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Abstract

In this tutorial we introduce the concept of CP-game which is a
generalization of this of strategic game. First we present examples
which are relevant to a CP-game approach. Then we give a somewhat
naive introduction to CP-games. Then we present the connection
between CP games and gene regulation networks.
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1 Introduction

This paper aims to be a didactic introduction to concepts developed in [6]
and used in [2] as a formalization of gene regulation networks. CP games
rely on players and synopses that are also game called situations. A player
may change a synopsis to another provided the synopsis can be converted to
the other, moreover a synopsis can be preferred to another. Conversion and
preference are two basic concepts of CP games from which they take their
name (C and P). The following tutorial presents all those concepts through
examples.

2 Basic concepts

To start with, let us give the two main notions of games. First, with no
surprise, a game involves players. Second, a game is characterized by situ-
ations. In CP games these situations will be called synopses or sometimes
game situations. A player can move from one synopsis to another, but she!

1See the preface of [3] for the use of personal pronouns



does that under some constraints as she has no total freedom to perform her
moves, therefore a relation called conversion is defined for each player; it tells
what moves a player is allowed to perform. Conversion of player Alice will
be written » 45... As such, conversion tells basically the rules of the game.
In chess it would say “a player can move her bishop along a diagonal”, but it
does not tell the game line of the player. In other words it does not tell why
the player chooses to move or how to convert her synopsis. Another relation
called preference compares synopses in order for a player to choose a better
move or to perform a better conversion. Preference of player Beth will be
written > gy, and when we write s> ey, s we mean that Beth prefers s’ to s
or, rather than s, she chooses §’. Preference (or choice) is somewhat dis-
connected from conversion, a player can clearly prefer a synopsis she cannot
move to and vice versa she can move to a synopsis she does not prefer.

A key concept in games is this of equilibrium. As a player can convert a
synopsis, she can convert it to a synopsis she likes better, in the sense that she
prefers the new synopsis she converted to. A player is happy in a synopsis,
if there is no synopsis she can convert to and she prefers. A synopsis is an
equilibrium if each player is happy with this synopsis. We will see that this
concept of equilibrium captures and generalizes the concepts known as Nash
equilibrium in strategic games .

3 Some examples

Let us present the above concepts of conversion, preference and equilibrium
through examples. We will introduce a new concept called change of mind.

3.1 A simple game on a square

As an introduction, we will look at variations of a simple game on a board.



3.1.1 A first version

Imagine a simple game where Alice and Beth play using tokens on a square.
We number the four positions as 1, 2, 3 and 4.
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Assume that player Alice has a red round token and that player Beth has
a blue squared token. The two player places their tokens on one vertices and
then they move along edges. They can also decide not to move. Assume that
Alice and Beth never put their token on a vertex taken by the other player,
more precisely a move towards an occupied vertex corresponds to a capture
of the token at that vertex and to a win. Then the game ends.
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Figure 1: Conversion and preference for the square game

The game has 12 situations or synopses, which we write i|j for 1 <,5 <4
and i # j. The above pictured situation corresponds to 1|2. The two con-
versions are described by Figure 1 left. In this figure, —— is Alice’s
conversion and > is Beth’s conversion.
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Figure 2: Agent changes of mind (on the left) and (general) change of mind
(on the right) for the square game

In this game, both players share the same preference, namely the follow-
ing: since a player does not want her token to be captured, she prefers a
synopsis where her token is on the opposite corner of the other token to a
synopsis where her token is next to the other token. This gives the preference
given in Figure 1 right. The arrow from 1|2 to 1|3 means players prefer 1|3
to 1]2.

From the conversion and the preference we build a relation that we call
change of mind. Alice can change her mind from a synopsis s to a new one
', if she can convert s to the new synopsis s’ and rather than s she chooses
s'. Changes of mind for Alice and Beth are given in Figure 2 on the left. In
this figure, —— is Alice’s change of mind and > is Beth’s conversion.
The (general) change of mind is the union of the agent change of mind, it
is given by Figure 2 on the right. The equilibria are the sinks (or “minimal
point”) for that relation, namely 1|3, 4|2, 3|1 and 2|4. This means that no
change of mind arrows leave those nodes. In these situations players have
their tokens on opposite corners and they do not move. An equilibrium like
1|3 which is a sink is called a Abstract Nash Equilibrium.



