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Abstract— Since redundant number systems allow for constant
time addition, they are often at the heart of modular multipliers
designed for public key cryptography (PKC) applications. Indeed,
PKC involves large operands (160 to 1024 bits) and several
researchers proposed carry-save or borrow-save algorithms.
However, these number systems do not take advantage of the
dedicated carry logic available in modern Field-Programmable
Gate Arrays (FPGAs). To overcome this problem, we suggest
to perform modular multiplication in a high-radix carry-save
number system, where a sum bit of the carry-save representation
is replaced by a sum word. Two digits are then added by
means of a small Carry-Ripple Adder (CRA). Furthermore, we
propose an algorithm which selects the best high-radix carry-save
representation for a given modulus, and generates a synthesizable
VHDL description of the operator.

Index Terms— Modular multiplication, high-radix carry-save
number system, FPGA.

I. INTRODUCTION

THIS paper is devoted to the study of modular multiplication

of large operands on Field-Programmable Gate Arrays (FP-

GAs). This operation is crucial in many public key cryptosystems

(e.g. elliptic curve cryptography, XTR, RSA) and various solu-

tions have already been investigated. Since iterative algorithms

offer a good trade-off between calculation time and circuit area,

they have received considerable attention. Least-significant-digit-

first schemes are often based on Montgomery’s algorithm [1].

However, that approach requires pre- and post-processing and

is of interest when a large amount of consecutive modular

multiplications is required (e.g. modular exponentiation). In this

paper, we will consider a most-significant-digit-first scheme.

A. Horner’s Rule-Based Modular Multiplication

In order to compute 〈XY 〉M = XY mod M , where M is an n-

bit integer such that 2n−1 < M < 2n, our algorithm is described

by an iterative procedure based on the celebrated Horner’s rule:

〈XY 〉M = 〈(. . . ((xr−1Y )2 + xr−2Y )2 + . . .)2 + x0Y 〉M ,

where X = xr−1xr−2 . . . x1x0 is an unsigned r-bit integer and

Y is an n-bit integer belonging to {0, . . . ,M − 1}. This equation

can be expressed recursively as follows (we perform a modulo

M reduction at each step in order to keep an n-bit intermediate

result):

T [i] = 2Q[i+ 1] + xiY ,

Q[i] = 〈T [i]〉M , (1)
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where Q[r] = 0 and Q[0] = 〈XY 〉M . Since Q[i + 1] and Y are

less than or equal to M − 1, T [i] < 3M and Equation (1) is im-

plemented by means of a left shift, an addition, a comparator, and

up to two subtractions to perform the modulo M reduction [2].

Since public key cryptography involves large integers, operands

are often represented in the carry-save number system, which

enables addition in constant time (see for instance [3]). However,

due to the redundancy of this representation, comparison requires

a conversion in a non-redundant number system. This operation

involves carry propagations, thus losing the main advantage of the

carry-save representation. Several improvements of the algorithm

sketched by Equation (1) have therefore been investigated to

avoid comparisons. They are based on the following observation:

computing a number P [i] congruent to Q[i] modulo M only

requires to inspect a few most significant digits of T [i]. In order

to avoid an expensive final modular reduction, P [i] should be less

than a very small multiple of M . The iteration described in this

paper returns for instance 〈XY 〉M or 〈XY 〉M +M , and requires

at most one subtraction to get the final result.

Koç and Hung [4], [5] proposed for instance a carry-save

algorithm based on a sign estimation technique. At each step

−M , 0, or M is added to T [i] according to a few most significant

digits of Q[i + 1]. Takagi and Yajima [6], [7] applied a similar

technique to design signed-digit-based architectures. When the

modulus M is known at design time, which is often the case in

public key cryptography, another approach consists in building a

table ψ(a) =
D

a · 2β
E

M
and in defining the following iteration:

T [i] = 2P [i+ 1] + xiY , (2)

P [i] = ψ(T [i] div 2β) + 〈T [i]〉2β , (3)

where P [r] = 0 and β is generally chosen equal to n or

n − 1. Since ψ(T [i] div 2β) is an n-bit number, P [i] and T [i]

are respectively (n + 1)- and (n + 3)-bit numbers. Therefore,

the algorithm sketched by the above equations requires a small

table. Carry-save implementations of Equations (2) and (3) have

for example been proposed by Jeong and Burleson [8], Kim and

Sobelman [9], and Peeters et al. [10]. Since these algorithms

depend on the modulus M , they seem likely candidates for

cryptographic hardware based on FPGAs: the reconfigurability of

these devices allows one to optimize the architecture according to

some parameters (e.g. the modulus) and to modify the hardware

whenever they change.

