
HAL Id: ensl-00119823
https://ens-lyon.hal.science/ensl-00119823v2

Preprint submitted on 4 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetry of information and nonuniform lower bounds
Sylvain Perifel

To cite this version:

Sylvain Perifel. Symmetry of information and nonuniform lower bounds. 2007. �ensl-00119823v2�

https://ens-lyon.hal.science/ensl-00119823v2
https://hal.archives-ouvertes.fr
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Sylvain Perifel

LIP?, École Normale Supérieure de Lyon.
Sylvain.Perifel@ens-lyon.fr

Abstract. In the first part we provide an elementary proof of the result
of Homer and Mocas [3] that for all constant c, the class EXP is not
included in P/nc. The proof is based on a simple diagonalization, whereas
it uses resource-bounded Kolmogorov complexity in [3].
In the second part, we investigate links between resource-bounded Kol-
mogorov complexity and nonuniform classes in computational complex-
ity. Assuming a weak version of polynomial-time symmetry of informa-
tion, we show that exponential-time problems do not have polynomial-
size circuits (in symbols, EXP 6⊂ P/poly).
Keywords: computational complexity, nonuniform lower bounds,
resource-bounded Kolmogorov complexity, symmetry of information

1 Introduction

Whereas some uniform lower bounds have been proved long ago thanks to hi-
erarchy theorems, little progress have been made towards longstanding open
problems concerning nonuniform lower bounds in complexity theory. This ob-
servation is explained by the lack of proof techniques for these nonrelativizing
questions. In particular, a simple diagonalization is not suitable for the main
question of whether exponential-time problems have polynomial-size circuits.
Yet the advantage of diagonalization is its simplicity. In this paper, we show
that a hypothesis of resource-bounded Kolmogorov complexity gives diagonal-
ization enough power to settle these questions.

We are interested in the question of whether the class EXP of problems
decided in exponential time has polynomial-size circuits (in symbols, whether
EXP ⊂ P/poly). As mentioned above, the separation EXP 6= P is well-known but
this nonuniform counterpart is still open. On this problem, two approaches have
yielded significant results.

The first approach was to find the smallest uniform class provably not con-
tained in P/poly. In this direction, Kannan [4] proved that NEXPNP does not
have polynomial-size circuits, and afterwards Schöning [12] gave a simplified
proof that EXPSPACE does not have polynomial-size circuits. Here, we see that
performing a diagonalization out of P/poly requires more than exponential time.
Later, the second approach was to obtain the best nonuniform lower bound for
? UMR 5668 ENS Lyon, CNRS, UCBL, INRIA. Research report RR2006-50.
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EXP problems. Homer and Mocas [3] showed that EXP does not have circuits of
size nc for any fixed constant c.

As a first step toward our main theorem, another proof of this last result
is provided in the first part of the present paper (Proposition 2). This is an
elementary proof consisting in a mere diagonalization (whereas the original proof
of [3] makes use of resource-bounded Kolmogorov complexity) which is included
here because it familiarizes with the proof of the main result of the paper, and
also because this easy proof has never been published to the author’s knowledge
(though it uses techniques very similar to [12]). As a corollary, included here as
another illustration of this method, we obtain a nonuniform lower bound on PP
problems (Proposition 4). Unfortunately this is much weaker than the result of
Vinodchandran [13].

In the second and main part, we show that an assumption of resource-
bounded Kolmogorov complexity enables to combine both approaches described
above. Namely, if a weak version of polynomial-time symmetry of information
holds true, then EXP 6⊂ P/poly (Theorem 2). This result therefore relates two
major open questions. The proof once again consists in a simple diagonalization.

Symmetry of information is a beautiful theorem in Kolmogorov complexity
and one of its versions can roughly be stated as follows: if x and y are two words,
x contains the same quantity of information on y as y on x. This theorem is due
to Levin [14] and Kolmogorov [6].