3.1.2 A second version

We propose a second version of the game, where moves of the token can
only be made clockwise. Obviously the conversion changes, but also the
preference, as a player does want not be threatened by another token placed
before her clockwise and prefers a synopsis that places this token as far as
possible. The conversions, the preferences and the changes of mind are given
in Figure 8 (page 21). If one looks at the equilibrium, one sees that there is
no fixed position where players are happy. To be happy the players have to
move around for ever, one chasing the other. It is not really a cycle, but a
perpetual move. We also call that an equilibrium. It is sometime called a
dynamic equilibrium or a stationary state according to people you talk to.

3.1.3 A third version

The third version is meant to present an interesting feature of the change of
mind. In this version, we use the same rules as the second one, except that
we suppose that the game starts with both token on the board or it starts as
follows. Alice has put her token on node 1 (this game positions is described
as 1lw). Then Beth chooses a position among 2, 3 or 4. The conversion is
given in Figure 3 left. Beth may choose not to play, but in this case she
looses, in other words, she prefers® any position to 1|w. The change of mind
is given on Figure 3 right (page 7). There is again a dynamic equilibrium
and one sees that this dynamic equilibrium is not the whole game, indeed
one enters the perpetual move after at least one step in the game.

3.2 Strategic games

In this presentation of strategic games we do not use payoff functions, but
directly a preference relation® and we present several games.

3.2.1 The Prisoner’s Dilemma

The problem is stated usually as follows

Two suspects, A and B, are arrested by the police. The police
have insufficient evidence for a conviction, and, having separated

2We do not draw the preference that would become to entangled.
3See Section 1.1.2 of [3] for a discussion.
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Figure 3: Conversion and change of mind for third version of the square game

both prisoners, visit each of them to offer the same deal: if one
acts as an informer against the other (finks) and the other remains
quiet, the betrayer goes free and the quiet accomplice receives the
full sentence. If both stay quiet, the police can sentence both
prisoners to a reduced sentence in jail for a minor charge. If each
finks, each will receive a similar intermediate sentence. Each
prisoner must make the choice of whether to fink or to remain
quiet. However, neither prisoner knows for sure what choice the
other prisoner will make. So the question this dilemma poses is:
What will happen? How will the prisoners act?

Each prisoner can be into two states, either fink (F') or be quiet (Q)). Each
prisoner can go from @) to F' and vice-versa, hence the following conversion,

(Figure 4 left). Each prisoner prefers to go free to been sentenced and prefers
a light sentence to a full sentence. Hence the preference are given in Fig-
ure 4 right, where —— is prisoner A preference and ----> is prisoner B
preference.

From this we get the change of mind of Figure 5. One sees clearly that
the only equilibrium is F, F' despite both prefer @), @) as shown on Figure 4
right.

Such an equilibrium is called a Nash equilibrium in strategic game theory.



Figure 4: Conversion and preference in the prisoner’s dilemma
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Figure 5: Agent and (general) change of mind in the prisoner’s dilemma

The paradox comes from the fact that F, F' is an equilibrium despite the
fact one has: g o= g in the preference.

3.2.2 Matching Pennies

This second example is also classic. This is a simple example of strategic
game where there is no singleton equilibrium.

The game is played between two players, Player A and Player B.
Each player has a penny and must secretly turn the penny to
heads (H) or tails (7). The players then reveal their choices
simultaneously. If the pennies match (both heads or both tails),
Player A wins. If the pennies do not match (one heads and one
tails), Player B wins.

The conversion is similar to this of the prisoner’s dilemma (Figure 6 left)
and the preference is given by who wins (Figure 6 center).

Change of mind for matching pennies is in Figure 6 right. One notices
that there is cycle. This cycle is the equilibrium. No player has clear mind
of what to play and changes her minds each time she looses.

