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Jean-Yves Welschinger
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Abstract:

An effective class in a closed symplectic four-manifold (X,ω) is a two-
dimensional homology class which is realized by a J-holomorphic cycle for
every tamed almost complex structure J . We prove that effective classes are
orthogonal to Lagrangian tori in H2(X; Z).

1.1 Results

Let (X,ω) be a closed symplectic four-manifold. A two-dimensional ho-
mology class d ∈ H2(X; Z) is called an effective class if it is realized by a
J-holomorphic two-cycle for every almost-complex structure J tamed by the
symplectic form ω.

Theorem 1.1 Let (X,ω) be a closed symplectic four-manifold. Let Aω be

the subspace of H2(X; Z) generated by Lagrangian tori and Bω the subspace

generated by effective classes. Then, Aω and Bω are orthogonal to each

other.

Corollary 1.2 Let L be a Lagrangian torus and S be an embedded symplec-

tic (−1)-sphere in a closed symplectic four-manifold (X,ω). Then, L and S

have vanishing intersection index. �

We indeed know from Lemma 3.1 of [4] that such embedded symplectic
(−1)-spheres define effective classes. Do there exist a Lagrangian torus and
symplectic (−1)-sphere such that, though they have vanishing intersection
index, they have to intersect? Otherwise, it means that the space Aω comes
from an underlying minimal symplectic four-manifold.

Let L be a torus equipped with a flat metric, S∗L be its unit cotangent
bundle and π : S∗L → L the canonical projection. The manifold S∗L is
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equipped with a canonical contact form λ, namely the restriction of the
Liouville one-form of its cotangent bundle. We denote by Rλ the subgroup
of H1(S

∗L; Z) generated by its closed Reeb orbits.

Lemma 1.3 The restriction of π∗ : H1(S
∗L; Z) → H1(L; Z) to Rλ is an

isomorphism.

Proof:

The Reeb flow on S∗L coincides with the geodesic flow. Closed Reeb
orbits are thus the lifts of closed geodesics on L. Now S∗L is diffeomor-
phic to a product of L with the sphere S of directions in L, and π is the
projection onto the first factor. Since geodesics of L have a constant di-
rection, the projection onto the second factor maps every Reeb orbit to a
point of S. From Künneth formula, we get the isomorphism H1(S

∗L; Z) ∼=
H1(L; Z)×H1(S; Z) and, from what we have just noticed, that this isomor-
phism maps Rλ into H1(L; Z) × {0}. Since generators of H1(L; Z) can be
realized by closed geodesics, the latter map is onto. Since π∗ is the projec-
tion onto the first factor, it is an isomorphism once restricted to Rλ. �

Proof of Theorem 1.1:

Let L be a Lagrangian torus and d be an effective class. Following the
principle of symplectic field theory [1], we stretch the neck of the symplectic
manifold in the neighbourhood of L until the manifold splits in two parts,
one part being the cotangent bundle of the torus and the other one being
X \ L. We produce this splitting in such a way that both parts have the
contact manifold (S∗L, λ) at infinity. Let J∞ be a CR-structure on this
contact three-manifold which we extend to an almost-complex structure J

with cylindrical end on both parts T ∗L and X \L. The latter is the limit of
a sequence Jn of almost-complex structures of (X,ω). Since d is effective,
we may associate a sequence Cn of Jn-holomorphic two-cycles homologous
to d. From the compactness Theorem in SFT [2], we extract a subsequence
converging to a broken J-holomorphic curve C, which we assume for conve-
nience to have only two levels -the general case follows easily from this one-.
Denote by CL the part of C in T ∗L and by CX the part in X \ L. Both
curves CL and CX have cylindrical ends asymptotic to the same set of closed
Reeb orbits with same multiplicities. Let CL

1 , . . . , CL
k denote the irreducible

components of CL, and R1, . . . , Rk be the corresponding set of closed Reeb
orbits. These sets R1, . . . , Rk define integral one-cycles in S∗L and we denote
by [R1], . . . , [Rk] their homology classes. These one-cycles are boundaries of
the two-chains CL