When requiring polynomial time bounds on the computations, however, the
similar property, called polynomial-time symmetry of information, is a challeng-
ing open problem in resource-bounded Kolmogorov complexity. This problem
has already been related to computational complexity by at least two results.
First, Longpré and Watanabe [9] show that if P = NP then polynomial-time
symmetry of information holds. Second, more recently and closer to our present
preoccupations, Lee and Romashchenko [7] show that if polynomial-time sym-
metry of information holds, then EXP 6= BPP. A longer discussion on symmetry
of information, inspired by the introduction of [7], is provided in Section 4.

Here, assuming a weak version of polynomial-time symmetry of information
(see Section 4) we prove that EXP 6⊂ P/poly (a stronger conclusion than in [7]
since BPP ⊂ P/poly, see [1]). As we shall see, symmetry of information enables
to divide advices into small blocks on which diagonalization can be performed
in EXP.

All these results teach us that polynomial-time symmetry of information,
even in its weakest forms, is a hard but central question to study. Indeed, if it
holds, then EXP does not have polynomial-size circuits, else P 6= NP. In both
cases, a fundamental question in complexity theory would find an answer.

Organization of the paper. Section 2 is devoted to definitions and notations in
computational complexity and resource-bounded Kolmogorov complexity. Sec-
tion 3 consists of another proof of the result of [3] that exponential-time problems
do not have circuits of any fixed polynomial size nc. A simple corollary is also
shown there, namely a nonuniform lower bound on PP problems.
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Section 4 precisely state the hypothesis of polynomial-time symmetry of in-
formation as well as some simple results about this. Finally, Section 5 proves the
main result, namely that polynomial-time symmetry of information implies that
exponential-time problems do not have polynomial-size circuits.

2 Preliminaries

For references on computational complexity we recommend the book [2]. For Kol-
mogorov complexity, we refer to [8]. The notions used in this paper are standard,
though stated from the unifying point of view of universal Turing machines.

Universal machines. If M is a Turing machine, for simplicity we will assume
that it is encoded in binary and denote by M this encoding. Therefore M is
also seen as a program. We restrict ourselves to two-tape Turing machines; the
following result on a universal Turing machine is then well-known.

Proposition 1. There exists a universal Turing machine U , with two tapes,
which, on input (M,x), simulates the two-tape machine M on input x. There is
a constant c > 0 depending only on the machine M such that the simulation of
t steps of M(x) takes ct steps of U .

Such a universal Turing machine U is fixed in the remainder of the paper. The
machine M simulated by U will also be called the program of U . For instance, we
will say that the program M decides the language A if for all x, the computation
U(M,x) halts, and it accepts iff x ∈ A.

Complexity classes. If t : N → N is a function, the class DTIME(t(n)) is the set
of languages A recognized in time O(t(n)). More precisely, A ∈ DTIME(t(n)) if
there exist a constant c > 0 and a fixed program M ∈ {0, 1}∗ such that for all
word x, the computation U(M,x) stops before ct(|x|) steps and it accepts if and
only if x ∈ A. We call EXP the class ∪k≥0DTIME(2nk

).
Now, nonuniform computation is defined via advices as introduced by Karp

and Lipton [5]. The advice class DTIME(t(n))/a(n) is the set of languages A such
that there exist a program M , a constant c > 0 and a family (an) of advices
(that is to say, words) satisfying:

1. |an| ≤ a(n);
2. U(M,x, a|x|) stops in less than ct(|x|+ a(|x|)) steps;
3. U(M,x, a|x|) accepts iff x ∈ A.

The nonuniform class P/poly is defined as ∪k≥0DTIME(nk)/nk (i.e. polynomial
working time and polynomial-size advice) and is easily shown to be the set of
languages recognized by a family of polynomial-size boolean circuits. Similarly,
EXP/poly is the class ∪k≥0DTIME(2nk

)/nk (i.e. exponential working time and
polynomial-size advice). By this definition, it is easy to see that

EXP ⊂ P/poly ⇐⇒ EXP/poly = P/poly.
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Another complexity measure is the space needed to decide a language.
Space complexity counts the number of cells used by the machine. The class
DSPACE(s(n)) is the set of languages A recognized in space O(s(n)), and advice
classes are defined accordingly. The class PSPACE is ∪k≥0DSPACE(nk).

