CP games: a tutorial
Pierre Lescanne

To cite this version:
Pierre Lescanne. CP games: a tutorial. 2007. ensl-00121361v3

HAL Id: ensl-00121361
https://ens-lyon.hal.science/ensl-00121361v3
Preprint submitted on 22 Aug 2007
Abstract

In this tutorial we introduce the concept of CP-game which is a generalization of this of strategic game. First we present examples which are relevant to a CP-game approach. Then we give a somewhat naive introduction to CP-games. Then we present the connection between CP games and gene regulation networks.

Contents

1 Introduction 2

2 Basic concepts 2

3 Some examples 3

3.1 A simple game on a square ... 3
 3.1.1 A first version .. 4
 3.1.2 A second version ... 6
 3.1.3 A third version .. 6

3.2 Strategic games .. 6
 3.2.1 The Prisoner’s Dilemma ... 6

*Email: Pierre.Lescanne@ens-lyon.fr
1 Introduction

This paper aims to be a didactic introduction to concepts developed in [6] and used in [2] as a formalization of gene regulation networks. CP games rely on players and synopses that are also game called situations. A player may change a synopsis to another provided the synopsis can be converted to the other, moreover a synopsis can be preferred to another. Conversion and preference are two basic concepts of CP games from which they take their name (C and P). The following tutorial presents all those concepts through examples.

2 Basic concepts

To start with, let us give the two main notions of games. First, with no surprise, a game involves players. Second, a game is characterized by situations. In CP games these situations will be called synopses or sometimes game situations. A player can move from one synopsis to another, but she

\footnote{See the preface of [3] for the use of personal pronouns}
does that under some constraints as she has no total freedom to perform her moves, therefore a relation called conversion is defined for each player; it tells what moves a player is allowed to perform. Conversion of player Alice will be written $\text{Conversion}_{\text{Alice}}$. As such, conversion tells basically the rules of the game. In chess it would say “a player can move her bishop along a diagonal”, but it does not tell the game line of the player. In other words it does not tell why the player chooses to move or how to convert her synopsis. Another relation called preference compares synopses in order for a player to choose a better move or to perform a better conversion. Preference of player Beth will be written $\text{Preference}_{\text{Beth}}$ and when we write $s \triangleright_{\text{Beth}} s'$ we mean that Beth prefers s' to s or, rather than s, she chooses s'. Preference (or choice) is somewhat disconnected from conversion, a player can clearly prefer a synopsis she cannot move to and vice versa she can move to a synopsis she does not prefer.

A key concept in games is this of equilibrium. As a player can convert a synopsis, she can convert it to a synopsis she likes better, in the sense that she prefers the new synopsis she converted to. A player is happy in a synopsis, if there is no synopsis she can convert to and she prefers. A synopsis is an equilibrium if each player is happy with this synopsis. We will see that this concept of equilibrium captures and generalizes the concepts known as Nash equilibrium in strategic games.

3 Some examples

Let us present the above concepts of conversion, preference and equilibrium through examples. We will introduce a new concept called change of mind.

3.1 A simple game on a square

As an introduction, we will look at variations of a simple game on a board.
3.1.1 A first version

Imagine a simple game where Alice and Beth play using tokens on a square. We number the four positions as 1, 2, 3 and 4.

Assume that player Alice has a red round token and that player Beth has a blue squared token. The two players place their tokens on one vertex and then they move along edges. They can also decide not to move. Assume that Alice and Beth never put their token on a vertex taken by the other player, more precisely a move towards an occupied vertex corresponds to a capture of the token at that vertex and to a win. Then the game ends.

The game has 12 situations or synopses, which we write $i|j$ for $1 \leq i, j \leq 4$ and $i \neq j$. The above pictured situation corresponds to $1|2$. The two conversions are described by Figure 1 left. In this figure, \longrightarrow is Alice’s conversion and \longleftarrow is Beth’s conversion.
In this game, both players share the same preference, namely the following: since a player does not want her token to be captured, she prefers a synopsis where her token is on the opposite corner of the other token to a synopsis where her token is next to the other token. This gives the preference given in Figure 1 right. The arrow from 1|2 to 1|3 means players prefer 1|3 to 1|2.