B. FPGA-Specific Issues

Modern FPGAs are mainly designed for digital signal pro-

cessing applications involving rather small operands (16 to 32
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Fig. 1. Simplified diagram of a slice of a Spartan-3 FPGA.

bits). FPGA manufacturers chose to include dedicated carry logic

enabling the implementation of fast carry-ripple adders (CRA) for

such operand sizes. Let us study for example the architecture of

a Spartan-3 device. Figure 1 describes the simplified architecture

of a slice, which is the main logic resource for implementing

synchronous and combinatorial circuits. Each slice embeds two

4-input function generators (G-LUT and F-LUT), two storage

elements (i.e. flipflops FFY and FFX), carry logic (CYSELG,

CYMUXG, CYSELF, CYMUXF, and CYINIT), arithmetic gates

(GAND, FAND, XORG, and XORF), and wide-function multi-

plexers. Each function generator is implemented by means of a

programmable look-up table (LUT). Recall that a full-adder (FA)

cell has two bits xi and yi, as well as a carry-in bit cin as inputs,

and computes a sum bit si and a carry-out bit cout such that

2cout + si = xi + yi + cin. Let hi = xi ⊕ yi. Then, we have:

si = hi ⊕ cin, (4)

cout =

(

xi if hi = 0 (i.e. xi = yi),

cin otherwise.
(5)

Assume that the F-LUT function generator computes hi. Then,

the XORF gate implements Equation (4), whereas Equation (5)

involves three multiplexers (CYOF, CYSELF, and CYMUXF). si
is either sent to another slice (output X) or stored in a flipflop

(FFX). The G-LUT function generator allows one to implement

a second FA cell within the same slice, which thus embeds a 2-

bit CRA. Unfortunately, a conventional carry-save adder (CSA)

requires twice as much hardware resources: since each slice has

a single input carry CIN, it is impossible to implement two FA

cells with independent carry-in bits. Therefore, hardware design

tools allocate two function generators when they are provided

with a VHDL description of Equations (4) and (5). It is of course

possible to write a VHDL code which explicitly instantiates F-

LUT, XORF, and CYMUXF. In this case, note that G-LUT can

only be used to implement the control unit or the ψ(.) table

of Equation (3). According to experiment results, G-LUT often

remains unused. Though reducing the number of LUTs of the de-

sign, taking advantage of dedicated logic to describe a CSA leads

to a larger operator (Table I). Similar problems arise for instance

on all Virtex devices (Xilinx) and Cyclone II FPGAs (Altera).

It is therefore interesting to investigate modular multiplication

algorithms based on FPGA-friendly number systems.

TABLE I

AREA AND NUMBER OF LUTS OF THREE CARRY-SAVE ITERATION STAGES

(SPARTAN-3 FPGA).

Algorithm
Without carry logic With carry logic

n = 32 n = 64 n = 32 n = 64

Jeong and 107 slices 210 slices 119 slices 232 slices
Burleson [8] 200 LUTs 392 LUTs 141 LUTs 271 LUTs

Kim and 74 slices 166 slices 93 slices 188 slices
Sobelman [9] 139 LUTs 268 LUTs 123 LUTS 249 LUTs

Peeters 74 slices 160 slices 95 slices 190 slices
et al. [10] 140 LUTs 271 LUTs 95 LUTs 190 LUTs

C. Our Contribution

We proposed a family of radix-2 algorithms designed for FP-

GAs embedding 4-input LUTs and dedicated carry logic in [11].

Table II compares our iteration stage against three carry-save

schemes. Since these results do not include the conversion from

carry-save to unsigned integer which occurs at the end of each

multiplication, both area and delay of carry-save operators are

underestimated. According to this experiment, our approach is

efficient for moduli up to 32 bits. Thus, the aim of this paper

is to extend our work to larger moduli. In order to benefit from

dedicated carry logic available in almost all FPGA families, we

suggest to choose a high-radix carry-save number system, where

each sum bit of the carry-save representation is replaced by a sum

word (Section II). Such a number system allows for the design

of a modular multiplication algorithm based on small CRAs

(Section III). The main originality of our approach is to analyze

the modulus M in order to select the most efficient high-radix

carry-save representation and to automatically generate the VHDL

description of the operator (Section IV). Experimental results

validate the efficiency of the proposed modular multiplication

scheme (Section V). We proposed a preliminary version of this

work based on a different iteration in [12].