3.2.3 Scissors, paper, stone

Here we present the famous game known as scissors, paper, stone. It involves
two players, Alice and Beth who announce either scissors (C') or paper (P)

8
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Figure 6: Conversion, preference and (general) change of mind in Matching
Pennies

or stone (T') with the rules that stone beats scissors, scissors beat paper, and
paper beats stone. There are nine situations (see below), one sees that Alice
may convert her situation P,C' to P, P or P,T and the same for the other
situations. The conversion is given below left. Since the rules, it seems clear
that Alice prefers T, P to P, P and P, P to C, P, hence the preference given
below right with —— is Alice’s preference and > is Beth’s preference.
To avoid a cumbersome diagram, in the preference we do not put the arrows
deduced by transitivity.

From the above conversion and preference, one gets the following change
of mind.

c.C--~C,P<--C,T
41 N JRN
/o A A
Iy Vo [
\P,C'-= - > P, P- ->P,T
Y -~ - 4+ -7 0
[
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Yy Y/
- T,P-->T,T

One sees also perpetual moves as in the matching pennies of which it is
a generalization.



3.2.4 Strategic games as CP games

A strategic game is a specific kind of CP games. To be a strategic game, a
CP game has to fulfill the following conditions.

1. Each synopsis is a n-Cartesian product, where n is the number of play-
ers. The constituents of the Cartesian product are called strategies.

2. Conversion for player a, written »,, is any change along the a-th dimen-
sion, 1.e., (81, .. Say -y Sn) Pa (S1,.eey by oy Sp) if and only if s, # 5.
Hence in strategic games, conversion is

e symmetric, (s B, " implies s’ B, $),
e transitive, (s », s’ and s’ B, §” imply s », s”),

e and irreflexive (it is not true that s », s).

3.3 Blink or you loose

Blink and you loose is a game played on a simple graph with two undifferen-
tiated tokens. There are three positions:

There are two players, Left and Right. The leftmost position above is the
winning position for Left and the rightmost position is the winning position
for Right. In other words, the one who owns both token is the winner. Let

us call the positions L, C' and R respectively. One plays by taking a token
on the opposite node.

3.3.1 A first tactic: Foresight

A player realizes that she can win by taking the opponent’s token faster than
the opponent can react, i.e., player Left can convert C' to L by outpacing
player Right. Player Right, in turn, can convert C' to R. This version of
the game has two singleton equilibria: L and R. This is described by the
following conversion

where —— is the conversion for Left and > is the conversion for
Right. The preference is

10



where —— is the preference for Left and > isthe preference for Right.
The change of mind is then:

L<--C-->R

and one sees that there are two equilibria: namely L and R, which means
that players have taken both token and keep them.

3.3.2 A second tactic: Hindsight

A player, say Left, analysis what would happen if she does not act. In case
Right acts, the game would end up in R and Left looses. As we all know,
people hate to loose so they have an aversion for a loosing position. Actually
Left concludes that she could have prevented the R outcome by acting. In
other words, it is within Left’s power to convert R to C'. Similarly for player
Right from L to C.

We call naturally aversion the relation that escapes from positions a player
does not want to be, especially a loosing position. Aversion deserves its name
as it works like conversion, but flies from bad position. We get the following
change of mind:

L---C=<--R

with C the singleton equilibrium

3.3.3 A third tactic: Omnisight

The players have both hindsight and foresight, resulting in a C/P game

s T

L SC“ 2R

with one change-of-mind equilibrium covering all outcomes thus, no singleton
equilibrium exists.
— T A — A

_C___R

~ — ~ —

L

3.4 The )\ phage as a CP game

The X phage is a game inspired from biology [4, 5]. The origin of the game
will be given in Section 5, here we give just the rules of the game.

11



There are three players cI, cro and Env. The game can be seen as a
game with two tokens moving on two graphs where each player may choose
to move one of the two tokens*. Env hates to see both tokens on the bottom
position and moves one of them. The conversion is therefore the same for
the three players® and is given by the following rightmost diagram:

@ Q (cIy, crog) <= (cly, croy)
@ ® ﬂ ﬂ

(cly, crog) <= (cly, croy)

® ® | |

@ (cly, crog) <= (cly, croq)

© O

cl cro cl cro

The preference is difficult to describe as an actual game to be played, it
comes from the genetics and is specific to each player. The philosophy is as
follows: a gene prefers a position if it is “pushed forward” that position.