In this paper, we shall also quickly meet the complexity class PP. This is the
set of languages A such that there exist a language B ∈ P and a polynomial p(n)
satisfying x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} ≥ 2p(|x|)−1.

Resource-bounded Kolmogorov complexity. For two words x, y and an integer t,
we denote by Ct(x|y) the time t bounded Kolmogorov complexity of x condi-
tional to y, that is, the size of a shortest program M which, when run on the
universal Turing machine U on input y, outputs x in time ≤ t. For a Turing
machine M (and in particular for U), we denote by M t(x) the word written on
the output tape of the machine M after t steps of computation on input x. Thus
in symbols we have

Ct(x|y) = min{k : ∃M of size k such that U t(M,y) = x}.

We will use the notation Ct(x) for Ct(x|ε), where ε is the empty word.

Advice and programs. For a fixed word length n, the words x ∈ {0, 1}n of size
n are lexicographically ordered and the i-th one is called x(i) (for 1 ≤ i ≤ 2n).
Let A be a language. The characteristic string of A=n is the word χ ∈ {0, 1}2n

defined by χi = 1 iff x(i) ∈ A. We will often consider programs that output
characteristic strings rather than programs that decide languages. We rely on
the following obvious lemma.

Lemma 1. If A is a language in DTIME(t(n))/a(n) (where t(n) ≥ n), then
there exist constants α, k > 0 and a family (Mn) of programs satisfying:

1. |Mn| ≤ k + a(n);
2. for 1 ≤ i ≤ 2n in binary, U(Mn, i) outputs the i first bits of the characteristic

string χ of A=n in time αit(n + a(n)).

Proof. Let M be a DTIME(t(n)) machine deciding A with advice of size a(n).
The program Mn merely enumerates the i first words x of size n and simulates
M(x): Mn is therefore composed of the code of M , of an enumeration routine
for the i first words of size n and of the advice for the length n. ut

3 Diagonalizing out of nc advice length

We provide another proof of the following proposition of Homer and Mocas [3].
The initial proof of [3] makes use of resource-bounded Kolmogorov complexity.
Here it consists in a usual diagonalization, similar to the proof of Schöning [12]
that EXPSPACE does not have polynomial-size circuits (see [2, Th. 5.6]): at
each step of the diagonalization process, we eliminate half of the possible pro-
grams. This easy proof can be considered as folklore; still we include it in the
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present paper since it seems unpublished so far, and because it introduces some
techniques used in the proof of the main result of this paper. Furthermore, this
method yields a nonuniform lower bound on PP problems as a corollary. This
lower bound is rather weak and a better one is already known; we include it here
only as another application of the method.

Proposition 2. For all constants c1, c2 ≥ 1, there is a sparse language A in
DTIME(2O(n1+c1c2 )) but not in DTIME(2O(nc1 ))/nc2 .

Proof. The idea of the proof is to diagonalize against all programs of size nc2

thanks to a language that eliminates half of them at each step.
Let us define A=n for all n, therefore fix n. Recall that x(1) < x(2) < . . . <

x(2n) are the words of {0, 1}n sorted in lexicographic order. We will diagonalize
over the programs M of size at most n + nc2 (of which there are 2n+nc2+1 − 1),
and the universal machine U will be simulated for t(n) = 2n1+c1c2 steps. The set
A=n is defined word by word as follows:

x(1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n + nc2 ,
the first bit of U t(n)(M) is 0,

that is, at least half of the programs give the wrong answer for x(1). Let V1 be
the set of programs M giving the right answer for x(1), i.e. such that the first
bit of U t(n)(M) corresponds to “x(1) ∈ A”. Hence |V1| < 2n+nc2 (less than half
of the programs of size ≤ n + nc2 remain). We then go on with x(2):