From the conversion and the preference we build a relation that we call change of mind. Alice can change her mind from a synopsis s to a new one s', if she can convert s to the new synopsis s' and rather than s she chooses s'. Changes of mind for Alice and Beth are given in Figure 2 on the left. In this figure, \rightarrow is Alice’s change of mind and \longrightarrow is Beth’s conversion. The (general) change of mind is the union of the agent change of mind, it is given by Figure 2 on the right. The equilibria are the sinks (or “minimal point”) for that relation, namely 1|3, 4|2, 3|1 and 2|4. This means that no change of mind arrows leave those nodes. In these situations players have their tokens on opposite corners and they do not move. An equilibrium like 1|3 which is a sink is called a Abstract Nash Equilibrium.
3.1.2 A second version

We propose a second version of the game, where moves of the token can only be made clockwise. Obviously the conversion changes, but also the preference, as a player does want not be threatened by another token placed before her clockwise and prefers a synopsis that places this token as far as possible. The conversions, the preferences and the changes of mind are given in Figure 8 (page 21). If one looks at the equilibrium, one sees that there is no fixed position where players are happy. To be happy the players have to move around for ever, one chasing the other. It is not really a cycle, but a perpetual move. We also call that an equilibrium. It is sometime called a dynamic equilibrium or a stationary state according to people you talk to.

3.1.3 A third version

The third version is meant to present an interesting feature of the change of mind. In this version, we use the same rules as the second one, except that we suppose that the game starts with both token on the board or it starts as follows. Alice has put her token on node 1 (this game positions is described as $1|\omega$). Then Beth chooses a position among 2, 3 or 4. The conversion is given in Figure 3 left. Beth may choose not to play, but in this case she looses, in other words, she prefers any position to $1|\omega$. The change of mind is given on Figure 3 right (page 7). There is again a dynamic equilibrium and one sees that this dynamic equilibrium is not the whole game, indeed one enters the perpetual move after at least one step in the game.

3.2 Strategic games

In this presentation of strategic games we do not use payoff functions, but directly a preference relation and we present several games.

3.2.1 The Prisoner’s Dilemma

The problem is stated usually as follows

Two suspects, A and B, are arrested by the police. The police have insufficient evidence for a conviction, and, having separated

\[\text{We do not draw the preference that would become to entangled.} \]

\[\text{See Section 1.1.2 of [3] for a discussion.} \]
both prisoners, visit each of them to offer the same deal: if one acts as an informer against the other (finks) and the other remains quiet, the betrayer goes free and the quiet accomplice receives the full sentence. If both stay quiet, the police can sentence both prisoners to a reduced sentence in jail for a minor charge. If each finks, each will receive a similar intermediate sentence. Each prisoner must make the choice of whether to fink or to remain quiet. However, neither prisoner knows for sure what choice the other prisoner will make. So the question this dilemma poses is: What will happen? How will the prisoners act?

Each prisoner can be into two states, either fink (F) or be quiet (Q). Each prisoner can go from Q to F and vice-versa, hence the following conversion, where \(\rightarrow \) is prisoner A conversion and \(\rightarrow \rightarrow \) is prisoner B conversion (Figure 4 left). Each prisoner prefers to go free to been sentenced and prefers a light sentence to a full sentence. Hence the preference are given in Figure 4 right, where \(\longrightarrow \) is prisoner A preference and \(\rightarrow \rightarrow \) is prisoner B preference.

From this we get the change of mind of Figure 5. One sees clearly that the only equilibrium is \(F, F \) despite both prefer \(Q, Q \) as shown on Figure 4 right.

Such an equilibrium is called a Nash equilibrium in strategic game theory.
3.2.2 Matching Pennies

This second example is also classic. This is a simple example of strategic game where there is no singleton equilibrium.

