
HAL Id: ensl-00119823
https://ens-lyon.hal.science/ensl-00119823v1

Preprint submitted on 12 Dec 2006 (v1), last revised 4 Jun 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetry of information and nonuniform lower bounds
Sylvain Perifel

To cite this version:

Sylvain Perifel. Symmetry of information and nonuniform lower bounds. 2006. �ensl-00119823v1�

https://ens-lyon.hal.science/ensl-00119823v1
https://hal.archives-ouvertes.fr

Symmetry of information and nonuniform lower

bounds

Sylvain Perifel

LIP⋆, École Normale Supérieure de Lyon.
Sylvain.Perifel@ens-lyon.fr

December 12, 2006

Abstract. In a first part we provide another proof of the result of [4] that
for all constant c, the class EXP is not included in P/nc. The proof is based
on a simple diagonalization, whereas it uses resource-bounded Kolmogorov
complexity in [4]. This method enables us to show a nonuniform lower bound
for BPP-consistent languages.
In the second part, we investigate links between resource-bounded Kolmogorov
complexity and nonuniform classes in computational complexity. Assum-
ing a version of polynomial-time symmetry of information, we show that
exponential-time problems do not have polynomial-size circuits (in symbols,
EXP 6⊂ P/poly).
Keywords: computational complexity, nonuniform lower bounds, resource-
bounded Kolmogorov complexity, symmetry of information

1 Introduction

Time and space hierarchy theorems have long been the main tools for sepa-
ration of classes in computational complexity theory. This has provided uni-
form lower bounds by proving for instance that some problems solvable in
exponential-time do not have polynomial-time algorithms. The lack of simi-
lar proofs for nonuniform lower bounds suggests that such simple techniques
are not suitable for advice classes in the sense that the diagonalization needs
in this case a too high complexity in order to be performed. This feeling is
strengthen by the fact that these techniques often relativize, which hints that
major open questions concerning nonuniform lower bounds won’t be solved
thanks to them. Yet the advantage of diagonalization is its simplicity and this
paper aims at showing that it can be used even for nonuniform classes.

In particular, we are interested in the question of whether the class EXP of
problems decided in exponential time has polynomial-size circuits (in symbols,
whether EXP ⊂ P/poly). As mentionned above, the separation EXP 6= P is

⋆ UMR 5668 ENS Lyon, CNRS, UCBL, INRIA. Research report RR2006-50.

2 Sylvain Perifel

well-known but this nonuniform counterpart is still open. On this problem,
two approaches have yielded significant results.

The first approach was to find the smallest uniform class provably not con-
tained in P/poly. In this direction, Kannan [5] proved that NEXPNP does not
have polynomial-size circuits and similar ideas enabled Schöning [11] to prove
that EXPSPACE does not have polynomial-size circuits either. Here, we see
that performing a diagonalization out of P/poly requires more than exponen-
tial time. Later, the second approach was to obtain the best nonuniform lower
bound for EXP problems. Homer and Mocas [4] showed that EXP does not
have circuits of size nc for any fixed constant c.

The first part of the present paper provides another proof of this last
result using techniques similar as [11]. An advantage of this new proof is its
simplicity (it consists in a usual diagonalization whereas the original proof
makes use of resource-bounded Kolmogorov complexity). As a corollary, we
obtain a nonuniform lower bound on BPP-consistent sets, which can be seen
somehow as a hardness result for PromiseBPP (see [3]).

In the second and main part, we show that an assumption of resource-
bounded Kolmogorov complexity enables to combine both approaches de-
scribed above. Namely, if polynomial-time symmetry of information holds true,
then EXP 6⊂ P/poly. The proof once again consists in a simple diagonalization.

Symmetry of information is a beautiful theorem in Kolmogorov complexity
and can roughly be stated as follows. If x and y are two words, the sum of
the quantity of information x contains about y and that contained in y equals
the quantity of information contained in the concatenation xy. This theorem
is due to Levin [13] and Kolmogorov [6].