1 , . . . , CL
k in T ∗L , so that with the notation of Lemma
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1.3, π∗([Ri]) vanishes for every i ∈ {1, . . . , k}. Since [R1], . . . , [Rk] belong
to the subgroup Rλ, we deduce from Lemma 1.3 that [R1], . . . , [Rk] actually
vanish. Let S1, . . . , Sk be integral two-chains of S∗L having R1, . . . , Rk as
boundaries, and S be the sum of these k chains. Then, CL−S is an integral
two-cycle contained in T ∗L, CX + S is an integral two-cycle contained in
X \L, and the sum of these cycles is homologous to d. Now, L and CX + S

are disjoint from each other and the second homology group of T ∗L is gener-
ated by [L] itself. Since the latter has vanishing self-intersection, we deduce
that the intersection index of L and CL−S vanishes. As a consequence, the
intersection index of d and [L] vanishes. Since this holds for any Lagrangian
torus or effective class, Theorem 1.1 is proved. �

1.2 Remarks

1. We have actually proved more, namely for a class d ∈ H2(X; Z) to be
orthogonal to a Lagrangian torus [L], it suffices that d be realized by
a sequence of Jn-holomorphic two-cycles, for a sequence Jn having a
flat neck stretching to infinity.

2. From the results of Taubes [6], any Seiberg-Witten basic class is effec-
tive and thus, from Theorem 1.1, we deduce that SW-basic classes are
orthogonal to Lagrangian tori. This fact was already known, it indeed
follows from the adjunction inequality [3], [5]. Our space Bω might
however be bigger than the one generated by SW-basic classes? Also,
our proof remains in the symplectic category and offers possibilities to
have counterparts in higher dimensions.

3. If (X,ω) is Kähler, then the Poincaré dual of Bω is contained in the
intersection of H1,1(X; Z) on every complex structure of X tamed by
ω. How smaller can it be?

4. From Hodge’ signature Theorem follows that the intersection Aω ∩Bω

vanishes for every Kähler surface. This intersection indeed lies in the
isotropic cone of the Lorentzian H1,1(X; R) and is orthogonal to the
symplectic form which lies in the positive cone (compare Example 1
of §1.3). I don’t see at the moment whether or not this holds for every
closed symplectic four-manifold (and am grateful to Stéphane Lamy for
raising the question to me). More generally, one may wonder whether
the intersection form restricted to Bω has to be non-degenerated. This
is the case at least for rational surfaces from Example 2 of §1.3 and for
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Kähler surfaces with b+

2
≥ 2 and K2

X > 0 since from Taubes’ results
[6], Bω contains the canonical class KX .

5. We made a crucial use of a property of the contact manifold (S∗L, λ),
namely that the subgroup Rλ generated by its closed Reeb orbits has a
rather big index in H1(S

∗L; Z). We may then more generally wonder,
given a contact manifold, how small can this subgroup Rλ of ”effective”
homology classes be?

1.3 Examples

1. If (X,ω) has a Lorentzian intersection form, then Aω vanishes. Indeed,
each Lagrangian torus should be in the isotropic cone of the intersec-
tion form and should be orthogonal to the class of the symplectic form
which lies in the positive cone.

2. If (X,ω) is a blow up of the projective plane, then Bω = H2(X; Z). In-
deed, exceptional divisors are effective classes, and the strict transform
of a line has non-trivial GW-invariants.

3. If X is a product of two curves (C1, ω1) and (C2, ω2) with symplectic
form ω1 ⊖ ω2, then Aω contains the index two subgroup H1(C1; Z) ⊗
H1(C2; Z) given by Künneth formula. When in addition, (C1, ω1) and
(C2, ω2) are symplectomorphic tori, Aω contains the graph of the sym-
plectomorphism. Note that Aω cannot have codimension less than one
since it lies in the orthogonal of the symplectic form.

4. If X is a product of two genus one curves, then Bω vanishes, since for
a generic complex structure, H1,1(X; Z) vanishes. If instead one of the
curve is not elliptic, then we know from Taubes’ results [6] that Bω

contains the canonical class of X.
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