x(2) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V1,
the second bit of U t(n)(M) is 0,

that is, among the programs that were right for x(1), at least half make a mistake
for x(2). Let V2 be the set of programs M ∈ V1 giving the right answer for x(2).
We go on like this:

x(i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ Vi−1,
the i-th bit of U t(n)(M) is 0

until Vi is empty. Call k the first i such that Vi = ∅. We decide arbitrarily that
x(j) 6∈ A=n for j > k. Note that k ≤ n + nc2 + 1 because |Vi| is halved at each
step, therefore A is sparse.

If A ∈ DTIME(2O(nc1 ))/nc2 , then by Lemma 1 there would be a constant k
and a family (Mn) of programs of size ≤ k +nc2 writing down the characteristic
string of A=n in time α(n+nc2+1)2O(nc1c2 ) ≤ 2βnc1c2 for some β. This is not pos-
sible as soon as n ≥ k and t(n) > 2βnc1c2 since all programs of size n+nc2 must
make a mistake on some input of size n. Therefore A 6∈ DTIME(2O(nc1 ))/nc2 .

Now, in order to decide if x(i) ∈ A it is enough to decide if x(j) ∈ A for
all j ≤ i. This is done in the order j = 1, . . . , i because we need the answer of
j for j + 1. For x(j) we proceed as follows: we enumerate all the programs M
of size ≤ n + nc2 , compute U t(n)(M) by simulating U for t(n) steps, we test
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whether M ∈ Vj−1 (this is done by comparing for each k < j the k-th bit of
U t(n)(M) with the already computed value of “x(k) ∈ A”), and count how many
M ∈ Vj−1 produce an output whose j-th bit is 0. If there are more than half
such M , then x(j) ∈ A, otherwise x(j) 6∈ A. The overall running time of this
algorithm is (n + nc2)2O(nc2 )t(n), thus A ∈ DTIME(2O(n1+c1c2 )). ut

The same proof also works for space complexity.

Proposition 3. For all constants c1, c2 ≥ 1, there is a sparse language A in
DSPACE(n1+c1c2) but not in DSPACE(nc1)/nc2 .

The following corollary is now immediate.

Corollary 1. For every constant c > 0, EXP 6⊂
(
P/nc

)
and PSPACE 6⊂

(∪kDSPACE(logk n)/nc).

Remark 1. The original result of Homer and Mocas [3] has since been
improved by Ronneburger [11, Th. 5.21] in the following way: there is a
language R ∈ EXP such that for all k, there exists a language L ∈ EXP

which is not truth-table reducible to R in time 2nk

with nk bits of advice.
The construction of the language A of Proposition 2 enables us to prove the
following nonuniform lower bound for PP problems. As already mentioned, this
is a much weaker result than Vinodchandran [13] showing that PP does not have
circuits of size nk for any fixed k.

Proposition 4. For any fixed k > 0, PP 6⊂ DTIME(nk)/(n− log n).

Proof. The idea relies on the following remark: in the proof of Proposition 2, if
the simulation time of the machine U is polynomial, then deciding whether “for
at least half of the programs M ∈ Vi−1, the i-th bit of U t(n)(M) is 0” is a PP
problem.

Let us now fill the details. Take t(n) = n3+k for the simulation time and
diagonalize over programs of size ≤ n − (log n)/2 (of which there are less than
2n/

√
n). For conveniency, if k ≤ n+1−(log n)/2 and b1, . . . , bk are k bits, define

B(b1, . . . , bk) = {M | M is a program of size ≤ n− (log n)/2 such that
∀i ≤ k, the i-th bit of U t(n)(M) is bi}.

Let us now define the following language C:

C = {(b1 . . . bk+1, 0mk)| for at least half of the programs M ∈ B(b1, . . . , bk),
the (k + 1)-th bit of U t(n)(M) is bk+1}.