The game is played between two players, Player A and Player B. Each player has a penny and must secretly turn the penny to heads (H) or tails (T). The players then reveal their choices simultaneously. If the pennies match (both heads or both tails), Player A wins. If the pennies do not match (one heads and one tails), Player B wins.

The conversion is similar to this of the prisoner’s dilemma (Figure 6 left) and the preference is given by who wins (Figure 6 center).

Change of mind for matching pennies is in Figure 6 right. One notices that there is cycle. This cycle is the equilibrium. No player has clear mind of what to play and changes her minds each time she looses.

3.2.3 Scissors, paper, stone

Here we present the famous game known as scissors, paper, stone. It involves two players, Alice and Beth who announce either scissors (C) or paper (P)
or stone (T) with the rules that stone beats scissors, scissors beat paper, and paper beats stone. There are nine situations (see below), one sees that Alice may convert her situation P, C to P, P or P, T and the same for the other situations. The conversion is given below left. Since the rules, it seems clear that Alice prefers T, P to P, P and P, P to C, P, hence the preference given below right with → is Alice’s preference and ←→ is Beth’s preference. To avoid a cumbersome diagram, in the preference we do not put the arrows deduced by transitivity.

From the above conversion and preference, one gets the following change of mind.

One sees also perpetual moves as in the matching pennies of which it is a generalization.
3.2.4 Strategic games as CP games

A strategic game is a specific kind of CP games. To be a strategic game, a CP game has to fulfill the following conditions.

1. Each synopsis is a n-Cartesian product, where n is the number of players. The constituents of the Cartesian product are called strategies.

2. Conversion for player a, written \triangleright_a, is any change along the a-th dimension, i.e., $(s_1, \ldots, s_a, \ldots, s_n) \triangleright_a (s_1, \ldots, s'_a, \ldots, s_n)$ if and only if $s_a \neq s'_a$. Hence in strategic games, conversion is
 - symmetric, $(s \triangleright_a s' \implies s' \triangleright_a s)$,
 - transitive, $(s \triangleright_a s' \text{ and } s' \triangleright_a s'' \implies s \triangleright_a s'')$,
 - and irreflexive (it is not true that $s \triangleright_a s$).

3.3 Blink or you loose

Blink and you loose is a game played on a simple graph with two undifferentiated tokens. There are three positions:

```
  ↑↗↗↗  ↗↗↗↗  •  •
  •  ↑↗↗↗  ↗↗↗↗
  •  •  ↑↗↗↗  ↗↗↗↗
  •  •  •  •
```

There are two players, *Left* and *Right*. The leftmost position above is the winning position for *Left* and the rightmost position is the winning position for *Right*. In other words, the one who owns both token is the winner. Let us call the positions L, C and R respectively. One plays by taking a token on the opposite node.

3.3.1 A first tactic: Foresight

A player realizes that she can win by taking the opponent’s token faster than the opponent can react, i.e., player *Left* can convert C to L by outpacing player *Right*. Player *Right*, in turn, can convert C to R. This version of the game has two singleton equilibria: L and R. This is described by the following conversion

$L \leftarrow C \rightarrow R$

where \rightarrow is the conversion for *Left* and \leftarrow is the conversion for *Right*. The preference is

$L \leftarrow C \rightarrow R$
where \(\rightarrow \) is the preference for \(\text{Left} \) and \(\cdots \rightarrow \) is the preference for \(\text{Right} \). The change of mind is then:

\[
L \xrightarrow{\cdots \rightarrow} C \xrightarrow{\cdots \rightarrow} R
\]

and one sees that there are two equilibria: namely \(L \) and \(R \), which means that players have taken both token and keep them.