When requiring polynomial time bound on the computations, however,
the similar property, called polynomial-time symmetry of information, is a
challenging open problem in resource-bounded Kolmogorov complexity. This
problem has already been related to computational complexity by at least
two results. First, Longpré and Watanabe [9] show that if P = NP then the
polynomial-time symmetry of information holds. Second, more recently and
closer to our present preoccupations, Lee and Romashchenko [7] show that if
polynomial-time symmetry of information holds, then EXP 6= BPP.

In this paper we use a slightly stronger version of polynomial-time symme-
try of information and prove a stronger result (namely EXP 6⊂ P/poly) since
BPP ⊂ P/poly (see [1]). Symmetry of information enables to divide advices
into small blocks on which diagonalization can be performed in EXP.

All these results teach us that polynomial-time symmetry of information
is a central but hard question to study. Indeed, if it holds then EXP does not
have polynomial-size circuits (or at least EXP 6= BPP with a weaker version

Symmetry of information and nonuniform lower bounds 3

of symmetry of information); if it does not, then P 6= NP. In both case, a
fundamental question in complexity theory would find an answer.

Organization of the paper. Section 2 is devoted to definitions and no-
tations in computational complexity and resource-bounded Kolmogorov com-
plexity. Section 3 consists of another proof of the result of [4] that exponential-
time problems do not have circuits of any fixed polynomial size nc. A corollary
is also shown there, namely a nonuniform lower bound on BPP-consistent sets.

Section 4 precisely state the hypothesis of polynomial-time symmetry of
information as well as some simple results about this. Finally, Section 5 proves
the main result, namely that polynomial-time symmetry of information implies
that exponential-time problems do not have polynomial-size circuits.

2 Preliminaries

For references on computational complexity, we recommend the book [2]. For
Kolmogorov complexity, we refer to [8]. The notions used in this paper are
standard, though stated from the unifying point of view of universal Turing
machines.

Universal machines. If M is a Turing machine, its boolean encoding will also
be denoted by M . Therefore M is also seen as a program. The construction
of a universal Turing machine is described for example in [10] and can be
summed up as follows.

Proposition 1. There exists a universal Turing machine U , with three tapes,
which, on input (M,x), simulates the two-tape machine M on input x. There
is a constant c > 0 depending only on the machine M such that the simulation
of t steps of M(x) takes ct steps of U .

Such a universal Turing machine U is fixed in the remainder of the paper.
The machine M simulated by U will also be called the program of U . For
instance, we will say that the program M decides the language A if for all x,
the computation U(M,x) halts, and it accepts iff x ∈ A.

Complexity classes. If t : N → N is a function, the usual complexity class
DTIME(t(n)) is the set of languages A recognized in time O(t(n)). More pre-
cisely, A ∈ DTIME(t(n)) if there exist a constant c > 0 and a fixed program
M ∈ {0, 1}∗ such that for all word x, the computation U(M,x) stops be-
fore ct(|x|) steps and it accepts if and only if x ∈ A. We call EXP the class

∪k≥0DTIME(2nk

).
Similarly, the advice class DTIME(t(n))/a(n) is the set of languages A

such that there exist a program M , a constant c > 0 and a family (an) of
advices (that is to say, words) satisfying:

4 Sylvain Perifel

1. |an| ≤ a(n);
2. U(M,x, a|x|) stops in less than ct(|x| + a(|x|)) steps;
3. U(M,x, a|x|) accepts iff x ∈ A.

Now, P/poly is the class ∪k≥0DTIME(nk)/nk (i.e. polynomial work-
ing time and polynomial-size advice) and similarly, EXP/poly is the class

∪k≥0DTIME(2nk

)/nk (i.e. exponential working time and polynomial-size ad-
vice). By this definition, it is easy to see that

EXP ⊂ P/poly ⇐⇒ EXP/poly = P/poly.

Another complexity measure deals with the space needed to decide a lan-
guage. Space complexity counts the number of cells used by the machine.
Similarly as above, DSPACE(s(n)) is the set of languages A recognized in
space O(s(n)), and advice classes are defined accordingly. The class PSPACE
is ∪k≥0DSPACE(nk).

In this paper, we shall also quickly meet the complexity class PP. This
is the class of languages A such that there exist a language B ∈ P and a
polynomial p(n) satisfying

x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} ≥ 2p(|x|)−1.