TABLE II

AREA AND DELAY OF CARRY-SAVE AND RADIX-2 ITERATION STAGES

(SPARTAN-3 FPGA).

Algorithm n = 16 n = 32 n = 64

Jeong and Burleson [8]
58 slices 127 slices 236 slices
9 ns 11 ns 14 ns

Kim and Sobelman [9]
41 slices 79 slices 150 slices
8 ns 10 ns 12 ns

Peeters et al. [10]
50 slices 86 slices 163 slices
8 ns 11 ns 12 ns

Beuchat and Muller [11]
21 slices 40 slices 80 slices
12 ns 14 ns 20 ns

II. HIGH-RADIX CARRY-SAVE NUMBERS

A k-digit high-radix carry-save number X is denoted by

X = (xk−1, . . . , x0) =
““

x
(c)
k−1, x

(s)
k−1

”

, . . . ,
“

x
(c)
0 , x

(s)
0

””

,
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Fig. 2. High-radix carry-save numbers. (a) Encoding of the number X = 33626. (b) Encoding of Z = 2X .

where the jth digit xj consists of an nj-bit sum word x
(s)
j and

a carry bit x
(c)
j such that xj = x

(s)
j + x

(c)
j 2nj . According to this

definition, we have:

X = x0 + x12
n0 + x22

n0+n1 + . . .+ xk−12
n0+...+nk−2

= x
(s)
0 +

k−2
X

i=0

“

x
(c)
i + x

(s)
i+1

”

2
Pi

j=0
ni + x

(c)
k−12

Pk−1

j=0
ni .

Let us define

X(s) = x
(s)
0 + x

(s)
1 2n0 + . . .+ x

(s)
k−12

n0+...+nk−2 ,

and

X(c) = x
(c)
0 2n0 + x

(c)
1 2n0+n1 + . . .+ x

(c)
k−12

n0+...+nk−1 .

With this notation, we have X = X(s) + X(c). Such a number

system has nice properties to deal with large numbers on FPGA:

• its redundancy allows one to perform addition in constant

time (the critical path only depends on max
0≤j≤k−1

nj);

• the addition of a sum word x
(s)
j , a carry bit x

(c)
j−1, and an

nj-bit unsigned binary number can be performed by a CRA.

A key observation is that all sum words do not need to have the

same width. This peculiarity will allow us to select a number

system according to the modulus to optimize our operators

(Section IV). In the following, we will assume that the carry bit of

the most significant digit is always equal to zero (the weight of the

most significant carry bit is therefore equal to 2n0+n1+...+nk−2 ).

Example 1 Figure 2a describes a 4-digit high-radix carry-save

number with n0 = n1 = n2 = 4 and n3 = 3. According to the

first definition of this number system, we have:

X = x
(s)
0 +

“

x
(c)
0 + x

(s)
1

”

· 24 +
“

x
(c)
1 + x

(s)
2

”

· 28 +
“

x
(c)
2 + x

(s)
3

”

· 212

= 10 + (1 + 4) · 24 + (0 + 3) · 28 + (1 + 7) · 212

= 33626.

We can also compute

X(s) = 10 + 4 · 24 + 3 · 28 + 7 · 212 = 29514

and

X(c) = 1 · 24 + 0 · 28 + 1 · 212 = 4112.

We obtain X = X(s) +X(c) = 33626.

Consider the modular multiplication described by Equations (2)

and (3) and assume that both T [i] and P [i] are high-radix carry-

save numbers. Each equation involves now the addition of a high-

radix carry-save number and an unsigned integer (a partial product
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Fig. 3. Addition of an unsigned binary number and a high-radix carry-save
number.

xiY or a number ψ(T [i] div 2β) stored in the table). Figure 3

describes how to perform these operations: the integer operand

is split into k words of respective lengths n0, . . . , nk−1; then,

each of these words is added to a sum word and a carry bit by

means of an nj-bit CRA. The high-radix carry-save encoding has

unfortunately a drawback in the sense that shifting an operand

modifies its representation. The following example illustrates this

problem, which occurs in the computation of T [i] (Equation (2)).