(cly, crog) —<— (cly, croq) (cly, crog) (cly, crol)
f \ {3
Y A \
/ VT Y
Y(cll, cmo) —=<—(cly,cro)Y (cIy, crog) (cly, crol)
\ |
AN Y

(cly, crog) (cly, croy) (cly, crog) (cly, croy)

4In the asynchronous version.

5Note the difference with the square game where players had different conversions and
the same preference. The fact that the conversion is the same for everybody seems to be
a feature of biologic game.

12



(cly, crog) (cly, croy)

(cIy, crog) (cly, croy)

A

\
(cly, crog) —>— {(cly, croy)

From the conversion and the preferences one deduces three changes of mind.

(cly, crog) = (cly, croq) (cly, crop) (cly, croq)
Y A Y A U
(cly, crog) = {cly, croq) (eI, crog) (cIy, croq)

U
(cly, crog) (cly, croy) (cly, crog) (cly, croq)
(cly, crog) (cly, croy)
(cly, crog) (cly,croy)
AN

(cly, crog) > (cly, croy)

from which we deduce the (general) change of mind of the game:

< (cly, croy)
I A
I \ B
< (cly, croy)
A
v
(cly, crog) - (cly, croy)

One sees one singleton equilibrium namely (cly, cro;) (called the lyse) and
one dynamic equilibrium namely {(cls, crog), (cIy, crog) } (called the lysogen).

13



4 Presentation of C/P games

To define a C/P game we have to define four concepts:
e a set A of agents,
e aset S of synopses,
e for every agent a a relation », on §, called conversion,
e for every agent a a relation >, on S, called preference.

From these relations we are going to define a relation called change of
maind.

Definition 1 (Game) A game is a 4-uple (A, S, (»a)aca; (>a)aca)-

Example 1 (Square game 1rst version) For the first version of the square
game we have:

o A = {Alice, Beth},
o S=1{112,1]3,1/4,23,2/4,2|1, 3[4, 3|1, 3(2, 4|1, 42, 4|3},

o Conversions » ajce and W ey are given by Figure 1 left, with ——
for » atice and > for B gy,

® D pjice = D> e and this relation is given by Figure 1 right.

4.1 Singleton equilibrium

Let us look at a first kind of equilibria.

Definition 2 (Singleton equilibrium) A singleton equilibrium is a syn-
opsis s such that:

Vae A, €S . s, s = (s>, 9).

In the previous paragraphs, we have seen examples of singleton equilibria.
If we are at such an equilibrium, this is fine, but if not, we may wonder how
to reach an equilibrium. If s is not an equilibrium, this means that s fulfills

3s'eS . swy s ANsD>, S

14



which is the negation of
VeSS . spys = (s>, ).

The relation s », s' A s>, s’ between s and s’ is a derived one. Let us call
it change of mind for a and write it —,. We say that a changes her mind,
because she is not happy with s and hopes that following —, she will reach
not necessary the equilibrium, but at least a better situation. Actually since
we want to make everyone happy, we have to progress along all the —,’s.
Thus we consider a more general relation which we call just change of mind
and which is the union of the —,’s, i.e.,

L
— = —, -

Now suppose that we progress along —. What happens if we reach an s from
which we cannot progress further? This means

Vae A, €S . —(spys ANs>,s)

in other words, s is an equilibrium. Hence to reach an equilibrium, we
progress along — until we are stuck. In graph theory, a vertex from which
there is no outgoing arrow is called a sink. In relation theory it is called a
minimal element;

NS
7N

Thus we look for sinks in the graph.

4.2 Dynamic equilibrium

Actually this progression along — is not the panacea to reach an equilibrium.
Indeed it could be the case that this progression never ends, since we enter a
perpetual move (think at the square game 2nd version, Figure 3). Actually
we identify this perpetual move as a second kind of equilibrium.

15
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Figure 7: A game with two SCC’s

4.2.1 Strongly connected components

Here it is relevant to give some concepts of graph theory. A graph® is strongly
connected, if given two nodes n; and ny there is always a path going from
ny to ny and a path going from ny to n;. Obviously not all the graphs are
strongly connected, but they may contain some maximal subgraphs that are
strongly connected; “maximal” means that one cannot add nodes without
breaking the strong connectedness. Such a strongly connected subgraph is
called a strongly connected components, SCC' in short.