In other words, A is recognized by a polynomial-time probabilistic Turing
machine without error.

Resource-bounded Kolmogorov complexity. For two words x, y and an integer
t, we denote by Ct(x|y) the time t bounded Kolmogorov complexity of x
conditional to y, that is, the size of a shortest program M which, when run
on the universal Turing machine U on input y, outputs x in time ≤ t. For a
Turing machine M (and in particular for U), we denote by M t(x) the word
written on the output tape of the machine M after t steps of computation on
input x. Thus in symbols we have

Ct(x|y) = min{k : ∃M of size k such that U t(M,y) = x}.

We will also use the notation Ct(x), defined to be Ct(x|ǫ) where ǫ is the empty
word.

Advice and programs. For a fixed word length n, the words x ∈ {0, 1}n of size
n are lexicographically ordered and the i-th one is called x(i) (for 1 ≤ i ≤ 2n).
Let A be a language. The characteristic string of A=n is the word χ ∈ {0, 1}2n

defined by χi = 1 iff x(i) ∈ A.
We will often consider programs that output characteristic strings rather

than programs that decide languages. We rely on the following obvious lemma.

Symmetry of information and nonuniform lower bounds 5

Lemma 1. If A is a language in DTIME(t(n))/a(n) (where t(n) ≥ n), then
there exist constants α, k > 0 and a family (Mn) of programs satisfying:

1. |Mn| ≤ k + a(n);

2. for 1 ≤ i ≤ 2n in binary, U(Mn, i) outputs the i first bits of the character-
istic string χ of A=n in time αit(n + a(n)).

Proof. Let M be a DTIME(t(n)) machine deciding A with advice of size a(n).
The program Mn merely enumerates the i first words x of size n and simulates
M(x): Mn is therefore composed of the code of M , of an enumeration routine
for the i first words of size n and of the advice for the length n. ⊓⊔

3 Diagonalizing out of n
c advice length

We provide another proof of the following proposition of [4]. The initial proof
of [4] makes use of resource-bounded Kolmogorov complexity whereas it con-
sists here in a usual diagonalization. This is indeed similar to the proof of
Schöning [11] that EXPSPACE does not have polynomial-size circuits (see [2,
Th. 5.6]): at each step of the diagonalization process, we eliminate half of the
possible programs. This method enables us to prove a kind of hardness result
on PromiseBPP problems as a corollary.

Proposition 2. For all constants c1, c2 ≥ 1, there is a sparse language A in
DTIME(2O(n1+c1c2)) but not in DTIME(2O(nc1))/nc2.

Proof. Let us define A=n for all n, therefore fix n. Recall that x(1) < x(2) <
. . . < x(2n) are the words of {0, 1}n sorted in lexicographic order. We will
diagonalize over the programs M of size at most n + nc2 (of which there are
2n+nc2+1−1), and the universal machine U will be simulated for t(n) = 2n1+c1c2

steps. The set A=n is defined word by word as follows:

x(1) ∈ A=n ⇐⇒
for at least half of the programs M of size ≤ n + nc2 ,

the first bit of U t(n)(M) is 0,

that is, at least half of the programs give a wrong answer for x(1). Let V1 be
the set of programs M giving the right answer for x(1), i.e. such that the first
bit of U t(n)(M) corresponds to “x(1) ∈ A”. Hence |V1| < 2n+nc2 (less than half
of the programs of size ≤ n + nc2 remain). We then go on with x(2):

x(2) ∈ A=n ⇐⇒
for at least half of the programs M ∈ V1,

the second bit of U t(n)(M) is 0,

6 Sylvain Perifel

that is, among the programs that were right for x(1), at least half make a
mistake for x(2). Let V2 be the set of programs M ∈ V1 giving the right answer
for x(2). We go on like this:

x(i) ∈ A=n ⇐⇒
for at least half of the programs M ∈ Vi−1,

the i-th bit of U t(n)(M) is 0

until Vi is empty. Call k the first i such that Vi = ∅. We decide arbitrarily that
x(j) 6∈ A=n for j > k. Note that k ≤ n + nc2 + 1 because |Vi| is halved at each
step, therefore A is sparse.