Example 2 Let us consider again the number X = 33626, whose

format is defined in Figure 2a. By shifting X, we obtain Z =

2X = 67252 (Figure 2b). However, the least significant sum word

is now a 5-bit number and

Z = z0 + z12
n0+1 + z22

n0+n1+1 + z32
n0+n1+n2+1

= 20 + (1 + 4) · 25 + (0 + 3) · 29 + (1 + 7) · 213

= 67252.

According to this example, P [i + 1] and P [i] do not have the

same encoding, and the width of the CRA dealing with the least

significant digit of P would increase at each step. The solution

consists in converting T [i] to the format of P [i]. In the following,

we describe a modular multiplication algorithm which minimizes

the hardware overhead introduced by this conversion.

III. HIGH-RADIX CARRY-SAVE MODULAR MULTIPLICATION

This section describes how to take advantage of a high-radix

carry-save number system to perform a modular multiplication.

We assume that:

• The modulus M is an n-bit number belonging to {2n−1 +

1, . . . , 2n − 1}.

• X is an r-bit unsigned integer.

• Y is an unsigned integer smaller than M .

• α is a small integer parameter which will determine the size

of the table required for the modulo M reduction.
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• The most significant sum word of P [i] contains at least

nk−1 = 5 bits if α = 1 and nk−1 = 6 bits if α = 2.

These hypotheses guarantee that

– P (c)[i] is smaller than 2n−α, i.e.
D

P (c)[i]
E

2n−α
=

P (c)[i] (we fixed the carry bit of the most significant

digit of a high-radix carry-save number to zero in

Section II), and

– P (s)[i] is an (n + 2)-bit number (a proof is given in

Appendix)

• At each iteration, we compute a high-radix carry-save num-

ber P [i] congruent to 2P [i+ 1] + xiY modulo M .

According to our hypotheses, we have:

P [i+ 1] =
“

P (s)[i+ 1] div 2n−α
”

· 2n−α

+
D

P (s)[i+ 1]
E

2n−α
+

D

P (c)[i+ 1]
E

2n−α

=
“

P (s)[i+ 1] div 2n−α
”

· 2n−α

+
D

P (s)[i+ 1]
E

2n−α
+ P (c)[i+ 1].

The iteration of our algorithm is slightly different from the one

described in Section I. Let us define ρ = P (s)[i + 1] div 2n−α

and write the intermediate result at step i+ 1 as follows:

P [i+ 1] = ρ2n−α +
D

P (s)[i+ 1]
E

2n−α
+ P (c)[i+ 1].

It is worth noticing that, according to our hypotheses, ρ is a 3-

or 4-bit unsigned number for α = 1 or α = 2 respectively. Thus,

a small table addressed by ρ allows one to efficiently compute a

number congruent to P [i+ 1] modulo M :

P [i+ 1] ≡
D

ρ2n−α
E

M
+

D

P (s)[i+ 1]
E

2n−α

+P (c)[i+ 1] (mod M).

Note that, when α = 1, the table can be stored within the LUTs of

a CRA on Spartan-3 and Virtex FPGAs [11]. Since we compute

a high-radix carry-save number congruent to XY modulo M , a

conversion and a final modulo M reduction are mandatory. In

order to keep the hardware overhead as small as possible, we

apply a trick proposed by Peeters et al. [10] in the case of a

carry-save implementation. At each step, our algorithm computes:

P [i] = xiY + 2
D

ρ2n−α
E

M

+2
“D

P (s)[i+ 1]
E

2n−α
+ P (c)[i+ 1]

”

.

According to this equation, P [i] is always even when xiY = 0.

Thus, by performing an additional step with x−1 = 0, we obtain

an even number P [−1] congruent to 2XY modulo M . Note that

P [−1]/2 is smaller than or equal to P [0] and easy to compute

(a right shift of one position involves only wiring). Furthermore,

performing the final modulo M correction with P [−1]/2 requires

less hardware resources. Let us define:

ψmax =

8

>

<

>

:

max
0≤j<24

D

j · 2n−2
E

M
if α = 2 and nk−1 ≥ 5,

max
0≤j<23

D

j · 2n−1
E

M
if α = 1 and nk−1 ≥ 6.