6In this tutorial, when we say “graph” , we mean always “oriented graph” or “digraph”.

16



The graph below has six SCC’s:

The graph of Figure 3 has two SCC’s (Figure 7).

From a graph, we can deduce a new graph, which we call the reduced
graph (Baase [1] calls it condensation), whose nodes are the SCC’s and the
arcs are given as follows: there is an arc from an SCC S to an SCC Sy, if
there exists a node n; in S7, a node s, in S5 and an arc between n; and ns.
By construction the reduced graph has no cycle and its strongly connected
components are singletons. The reduced graphs associated with the graphs
given above are as follows:

.\ //
=, (1w} - -={1]3,1]2,1/4, ...}

4.2.2 Dynamic equilibria as strongly connected components

At the price of extending the notion of equilibrium, we can prove that there is
always an equilibrium. Indeed given a graph, we compute its reduced graph.
Then in this reduced graph, we look for sinks. There is always such a sink
since in an acyclic graph (the reduced graph is always acyclic) there exists
always at least a sink.

CP Equilibria are sinks in the reduced graph. ‘

We can now split equilibria into two categories?

17



1. CP Equilibria (i.e., Dynamic equilibria are equilibria associated with
an SCC that contains more that one synopsis.

2. Abstract Nash Equilibria (i.e., Singleton equilibria) are equilibria asso-
ciated with an SCC that contains exactly one synopsis, i.e., associated
with an SCC which is a singleton, hence the name singleton equilib-
rium.

5 Gene regulation networks as C/P games

In the A phage, levels 0,1,2, for a gene, correspond to levels of activation
or levels of concentration of the corresponding protein. Thus ¢l has three
levels. 0 corresponds to the gene being inactive (the protein is absent),
1 corresponds to the gene being moderately active (the protein is present
but moderately concentrated), 2 corresponds to the gene being highly active
(the protein is concentrated). On the other hand, cro has two levels of
activation, corresponding to the gene being inactive or active. Env has only
one level, it is always active. A gene can move from one level at a time, as
translated by the conversion relation on page 11. It has been shown that
cl is a repressor for cro and a repressor for itself at level 2 and an activator
for itself at level 1. This leads to the preference —-— for ¢l on the left
of diagram on page 12. On the other hand, it has been shown that cro is
a repressor for cl, this leads to the preference and an activator for itself at
level 1. This leads to the preference —>— for cro on the right of diagram
on page 12. Moreover when both genes are inactive, the environment may
lead to activate either ¢l or cro, this leads to the preference —>— of the
diagram on page 13.

The two equilibria correspond to two well-known states of the \ phage:
the lyse and the lysogen, which the phage always reaches. In particular the
lysogen {{cls, crog), (cli,crog)} is a relatively stable state, where the phage
seems inactive (dormant state). This is due to the fact that the concentration
of the protein associated to ¢l is controlled: if it is too concentrated, a
repression process makes the concentration to decrease and vice-versa if the
concentration is too low an activation process makes it to increase. These
antagonistic actions maintain the concentration at an intermediate level and
the associated state is stable. The state (cly, croi) corresponds to what is
called the lyse of the A\ phage.

18



What is amazing in the presentation as C/P games is that these states
are actually computed as C/P equilibria.

6 Conversion or preference, how to choose?

The attentive reader may have noticed that what counts is the change of
mind and that there is some freedom on the conversion and the preference
provided one keeps the same change of mind. More precisely, we have

—e = PN D>y
= (»,UR)N>, when RN>, =0
= p»,N>,UT) when TN »,= 0

On another hand, one notices that in some examples, the preference is
independent of the agent whereas in others, the conversion is independent of
the agent. It seems that this is correlated with the domain of application. In
particular, we may emit the following hypothesis. In biology, conversion is
physics and chemistry, whereas preference is the result of evolution, then we
may induce that change of mind (combination of physics and evolution) is life.
Indeed since physics and chemistry is the same for everyone, it makes sense
to say that conversion is the same for everybody, whereas due to evolution
preference, changes with agents.
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