The second term 0mk of the couple in C is only a padding term, so that the length
of the queries to C will be always the same. Since k ≤ n+1− (log n)/2, one can
assume by choosing an appropriate encoding that the length of (b1 . . . bk+1, 0mk)
is always n.
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Note that deciding whether M ∈ B(b1, . . . , bk) can be done in polynomial
time (there are k ≤ n + 1 − (log n)/2 simulations to perform, each of which
requires time O(t(n))). Therefore C ∈ PP.

We can now define our main language A very similarly as in Proposition 2:

x(1) ∈ A=n ⇐⇒ (0, 0m1) ∈ C,

that is, x(1) ∈ A if and only if at least half of the programs of size ≤ n−(log n)/2
reject x(1) (i.e., they make a mistake on x(1)). Call b1 ∈ {0, 1} the right answer
for x(1), that is, b1 = 1 iff x(1) ∈ A=n. Then we go on with x(2):

x(2) ∈ A=n ⇐⇒ (b10, 0m2) ∈ C.

Once again, among the programs that were right for x(1), at least one half give
the wrong answer for x(2). Going on like this for n + 1 − (log n)/2 steps, all
the programs are wrong on at least one word because every program has been
diagonalized against. We decide arbitrarily that x(i) 6∈ A=n for i > n + 1 −
(log n)/2. We thus have A 6∈ DTIME(nk+2)/(n− log n).

The language A can then be recognized in time O(n2) with oracle access to
C: it is enough to decide successively whether x(1) ∈ A, x(2) ∈ A, etc. These
n + 1 − (log n)/2 steps can be done thanks n + 1 − (log n)/2 queries of size n
to C (the time complexity of the algorithm is O(n2) because it has to ask O(n)
questions of size O(n)).

Suppose for a contradiction that PP ⊂ DTIME(nk)/(n − log n). Then C ∈
DTIME(nk)/(n − log n) and the algorithm above only queries words of size n.
Hence A ∈ DTIME(nk+2)/(n− log n) which is a contradiction. ut

4 Symmetry of information

In this section we state the hypothesis of resource-bounded symmetry of in-
formation we will use. For the sake of completeness, we first state a version of
symmetry of information for exponential time bounds. For a proof one can easily
adapt the unbounded case, see for instance [8, Th. 2.8.2 p. 182].

Theorem 1. There exist constants α, β such that for all words x, y and all time
bound t, the following equality holds:

Ct(x, y) ≥ Ct2α(|x|+|y|)
(x) + Ct2α(|x|+|y|)

(y|x)− β log(|x|+ |y|).

Notice that the other inequality also holds up to a logarithmic factor and is
much easier to show. Here we are only interested in the “hard part” of symme-
try of information. This is an open question whether this inequality holds for
polynomial time bounds, i.e. whether there exists a polynomial q(n) such that
Ct(x, y) ≥ Ctq(|x|+|y|)(x)+Ctq(|x|+|y|)(y|x)−β log(|x|+ |y|). However, if one-way
functions exist (as is often believed), then polynomial-time symmetry of infor-
mation does not hold, see [9]. This suggests that this version of polynomial-time
symmetry is too strong.
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One way to relax this hypothesis is to allow a larger error, replacing the
O(log(|x| + |y|)) error term by δ(|x| + |y|). This would imply that polynomial-
time computable functions can be inverted in time 2O(δ(n)). This does not seem
completely impossible if δ(n) is large enough, for instance δ(n) = εn. Note also
that the hypothesis is true for δ(n) = n, since trivially there exists a polynomial
q such that 2Ct(x, y) ≥ Ctq(|x|+|y|)(x) + Ctq(|x|+|y|)(y|x). All these remarks lead
us to the following version of the hypothesis of polynomial-time symmetry of
information. It is interesting to note that Lee and Romashchenko [7], in the
introduction of their paper, already ask a very similar question: can we show
that (2 − ε)C(x, y) ≥ C(x) + C(y|x) for some contant ε > 0 when polynomial-
time bounds are required?