If A ∈ DTIME(2O(nc1))/nc2 , then by Lemma 1 there would be a constant k
and a family (Mn) of programs of size ≤ k+nc2 writing down the characteristic
string of A=n in time α(n + nc2 + 1)2O(nc1c2) ≤ 2βnc1c2 for some β. This
is not possible as soon as n ≥ k and t(n) > 2βnc1c2 since all programs of
size n + nc2 must make a mistake on some input of size n. Therefore A 6∈
DTIME(2O(nc1))/nc2 .

Now, in order to decide if x(i) ∈ A it is enough to decide if x(j) ∈ A for
all j ≤ i. This is done in the order j = 1, . . . , i because we need the answer
of j for j + 1. For x(j) we proceed as follows: we enumerate all the programs
M of size ≤ n + nc2 , compute U t(n)(M) by simulating U for t(n) steps, we
test whether M ∈ Vj−1 (this is done by comparing for each k < j the k-th bit
of U t(n)(M) with the already computed value of “x(k) ∈ A”), and count how
many M ∈ Vj−1 produce an output whose j-th bit is 0. If there are more than
half such M , then x(j) ∈ A, otherwise x(j) 6∈ A. The overall running time of
this algorithm is (n + nc2)2O(nc2)t(n), thus A ∈ DTIME(2O(n1+c1c2)). ⊓⊔

The same proof also works for space complexity.

Proposition 3. For all constants c1, c2 ≥ 1, there is a sparse language A in
DSPACE(n1+c1c2) but not in DSPACE(nc1)/nc2.

The following corollary is now immediate.

Corollary 1. For every constant c > 0, EXP 6⊂ (P/nc) and PSPACE 6⊂
(∪kDSPACE(logk n)/nc).

The construction of the language A in the proof of Proposition 2 in fact
enables us to prove a “hardness result” for PromiseBPP problems. We won’t
define precisely PromiseBPP but just explain the notion of BPP-consistency;
see for instance [3] for further details.

Definition 1. Let N be a probabilistic Turing machine. We say that the lan-
guage A is BPP-consistent with N if the following conditions hold:

Symmetry of information and nonuniform lower bounds 7

– if N(x) accepts with probability ≥ 2/3 then x ∈ A;

– if N(x) rejects with probability ≥ 2/3 then x 6∈ A.

Remark that we don’t impose anything in the case where N(x) accepts with
probability 1/3 < α < 2/3.

We now obtain a lower bound on BPP-consistent languages in the sense of
the following proposition.

Proposition 4. Let k > 0. There exists a polynomial-time probabilistic Tur-
ing machine N such that no language L ∈ DTIME(nk)/(n − log n) is BPP-
consistent with N .

Proof. In the definition of the language A in the proof of Proposition 2, de-
ciding whether “for at least half of the programs M ∈ Vi−1, the i-th bit of
U t(n)(M) is 0” is a PP problem (let us call it C) as soon as the simulation
time t(n) of M is polynomial. Let us take t(n) = n3+k, diagonalize over pro-
grams of size ≤ n + log n (of which there are less than n2n+1) and call N
the polynomial-time probabilistic machine that decides the above language
C ∈ PP. Hence A 6∈ DTIME(n2+k)/n.

Suppose that there exists a language L ∈ DTIME(nk)/(n − log n) which
is BPP-consistent with N . As for BPP, one can reduce the probability of
error by repeating the whole computation several times and taking the most
frequent answer (this can be proved using Chernoff bounds). With a number
of repetitions of O(n), we obtain a language B ∈ DTIME(n1+k)/(n − log n)
such that for all x of size n:

– if N(x) accepts with probability ≥ 1/2 + 2−n then x ∈ B;

– if N(x) rejects with probability ≥ 1/2 + 2−n then x 6∈ B.

Let us replace the PP problem C in the definition of the language A of Propo-
sition 2 by B, yielding a new language A′. At each step of the definition of
A′, we discard at least a (1/2 − 2−n) fraction of the programs (instead of
1/2 in the original definition of A). Therefore, after the i-th step, the num-
ber of remaining programs (that is, |Vi|) is |Vi| ≤ n2n+1(1/2 + 2−n)i. Hence
n + 2 + log n steps are enough for completing the diagonalization process be-
cause n2n+1(1/2 + 2−n)n+2+log n < 1 for large enough n.