P [−1]/2 is a high-radix carry-save number equal to 〈XY 〉M or

〈XY 〉M +M , and the final modulo M reduction requires at most

one subtraction in the following cases1:

• α = 2 and nk−1 ≥ 5;

• α = 1, nk−1 ≥ 6, and

2n−1 − 1 + 2n0 + . . .+ 2n0+...+nk−2 + ψmax

2
< M .

A proof of correctness of this modular multiplication scheme,

summarized by Algorithm 1, is provided in Appendix. At each

iteration, a new intermediate result P [i] is computed in two steps.

Let P̃ [i+1] be a high-radix carry-save number such that P̃ (s)[i+

1] =
D

P (s)[i+ 1]
E

2n−α
and P̃ (c)[i + 1] = P (c)[i + 1]. We first

carry out the sum of the partial product xiY and 2P̃ [i + 1] by

means of small CRAs:

T [i] = 2P̃ [i+ 1] + xiY .

By shifting the high-radix carry-save number P [i+ 1], we define

a new internal representation for T [i] (Section II). The second

step consists in adding 2
˙

ρ · 2n−α
¸

M
to T [i], and in converting

the result to the format of P [i+ 1].

Algorithm 1 High-radix carry-save modulo M multiplication

Input: An n-bit modulus M such that 2n−1 < M < 2n, an r-

bit number X ∈ N, Y ∈ {0, . . . ,M − 1}, and a parameter

α ∈ {1, 2}. P [i] and T [i] are high-radix carry-save numbers.

Output: P = 〈XY 〉M .

1: P[r]← 0;

2: x−1 ← 0;

3: for i in r − 1 downto −1 do

4: ρ← P (s)[i+ 1] div 2n−α;

5: T [i]← 2
“D

P (s)[i+ 1]
E

2n−α
+ P (c)[i+ 1]

”

+ xiY ;

6: P [i]← T [i] + 2
˙

ρ · 2n−α
¸

M
;

7: end for

8: P ← P [−1]/2;

9: if P > M then

10: P ← P −M ;

11: end if

The main difficulty of the implementation arises from the left

shift of the carry bits P (c)[i + 1]. Since T [i] has a different

encoding, it is necessary to perform a conversion. We suggest

to compute a high-radix carry-save number U [i] which has the

same encoding as P [i+ 1], and is equal to the sum of the carry

bits of T [i] and the output of the table (i.e. 2
˙

ρ · 2n−α
¸

M
).

Therefore, we perform the following operations at each iteration

of Algorithm 1:

T [i]← 2P̃ [i+ 1] + xiY ,

U [i]← 2
D

ρ · 2n−α
E

M
+ T (c)[i], (6)

P [i]← U [i] + T (s)[i].

Example 3 Let n = 16, k = 4, and n0 = n1 = n2 = n3 =

4. The high-radix carry-save number T [i] contains three carry

bits of respective weights 25, 29, and 213 (recall the constraint

introduced in Section II: the carry bit of the most significant digit

1Note that the algorithm described in our preliminary work [12] does not
satisfy this property and the final modular reduction depends on the high-radix
number system and the modulus M .
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is always equal to zero). We split 2
˙

ρ · 2n−α
¸

M
into four 4-bit

words and perform three additions to compute U [i] (Figure 4).
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.

IV. CHOICE OF A HIGH-RADIX CARRY-SAVE NUMBER

SYSTEM

Let us represent the table involved in the modulo M correction

by a matrix Ψ. Each line ψρ of Ψ stores an n-bit number
˙

ρ · 2n−α
¸

M
. In the following, we will have to consider a

subset of consecutive columns of Ψ. Let Ψ(j+h:j) be the matrix

constituted of columns j to j + h of Ψ. Each line of Ψ(j+h:j)

contains an (h+ 1)-bit number ψ
(j+h:j)
ρ .

Example 4 Let us consider the 16-bit modulus M = 54107 and

assume that α = 1. We have

Ψ =
2

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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7

7

7

7

7

7

7

7

7

7

7

5

.