(SI) There exist a constant α > 1/2 and a polynomial q such that
for all time bound t and all words x, y, z of size |x|+ |y|+ |z| = n,

Ct(x, y|z) ≥ α

(
Ctq(n)(x|z) + Ctq(n)(y|x, z)

)
.

Note that we need time bounds tq(n) in the right-hand side, instead of q(t) in
the usual settings of polynomial-time symmetry of information, in order to limit
the growth of the time bound when iteratively applying (SI). It would be nice
to rule this problem out and use the usual q(t) time bound instead. Note finally
that the hypothesis can be weakened, as mentioned in the following remark.

Remark 2. For our purpose, the following restrictions can further be applied on
the hypothesis (SI):

1. we can require |x| = |y| and Ctq(n)(x|z) = Ctq(n)(y|x, z);

2. the time bound t can be taken < 2n2
and in this framework, the hypothesis

can hold only for all but a finite number of words x and y;
3. the constant α can be replaced by the nonconstant term 1/2 +

1/
p

log(|x|+ |y|), which is closer to 1/2.
4. the multiplicative time bound q(n) can in fact be much larger than a poly-

nomial: we could take q(n) = 22
√

log n

, which is greater than 2logk n for all

k. All we need is a function q such that q(nlog n)log
2 n < 2nk

for some k.

Putting these points together, here is the weaker (but more complicated) hy-
pothesis we obtain:

Let f(n) = 22
√

log n

. For all n, all t < f(n), all word z and all but finitely many
words x, y of same length, if |x|+ |y|+ |z| = n and Ctq(n)(x|z) = Ctq(n)(y|x, z),
then

Ct(x, y|z) ≥

 
1

2
+

1p
log(|x|+ |y|)

! 
Ctf(n)(x|z) + Ctf(n)(y|x, z)

!
.

Note that relative to the oracle O = {(M,x, b) : M(x) = b in ≤ 2|x| steps}, (SI)
is true. Furthermore, since our proofs below relativize and the conclusion does
not, we obtain the following proposition (certainly also provable directly).
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Proposition 5. There exists an oracle A relative to which (SI) is true and an
oracle B relative to which (SI) is false.

We wish to iteratively apply (SI). In order to do that, we need to precise how
we encode tuples. The main property we will need is that (x1, . . . , x2n) should
have the same encoding as ((x1, . . . , xn), (xn+1, . . . , x2n)). This is achieved for
instance by representing three symbols “zero”, “one” and a delimiter # by 00,
11 and 01. Hence the size of the encoding of an n-tuple (x1, . . . , xn) will be
2(n− 1) + 2(|x1|+ . . . + |xn|). Of course, much shorter encodings could also be
chosen, but it would not help in this paper.

Lemma 2. Suppose (SI) holds and take a corresponding polynomial q. Let t be
a time bound, u1, . . . , un be words of size s and z be another word of arbitrary
size. We define m = ns + |z| the size of all these words. Suppose there exists a
constant k such that for all j ≤ n, we have Cq(m)log nt(uj |u1, . . . , uj−1, z) ≥ k.

Then Ct(u1, . . . , un|z) ≥ (2α)blog nck.

Proof. Fix a sequence of words (ui)i≥1 of size s. Let us first show the result when
n is a power of 2. We show by induction on n (only for powers of 2) the following
hypothesis: for every time bound t, every word z and all m ≥ ns + |z|, if for all
j ≤ n, Cq(m)log nt(uj |u1, . . . , uj−1, z) ≥ k then Ct(u1, . . . , un|z) ≥ (2α)log nk.

This is clear for n = 1. For n > 1, take t, z and m ≥ ns + |z|. By (SI),

Ct(u1, . . . , un|z) ≥ α

(
Ctq(m)(u1, . . . , un/2|z)+

Ctq(m)(un/2+1, . . . , un|u1, . . . , un/2, z)
)

.