3.3.2 A second tactic: Hindsight

A player, say \(\text{Left} \), analysis what would happen if she does not act. In case \(\text{Right} \) acts, the game would end up in \(R \) and \(\text{Left} \) looses. As we all know, people hate to loose so they have an aversion for a loosing position. Actually \(\text{Left} \) concludes that she could have prevented the \(R \) outcome by acting. In other words, it is within \(\text{Left} \)'s power to convert \(R \) to \(C \). Similarly for player \(\text{Right} \) from \(L \) to \(C \).

\[
L \xrightarrow{\cdots \rightarrow} C \leftarrow \leftrightarrow R
\]

We call naturally \(\text{aversion} \) the relation that escapes from positions a player does not want to be, especially a loosing position. Aversion deserves its name as it works like conversion, but flies from bad position. We get the following change of mind:

\[
L \xrightarrow{\cdots \rightarrow} C \leftarrow \leftrightarrow R
\]

with \(C \) the singleton equilibrium.

3.3.3 A third tactic: Omnisight

The players have both hindsight and foresight, resulting in a \(C/P \) game

\[
L \xleftrightarrow{\cdots \leftrightarrow} C \xleftrightarrow{\cdots \leftrightarrow} R
\]

with one change-of-mind equilibrium covering all outcomes thus, no singleton equilibrium exists.

\[
L \xleftrightarrow{\cdots \leftrightarrow} C \xleftrightarrow{\cdots \leftrightarrow} R
\]

3.4 The \(\lambda \) phage as a CP game

The \(\lambda \) phage is a game inspired from biology \([4, 5]\). The origin of the game will be given in Section 5, here we give just the rules of the game.
There are three players \(cI\), \(cro\) and \(Env\). The game can be seen as a game with two tokens moving on two graphs where each player may choose to move one of the two tokens\(^4\). \(Env\) hates to see both tokens on the bottom position and moves one of them. The conversion is therefore the same for the three players\(^5\) and is given by the following rightmost diagram:

\[
\begin{array}{c}
\begin{array}{c}
\circ \quad \circ \quad \circ \\
\downarrow \quad \downarrow \quad \downarrow \\
\langle cI_2, \text{cro}_0 \rangle \iff \langle cI_2, \text{cro}_1 \rangle \\
\langle cI_1, \text{cro}_0 \rangle \iff \langle cI_1, \text{cro}_1 \rangle \\
\langle cI_0, \text{cro}_0 \rangle \iff \langle cI_0, \text{cro}_1 \rangle
\end{array}
\end{array}
\]

\(cI\) \quad cro \quad cI \quad cro

The preference is difficult to describe as an actual game to be played, it comes from the genetics and is specific to each player. The philosophy is as follows: a gene prefers a position if it is “pushed forward” that position.

\[
\begin{array}{c}
\begin{array}{c}
\langle cI_2, \text{cro}_0 \rangle \prec \langle cI_2, \text{cro}_1 \rangle \\
\langle cI_1, \text{cro}_0 \rangle \prec \langle cI_1, \text{cro}_1 \rangle \\
\langle cI_0, \text{cro}_0 \rangle \prec \langle cI_0, \text{cro}_1 \rangle
\end{array}
\end{array}
\]

\(cI_2\quad \text{cro}_0\quad cI_1\quad \text{cro}_1\quad cI_0\quad \text{cro}_0\quad cI_0\quad \text{cro}_1\)

\(^4\)In the asynchronous version.

\(^5\)Note the difference with the square game where players had different conversions and the same preference. The fact that the conversion is the same for everybody seems to be a feature of biologic game.
From the conversion and the preferences one deduces three changes of mind.

from which we deduce the (general) change of mind of the game:

One sees one singleton equilibrium namely \(\langle cI_0, cro_1 \rangle \) (called the lyse) and one dynamic equilibrium namely \(\{ \langle cI_2, cro_0 \rangle, \langle cI_1, cro_0 \rangle \} \) (called the lysogen).
4 Presentation of C/P games

To define a C/P game we have to define four concepts:

- a set \(A \) of agents,
- a set \(S \) of synopses,
- for every agent \(a \) a relation \(\triangleright_a \) on \(S \), called conversion,
- for every agent \(a \) a relation \(\succ_a \) on \(S \), called preference.

From these relations we are going to define a relation called change of mind.

Definition 1 (Game) A game is a 4-uple \(\langle A, S, (\triangleright_a)_{a \in A}, (\succ_a)_{a \in A} \rangle \).