Note that if we have B as oracle, we can decide A′ with n + 2 + log n
queries to B on words of size n + 2 + log n (the history of the answers of B).
Since B ∈ DTIME(n1+k)/(n − log n) we have A′ ∈ DTIME(n2+k)/n which is
a contradiction. ⊓⊔

8 Sylvain Perifel

Since for any probabilistic polynomial-time Turing machine M , the class
PP provides languages BPP-consistent with M , the preceding proposition
therefore shows that PP is not in DTIME(nk)/(n− log n) for all k. This is to
be compared with the stronger result of [12] that PP does not have circuits of
size nk for any fixed k.

4 Symmetry of information

In this section we state the hypothesis of resource-bounded symmetry of in-
formation we will use. For the sake of completeness, we first state a version of
symmetry of information for exponential time bounds (the time bounds here
are not meant to be optimal). For a proof one can easily adapt the unbounded
case, see for instance [8, Th. 2.8.2 p. 182].

Theorem 1. There exist constants α, β ≥ 1 such that for all words x, y and
all t ≥ 23(|x|+|y|), the following equality holds:

Ct(x, y) ≥ Cαt2(x) + Cαt2(y|x) − β log(|x| + |y|).

We now precisely state the version of polynomial-time symmetry of infor-
mation we are going to use. As mentioned before, this is a slightly stronger
version than the usual one since the time bound in the right-hand side is usu-
ally q(p(n)) instead of q(n)p(n). Note that we state and use only one direction
of the symmetry of information (the hard one).

(SI) There exist a constant β > 0 and a polynomial q such that

for all polynomial p and all words x, y, z of size |x| + |y| + |z| = n,

Cp(n)(x, y|z) ≥ Cp(n)q(n)(x|z) + Cp(n)q(n)(y|x, z) − β log n.

The following lemma investigates the consequences of iteratively apply-
ing symmetry of information: note in particular that the initial error β log n
becomes rather big but can still be small in comparison with nk.

Lemma 2. Suppose (SI) holds and take a corresponding polynomial q. Let
u1, . . . , un be words of size s and z another word of arbitrary size. We define
m = ns + |z| the size of all these words. Let p be a polynomial and t ≥
p(m). Suppose there exists a constant k such that for all j ≤ n, we have

Cq(m)log nt(uj |u1, . . . , uj−1, z) ≥ k.

Then Ct(u1, . . . , un|z) ≥ nk − (n − 1)β log m.

Symmetry of information and nonuniform lower bounds 9

Proof. We show the result by induction on n. This is clear for n = 1. For
n > 1, by (SI),

Ct(u1, . . . , un|z) ≥ Ctq(m)(u1, . . . , un/2|z)+

Ctq(m)(un/2+1, . . . , un|u1, . . . , un/2, z) − β log m.

By induction hypothesis at rank n/2, the right-hand side is at least 2((n/2)k−
(n/2 − 1)β log m) − β log m = nk − (n − 1)β log m. ⊓⊔

Let us now establish the link between Kolmogorov complexity of the char-
acteristic string of a set and the length of the advice needed to recognize this
set.

Lemma 3. Let A be a language and χ(n) the characteristic string of A=n

(i.e. χ
(n)
i = 1 iff x(i) ∈ A=n). We denote by χ(n)[1..i] the string consisting

of the i first bits of χ(n). Let r(n) be a function and suppose that there exist
an unbounded function s(n) ≥ 0 such that for all constant α > 0, there exist
infinitely many n and 1 ≤ i ≤ 2n satisfying

Cαir(n+a(n))(χ(n)[1..i]) > s(n) + a(n).

Then A 6∈ DTIME(r(n))/a(n).