By induction hypothesis at rank n/2, for the time bound tq(m) and where for
the last term we take as new z the word u1, . . . , un/2, z, the right-hand side is at
least α((2α)log(n/2)k + (2α)log(n/2)k) = (2α)log nk.

Now, if n is not a power of 2, let p be the largest power of 2 less than n.
Then Ct(u1, . . . , un|z) ≥ Ct(u1, . . . , up|z) ≥ (2α)log pk = (2α)blog nck. ut

We now establish links between the Kolmogorov complexity of a character-
istic string and the length of the advice.

Lemma 3. Let A be a language and χ(n) the characteristic string of A=n

(i.e. χ
(n)
i = 1 iff x(i) ∈ A=n). We denote by χ(n)[1..i] the string consisting of the

i first bits of χ(n). Let r(n) be a function and suppose that there exists an un-
bounded function s(n) ≥ 0 such that for all constant α > 0, there exist infinitely
many n and 1 ≤ i ≤ 2n satisfying Cαir(n+a(n))(χ(n)[1..i]) > s(n) + a(n).

Then A 6∈ DTIME(r(n))/a(n).

Proof. Suppose that A ∈ DTIME(r(n))/a(n). Then there exist a fixed program
M together with an advice function c(n) of size ≤ a(n), such that for all x ∈
{0, 1}n, U(M,x, c(n)) works in time O(r(n + a(n))) and accepts iff x ∈ A=n. By
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enumerating the first i words of size n in lexicographic order and simulating the
program M on each of them, there is another program N with advice c(n) that
enumerates χ(n)[1..i] in time O(ir(n+a(n))). Hence there exists a constant α > 0
such that for all n and for all i ≤ 2n, Cαir(n+a(n))(χ(n)[1..i]) ≤ |N |+ a(n). ut

5 Diagonalizing out of polynomial advice length

We are now interested in diagonalizing over all polynomial advices, not just of
size nc for some fixed c. We will use the hypothesis of symmetry of informa-
tion above. Here the main difficulty is to diagonalize over all advices without
enumerating them, otherwise we would go outside of EXP. The idea is simple:

– Two different “useful” and “independent” parts of size k1 and k2 of an advice
“must” carry roughly k1 + k2 bits of information.

– We therefore decompose the advice in small blocks (of size O(n)) and di-
agonalize over the blocks instead of the whole advice, while making sure
that these blocks are “independent”. The hypothesis (SI) then enables us to
“glue” these blocks together.

This can also be seen as efficiently finding a string of high Kolmogorov complexity
and Lemma 2 helps us do that.

Theorem 2. If (SI) holds true, then EXP 6⊂ P/poly.

Proof. Suppose (SI) holds true: this gives a corresponding polynomial q. We
diagonalize over programs (“blocks”) M of length ≤ n − 1 and simulate the
universal machine U for t(n) = q(n1+log n)log

2 nn2+log n+log3 n steps. Define the
language A as follows, by length as in the proof of Proposition 2. The n first
steps of the definition are the same as for Proposition 2; the difference occurs
only after, when we reuse the initial segment of A=n in our simulation. So we
define for i ≤ n:

x(i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(0)
i−1,

the i-th bit of U t(n)(M) is 0,

where V
(0)
i−1 is the set of the remaining programs of size ≤ n− 1 which give the

right answer for x(i−1). Remark that V
(0)
n = ∅ since all of the 2n − 1 programs

M have been eliminated.
Call u(1) the characteristic string of the initial segment of size n of A=n

defined above: thus |u(1)| = n and for i ≤ n, u
(1)
i = 1 if and only if x(i) ∈ A=n.

We now define the next segment of size n of A=n.

x(n+1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n− 1,
the first bit of U t(n)(M,u(1)) is 0,

that is, at least half of the programs M of length ≤ n− 1 give the wrong answer
for x(n+1) even with the string u(1) as advice. Let V

(1)
1 be the set of programs
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M giving the right answer for x(n+1), i.e. such that the first bit of U t(n)(M,u(1))
corresponds to “x(n+1) ∈ A”. Hence |V (1)

1 | < 2n−1. We then go on like this:

x(n+i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(1)
i−1,

the i-th bit of U t(n)(M,u(1)) is 0.