Example 1 (Square game 1rst version) For the first version of the square game we have:

- \(A = \{ Alice, Beth \} \),
- \(S = \{1|2, 1|3, 1|4, 2|3, 2|4, 2|1, 3|4, 3|1, 3|2, 4|1, 4|2, 4|3 \} \),
- Conversions \(\triangleright_{Alice} \) and \(\triangleright_{Beth} \) are given by Figure 1 left, with \(\rightarrow \) for \(\triangleright_{Alice} \) and \(\longrightarrow \) for \(\triangleright_{Beth} \),
- \(\succ_{Alice} = \succ_{Beth} \) and this relation is given by Figure 1 right.

4.1 Singleton equilibrium

Let us look at a first kind of equilibria.

Definition 2 (Singleton equilibrium) A singleton equilibrium is a synopsis \(s \) such that:

\[
\forall a \in A, s' \in S \quad s \triangleright_a s' \Rightarrow \neg(s \succ_a s').
\]

In the previous paragraphs, we have seen examples of singleton equilibria. If we are at such an equilibrium, this is fine, but if not, we may wonder how to reach an equilibrium. If \(s \) is not an equilibrium, this means that \(s \) fulfills

\[
\exists s' \in S \quad s \triangleright_a s' \land s \succ_a s'.
\]
which is the negation of

\[\forall s' \in S . \ s \triangleright_a s' \Rightarrow \neg(s \triangleright_a s'). \]

The relation \(s \triangleright_a s' \wedge s \triangleright a s' \) between \(s \) and \(s' \) is a derived one. Let us call it \textit{change of mind for} \(a \) and write it \(\rightarrow_a \). We say that \(a \) changes her mind, because she is not happy with \(s \) and hopes that following \(\rightarrow_a \) she will reach not necessary the equilibrium, but at least a better situation. Actually since we want to make everyone happy, we have to progress along all the \(\rightarrow_a \)’s. Thus we consider a more general relation which we call just \textit{change of mind} and which is the union of the \(\rightarrow_a \)’s, i.e.,

\[\rightarrow \triangleq \bigcup_{a \in A} \rightarrow_a . \]

Now suppose that we progress along \(\rightarrow \). What happens if we reach an \(s \) from which we cannot progress further? This means

\[\forall a \in A, s' \in S . \ \neg(s \triangleright_a s' \wedge s \triangleright a s') \]

in other words, \(s \) is an equilibrium. Hence to reach an equilibrium, we progress along \(\rightarrow \) until we are stuck. In graph theory, a vertex from which there is no outgoing arrow is called a \textit{sink}. In relation theory it is called a \textit{minimal element};

\[
\begin{array}{c}
\bullet \\
\end{array}
\]

Thus we look for sinks in the graph.

4.2 Dynamic equilibrium

Actually this progression along \(\rightarrow \) is not the panacea to reach an equilibrium. Indeed it could be the case that this progression never ends, since we enter a perpetual move (think at the square game 2nd version, Figure 3). Actually we identify this perpetual move as a second kind of equilibrium.
4.2.1 Strongly connected components

Here it is relevant to give some concepts of graph theory. A graph\(^6\) is \textit{strongly connected}, if given two nodes \(n_1\) and \(n_2\) there is always a path going from \(n_1\) to \(n_2\) and a path going from \(n_2\) to \(n_1\). Obviously not all the graphs are strongly connected, but they may contain some maximal subgraphs that are strongly connected; “maximal” means that one cannot add nodes without breaking the strong connectedness. Such a strongly connected subgraph is called a \textit{strongly connected components}, \textit{SCC} in short.

\(^6\)In this tutorial, when we say “graph”, we mean always “oriented graph” or “digraph”.