Proof. Suppose that A ∈ DTIME(r(n))/a(n). Then there exist a fixed pro-
gram M together with an advice function c(n) of size ≤ a(n), such that for
all x ∈ {0, 1}n, U(M,x, c(n)) works in time O(r(n + a(n))) and accepts iff
x ∈ A=n. By enumerating the first i words of size n in lexicographic or-
der and simulating the program M on each of them, there is another pro-
gram N with advice c(n) that enumerates χ(n)[1..i] in time O(ir(n + a(n))).
Hence there exists a constant α > 0 such that for all n and for all i ≤ 2n,
Cαir(n+a(n))(χ(n)[1..i]) ≤ |N | + a(n). ⊓⊔

5 Diagonalizing out of polynomial advice length

We are now interested in diagonalizing over all polynomial advices, not just of
size nc for some fixed c. We will use the hypothesis of symmetry of informa-
tion above. Here the main difficulty is to diagonalize over all advices without
enumerating them, otherwise we would go outside of EXP. The idea is simple
and can be summed up as follows.

– Two different “useful” and “independent” parts of size k1 and k2 of an
advice “must” carry roughly k1 + k2 bits of information. This is where
symmetry of information comes into play.

10 Sylvain Perifel

– We therefore decompose the advice in small blocks (of size O(n)) and
diagonalize over the blocks instead of the whole advice, while making sure
that these blocks are “independent”.

Theorem 2. If polynomial-time symmetry of information (SI) holds true,
then

EXP 6⊂ P/poly.

Proof. Suppose (SI) holds true: this gives a corresponding polynomial q. We
diagonalize over programs (“blocks”) M of length ≤ n − 1 and simulate the

universal machine U for t(n) = q(n1+log n)log
2 nn2+log n+log3 n steps. Define the

language A as follows, by length as in the proof of Proposition 2. Remark
that the n first steps of the definition are the same as for Proposition 2; the
difference occurs only after, when we reuse the initial segment of A=n in our
simulation.

x(1) ∈ A=n ⇐⇒
for at least half of the programs M of size ≤ n − 1,

the first bit of U t(n)(M) is 0,

that is, at least half of the programs M of length ≤ n − 1 give a wrong
answer for x(1). Let V1 be the set of programs M giving the right answer for
x(1), i.e. such that the first bit of U t(n)(M) corresponds to “x(1) ∈ A”. Hence
|V1| < 2n−1 (less than half of the programs of size ≤ n − 1 remain). We then
go on with x(2):

x(2) ∈ A=n ⇐⇒
for at least half of the programs M ∈ V1,

the second bit of U t(n)(M) is 0,

that is, among the programs that were right for x(1), at least half make a
mistake for x(2). Let V2 be the set of programs M ∈ V1 giving the right answer
for x(2). We go on like this:

x(i) ∈ A=n ⇐⇒
for at least half of the programs M ∈ Vi−1,

the i-th bit of U t(n)(M) is 0,

until Vi is empty. Call k the first i such that Vi = ∅: k ≤ n since 2n − 1
programs M were to be tested.

Call u(1) the characteristic string of the initial segment of size n of A=n

defined above: thus |u(1)| = n and for i ≤ n, u
(1)
i = 1 if and only if x(i) ∈ A=n.

We now define the next segment of size n of A=n.

x(n+1) ∈ A=n ⇐⇒
for at least half of the programs M of size ≤ n − 1,

the first bit of U t(n)(M,u(1)) is 0,

Symmetry of information and nonuniform lower bounds 11

that is, at least half of the programs M of length ≤ n− 1 give a wrong answer
for x(n+1) even with the string u(1) as advice. Let V1 be the set of programs M
giving the right answer for x(n+1), i.e. such that the first bit of U t(n)(M,u(1))
corresponds to “x(n+1) ∈ A”. Hence |V1| < 2n−1. We then go on with x(n+2):

x(n+2) ∈ A=n ⇐⇒
for at least half of the programs M ∈ V1,

the second bit of U t(n)(M,u(1)) is 0,

that is, among the programs that were right for x(n+1), at least half make a
mistake for x(n+2). And we go on like this:

x(n+i) ∈ A=n ⇐⇒
for at least half of the programs M ∈ Vi−1,

the i-th bit of U t(n)(M,u(1)) is 0.