Call u(2) the characteristic string of the second segment of size n of A=n

defined above: thus |u(2)| = n and u
(2)
i = 1 if and only if x(n+i) ∈ A=n. We

define the third segment of size n of A=n analogously:

x(2n+1) ∈ A=n ⇐⇒ for at least half of the programs M of size ≤ n− 1,
the first bit of U t(n)(M,u(1), u(2)) is 0,

etc. Going on like this we have (for the (j + 1)-th segment):

x(jn+i) ∈ A=n ⇐⇒ for at least half of the programs M ∈ V
(j)
i−1,

the i-th bit of U t(n)(M,u(1), u(2), . . . , u(j)) is 0.

We stop when j = nlog n and decide arbitrarily that x(k) 6∈ A for k > n× nlog n.
Let us first show that A 6∈ P/poly. Note that at each step of the definition

of A, we have Ct(n)(u(j)|u(1) · · ·u(j−1)) ≥ n because no program of length ≤
n− 1 writes u(j) in time ≤ t(n) on input u(1) · · ·u(j−1). Since (SI) holds and by

definition of t(n), Lemma 2 asserts that for i = n×nlog n, Ci.n1+log3 n

(χ(n)[1..i]) ≥
(2α)log

2 nn = n1+log(2α) log n for large enough n.
Hence by Lemma 3, if we let a(n) = nlog(2α) log n − n and r(n) = nlog n, we

have A 6∈ DTIME(r(n))/a(n). In particular, A 6∈ P/poly.
It is straightforward to see that A ∈ EXP, and the theorem follows. ut
Remark 3. The same proof also works for space complexity if we assume
a corresponding version of symmetry of information for polylogarithmic
space bounded Kolmogorov complexity. That is, under such an assumption
we can prove that PSPACE 6⊂ (∪kDSPACE(logk n)/poly).

Let us now give a consequence of symmetry of information on randomized algo-
rithms. The following theorem of Nisan and Wigderson [10] will be useful for our
purpose. By approximating a problem we mean an algorithm that is right on all
but a fraction 1/f(n) of the inputs, where f(n) is superpolynomial (see [10]).

Theorem 3. If there exists ε > 0 such that EXP cannot be approximated by
circuits of size 2nε

then there exists c > 0 such that BPP ⊆ DTIME(2logc n).

We can use this theorem as follows. In the proof of Theorem 2, if we build
segments of size 2nε

(instead of n1+log n) for ε < 1 and repeat the process for
each segment until we fill {0, 1}n, then it is easy to see that every program of
size 2nε

must make a mistake not only on one, but on a fraction ≥ 1/(2nε) of the
inputs (otherwise the segments could be compressed by encoding separately the
“good” program and the positions where it makes a mistake). That is, assuming
(SI), EXP cannot be approximated by circuits of size 2nε

, in the sense of [10].
Theorem 3 therefore yields the following corollary.

Corollary 2. If (SI) holds then there is c > 0 such that BPP ⊆ DTIME(2logc n).
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6 Further research and acknowledgement

It would be interesting to overcome the problem with q(t) time bounds in the hy-
pothesis (SI) (instead of tq(n)), in order to be able to use the usual statement of
polynomial-time symmetry of information. Then one could try to obtain uncon-
ditional results by using variants of resource-bounded Kolmogorov complexity
such as CBP or CAMD (see [7]).

The author is really indebted to Andrei Romashchenko for the useful and
numerous discussions on this paper and on Kolmogorov complexity (in particular
on symmetry of information). He also wants to thank Pascal Koiran for pointing
out the open problem “EXP ⊂ P/poly?”, and anonymous referees for useful
comments.
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