule etc.

Our algorithm is currently not yet capable of producing PVS or COQ [7] readable proofs.
Nevertheless, it is already possible to store the complete computational tree and to generate an
English written proof for each instance of the infinite norm algorithm. The last element that is
still lacking to us to provide this additional safety to the correctness of the results computed
and inherently proven by the interval algorithm is the difficulty to handle transcendental
functions in formal proof checkers. Such a library is partially available for PVS but as shown
in [3], computation times for proof checking are still very high.

Most current proofs are still intractable in PVS because of the complexity of the implied
numbers. We are working to provide a means of simplifying a proof in terms of the bit-length
of used numbers.

In some examples, the proof generated by our algorithm could already be checked by a
tool like Gappa. This is due to the fact that the derivatives of some transcendental functions
such as log(x) are rational.

5 Examples

Let us give some examples of the behaviour of our algorithm. The examples are mainly taken
out of problems in the development of the crlibm library for correctly rounding elementary
functions[1].

1. The first example is a toy problem: let be ε(x) = log(1+x)
x

. The function ε(x) is de-

fined in 0 only by continuous extension. Our algorithm answers for ‖ε(x)‖[−2−6;2−6]
∞ the

following

‖ε(x)‖[−2−6;2−6]
∞ ∈ [541109425 · 2−29; 270554713 · 2−28]

This is equivalent to an accuracy of 27 correct bits; the computing precision has been
30 bits. Computation is instantaneous on current desktop machines.

2. The second example is the computation of a bound for the approximation error of the
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polynomial p(x) = x − 1
2 · x2 + a3 · x3 − a4 · x4 + a5 · x5 − a6 · x6 + a7 · x7 where

a3 = 6004799503160663 · 2−54

a4 = 9007199254173073 · 2−55

a5 = 3602879701310655 · 2−54

a6 = 6004904200786859 · 2−55

a7 = 40211673751819 · 2−48

with respect to the function f(x) = log(1+x) in the domain I = [−129 ·2−15; 129 ·2−15]
(i.e. ε(x) = p(x) − f(x)). Our algorithm returns lower and upper bounds which are
close enough that they can both be considered as a result accurate up to 29 bits. The
computing precision has been 100 bits and rec level has been set to 2. Computational
time is around 15 seconds on current desktop machines.

3. For the third example, let f(x) = log(1 + x), p(x) = x − a2 · x2 + a3 · x3 − a4 · x4 + a5 ·
x5 − a6 · x6 + a7 · x7 where

a2 = 9223372036854776725 · 2−64

a3 = 6148914691236520117 · 2−64

a4 = 18446744071800930591 · 2−66

a5 = 7378697627908458209 · 2−65

a6 = 3074519401226530361 · 2−64

a7 = 5270640148006219133 · 2−65

and ε(x) = p(x) − f(x). Our algorithm (with rec level set to 2) returns as an upper

bound for ‖ε(x)‖[−129·2−15;129·2−15]
∞ a value which is an approximation up to 94 bits

according to the returned lower bound.

6 Conclusion

We have given an algorithm for computing a self-validating interval result for the infinite norm
‖ε(x)‖I

∞ of an univariate function ε(x) ∈ C2 on some domain I. The algorithm can handle
ill-conditioned functions by overcoming ill-conditioning and resulting high decorrelation by
the usage of high intermediate (multi-) precision and (recursive) interval Taylor evaluation.
Functions with discontinuities at floating-point values that can be extended by continuity can
be handled by the use of L’Hôpital’s rule, too. The algorithm proves in this case automatically
that the L’Hôpital’s rule can be applied. Such functions are common as approximation errors
in the development of numerical algorithms, in particular, elementary functions.

The performance of the implementation of our algorithm is sufficient for common problems
on current machines. Examples taken out of the development of crlibm[1], an implementation
of correct rounding elementary functions in double precision, can all be handled in some
minutes of computation.

The algorithm can retain its computational and decision tree for the generation of an
English written proof of an instance. Such a proof may be used in the certification process
of a numerical algorithm analysed with our infinite norm. Currently, generation of a PVS or
COQ readable proof is impossible because of the difficulty to handle transcendental functions.
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We know some examples of functions, as for instance log
√

x√
x

whose derivatives, as they are

provided by our automatic differentiation algorithm, are numerical unstable and cannot be
handled by our algorithm. Nevertheless, these derivatives could be formally simplified and
brought to an evaluable form. In future our work, we will try to integrate a little more formal
simplification into the presented algorithm.

We are currently lacking knowledge of other algorithms and approaches with similar spec-
ifications to compare our algorithm and implementation with. Naturally, this might also be
due to the fact that our infinite norm problems arise only in particular situations and that
no other approaches exist.
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