Call u(2) the characteristic string of the second segment of size n of A=n

defined above: thus |u(2)| = n and u
(2)
i = 1 if and only if x(n+i) ∈ A=n. We

define the third segment of size n of A=n analogously:

x(2n+1) ∈ A=n ⇐⇒
for at least half of the programs M of size ≤ n − 1,

the first bit of U t(n)(M,u(1), u(2)) is 0,

etc. Going on like this we have (for the (j + 1)-th segment):

x(jn+i) ∈ A=n ⇐⇒
for at least half of the programs M ∈ Vi−1,

the i-th bit of U t(n)(M,u(1), u(2), . . . , u(j)) is 0.

We stop when j = nlog n and decide arbitrarily that x(k) 6∈ A for k > n×nlog n.

Let us first show that A 6∈ P/poly. Note that at each step of the definition
of A, we have Ct(n)(u(j)|u(1) · · ·u(j−1)) ≥ n−1 because no program of length ≤
n−1 writes u(j) in time ≤ t(n) on input u(1) · · ·u(j−1). Since (SI) holds and by

definition of t(n), Lemma 2 asserts that for i = n×nlog n, Cninlog3
n

(χ(n)[1..i]) ≥
(n − 1) × nlog n − nlog nβ log i ≥ nlog n for large enough n.

Hence by Lemma 3, if we let a(n) = nlog n − n and r(n) = nlog n, we have
A 6∈ DTIME(r(n))/a(n). In particular, A 6∈ P/poly.

It is straightforward to see that A ∈ EXP, and the theorem follows. ⊓⊔

Remark – The same proof also works for space complexity if we assume the
corresponding version of symmetry of information for polylogarithmic space
bounded Kolmogorov complexity. That is, under this assumption we can prove
that PSPACE 6⊂ (∪kDSPACE(logk n)/poly).

12 Sylvain Perifel

6 Further research

It would be interesting to prove that the usual version of polynomial-time
symmetry of information (with p(q(n)) time bound instead of p(n)q(n)) also
implies EXP 6⊂ P/poly. This might be useful for proving unconditional results
by using the same techniques for CAMD complexity (see [7]), since polynomial-
time symmetry of information would hold for CAMD under the assumption
EXP ⊂ P/poly (which implies EXP = AM).

The author wants to thank Andrei Romashchenko for the useful and nu-
merous discussions on Kolmogorov complexity (in particular on symmetry
of information) and also Pascal Koiran for pointing out the open problem
“EXP ⊂ P/poly?”.

References

1. L. M. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

IEEE Symposium on Foundations of Computer Science, pages 75–83, October 1978.
2. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Number 11 in EATCS

monographs on theoretical computer science. Springer-Verlag, 1988.
3. H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computa-

tion. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science,
volume 1563 of Lecture Notes in Computer Science, pages 100–109. Springer, 1999.

4. S. Homer and S. Mocas. Nonuniform lower bounds for exponential time classes. In
Mathematical Foundations of Computer Science, 20th symposium, volume 969 of Lecture

Notes in Computer Science, pages 159–168, 1995.
5. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information

and Control, 55:40–56, 1982.
6. A. Kolmogorov. Combinatorial foundations of information theory and the calculus of

probabilities. Russian Mathematical Surveys, 38(4):29–40, 1983.
7. T. Lee and A. Romashchenko. Resource bounded symmetry of information revisited.

Theoretical Computer Science, To appear. Earlier version in 29th Symposium on the
Mathematical Foundations of Computer Science, 2004.

8. M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications.
Graduate texts in computer science. Springer, second edition, 1997.

9. L. Longpré and O. Watanabe. On symmetry of information and polynomial time in-
vertibility. Information and Computation, 121(1):14–22, August 1995.

10. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
11. U. Schöning. Complexity and structure, volume 211 of Lecture Notes In Computer Sci-

ence. Springer-Verlag, 1985.
12. N. V. Vinodchandran. A note on the circuit complexity of PP. In Electronic Colloquium

on Computational Complexity, Report No. 56, July 2004.
13. A. Zvonkin and L. Levin. The complexity of finite objects and the development of the

concepts of information and randomness by means of the theory of algorihms. Russian

Mathematical Surveys, 25(6):83–124, 1970.