Figure 7: A game with two SCC’s
The graph below has six SCC’s:

\[\text{The graph of Figure 3 has two SCC’s (Figure 7).} \]

From a graph, we can deduce a new graph, which we call the reduced graph (Baase [1] calls it condensation), whose nodes are the SCC’s and the arcs are given as follows: there is an arc from an SCC \(S_1 \) to an SCC \(S_2 \), if there exists a node \(n_1 \) in \(S_1 \), a node \(s_2 \) in \(S_2 \) and an arc between \(n_1 \) and \(n_2 \). By construction the reduced graph has no cycle and its strongly connected components are singletons. The reduced graphs associated with the graphs given above are as follows:

4.2.2 Dynamic equilibria as strongly connected components

At the price of extending the notion of equilibrium, we can prove that there is always an equilibrium. Indeed given a graph, we compute its reduced graph. Then in this reduced graph, we look for sinks. There is always such a sink since in an acyclic graph (the reduced graph is always acyclic) there exists always at least a sink.

\[\text{CP Equilibria are sinks in the reduced graph.} \]

We can now split equilibria into two categories?
1. *CP Equilibria* (i.e., *Dynamic equilibria*) are equilibria associated with an SCC that contains more that one synopsis.

2. *Abstract Nash Equilibria* (i.e., *Singleton equilibria*) are equilibria associated with an SCC that contains exactly one synopsis, i.e., associated with an SCC which is a singleton, hence the name singleton equilibrium.

5 Gene regulation networks as C/P games

In the λ phage, levels 0, 1, 2, for a gene, correspond to levels of activation or levels of concentration of the corresponding protein. Thus *cI* has three levels. 0 corresponds to the gene being inactive (the protein is absent), 1 corresponds to the gene being moderately active (the protein is present but moderately concentrated), 2 corresponds to the gene being highly active (the protein is concentrated). On the other hand, *cro* has two levels of activation, corresponding to the gene being inactive or active. *Env* has only one level, it is always active. A gene can move from one level at a time, as translated by the conversion relation on page 11. It has been shown that *cI* is a repressor for *cro* and a repressor for itself at level 2 and an activator for itself at level 1. This leads to the preference \succ for *cI* on the left of diagram on page 12. On the other hand, it has been shown that *cro* is a repressor for *cI*, this leads to the preference and an activator for itself at level 1. This leads to the preference \supset for *cro* on the right of diagram on page 12. Moreover when both genes are inactive, the environment may lead to activate either *cI* or *cro*, this leads to the preference \vdash of the diagram on page 13.

The two equilibria correspond to two well-known states of the λ phage: the *lyse* and the *lysogen*, which the phage always reaches. In particular the lysogen \(\langle cI_2, cro_0 \rangle, \langle cI_1, cro_0 \rangle\) is a relatively stable state, where the phage seems inactive (dormant state). This is due to the fact that the concentration of the protein associated to *cI* is controlled: if it is too concentrated, a repression process makes the concentration to decrease and vice-versa if the concentration is too low an activation process makes it to increase. These antagonistic actions maintain the concentration at an intermediate level and the associated state is stable. The state \(\langle cI_0, cro_1 \rangle\) corresponds to what is called the *lyse* of the λ phage.
What is amazing in the presentation as C/P games is that these states are actually computed as C/P equilibria.

6 Conversion or preference, how to choose?

The attentive reader may have noticed that what counts is the change of mind and that there is some freedom on the conversion and the preference provided one keeps the same change of mind. More precisely, we have

\[\rightarrow_a = \triangleright_a \cap \triangleright_a \]
\[= (\triangleright_a \cup R) \cap \triangleright_a \quad \text{when } R \cap \triangleright_a = \emptyset \]
\[= \triangleright_a \cap (\triangleright_a \cup T) \quad \text{when } T \cap \triangleright_a = \emptyset \]

On another hand, one notices that in some examples, the preference is independent of the agent whereas in others, the conversion is independent of the agent. It seems that this is correlated with the domain of application. In particular, we may emit the following hypothesis. In biology, conversion is physics and chemistry, whereas preference is the result of evolution, then we may induce that change of mind (combination of physics and evolution) is life. Indeed since physics and chemistry is the same for everyone, it makes sense to say that conversion is the same for everybody, whereas due to evolution preference, changes with agents.

References

Figure 8: Conversion, preference and change of mind for the second version of the square game