According to our notation, we have for instance:

Ψ(6:3) =
“

ψ
(6:3)
ρ

”

=

2

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

1 0 0 1

1 0 0 1

0 0 1 0

1 0 1 1

1 0 1 1

0 1 0 1

3

7

7

7

7

7

7

7

7

7

7

7

5

. (7)

It is worth noticing that the amount of hardware required to

compute U [i] depends on the modulus M and the encoding of

P [i]. For instance, if a column of Ψ contains only zeroes, it can be

replaced by a carry bit at no extra cost. We propose an algorithm

which selects a high-radix carry-save number system minimizing

the hardware overhead introduced by the computation of U [i]

(Equation (6)). Assume that we want to merge t
(c)
w with the jth

column and t
(c)
w+1 with the (j+h)th column of Ψ, and recall that

the carry bits of T [i] are left-shifted compared to those of P [i]

u
(s)
w+1

2〈ρ2n−α〉M

(j + h)th column of Ψ jth column of Ψ

(j + h− 2)th column of Ψ

ψ
(j+h−2:j)
ρ

2T (c)[i]t
(c)
wt

(c)
w+1

u
(c)
w+1

U (s)[i]

U (c)[i]

nw+1 = h

Fig. 5. Cost of the addition of a carry bit (1). In this example, h is equal
to five.

and U [i] (Figure 5). Therefore, we compute a digit uw+1 such

that

u
(c)
w+12

h + u
(s)
w+1 = 2

“

ψ
(j+h−2:j)
ρ

| {z }

h − 1 bits

+t
(c)
w

”

+ ψ
(j−1:j−1)
ρ . (8)

This operation involves at most a (h − 1)-bit CRA. However it

is unlikely that there are very long strings of consecutive ones

in matrix ψ (see below). Let us denote by #
“

ψ
(j+h−2:j)
ρ

”

the

length of the longest string of consecutive 1’s starting from the

least significant bit of ψ
(j+h−2:j)
ρ . Then, the following cases may

occur according to ℓ = maxρ #
“

ψ
(j+h−2:j)
ρ

”

:

• If ℓ = 0, the jth column of Ψ contains only zeroes and can

be replaced by t
(c)
w at no extra cost. More formally, we have

(Figure 6a):

u
(s)
w+1 = 4ψ

(j+h−2:j+1)
ρ + 2t

(c)
w + ψ

(j−1:j−1)
ρ ,

u
(c)
w+1 = 0.

• If ℓ = h− 1, the addition requires a (h− 1)-bit CRA which

generates an output carry bit u
(c)
w+1 (see Equation (8) and

Figure 6b). Since this bit will be added to a few bits of

T (s)[i] in order to compute p
(s)
w+2[i], we raise a flag which

indicates this carry propagation.

• When 0 < ℓ < h − 1, an ℓ-bit CRA computes the sum

and generates an output carry cout. If the (j + ℓ)th column

of Ψ stores only zeroes, we replace it by cout (Figure 6c).

Otherwise, we need an OR gate to add cout to the (j + ℓ)th

column. Since we target FPGA applications, a more efficient

solution consists in taking advantage of the dedicated carry

logic to perform this operation and we add t
(c)
w to ψ

(j+ℓ:j)
ρ

by means of an (ℓ+1)-bit CRA (Figure 6d). Note that u
(c)
w+1

is always equal to zero.

Let us try to estimate what values of ℓ we can expect in practice.

If we consider that the bits in matrix ψ can be viewed as “random”

bits, with equal probability for 0 as for 1, then the average value

of ℓ will be N(h)/2h−1, where N(h) is the sum of the lengths of

the strings of ones that start from the rightmost bit in all possible

(h−1)-bit strings. Since we obviously have N(1) = 1 and N(h) =
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t
(c)
w

(d) ℓ < h− 1

0

jth column of Ψ
(only zeroes) ψ

(j−1:j−1)
ρ

u
(c)
w+1 = 0

u
(s)
w+1

ψ
(j+h−2:j+1)
ρ

(a) Only zeroes in the jth column of Ψ

(ℓ+ 1)-bit CRA

ψ
(j−1:j−1)
ρ

t
(c)
w

ψ
(j−1:j−1)
ρ

0 u
(s)
w+1

u
(c)
w+1 = 0

ℓ-bit CRA

0

t
(c)
w

0

ψ
(j+ℓ−1:j)
ρ

jth column of Ψ

(c) ℓ < h− 1 and the (j + ℓ+ 1)th column

of Ψ contains only zeroes

(only zeroes)
(j + ℓ+ 1)th column of Ψ

(h− 1)-bit CRA
cout

u
(s)
w+1

u
(c)
w+1 = 0

jth column of Ψ

0

ψ
(j+h−2:j)
ρ

ψ
(j−1:j−1)
ρ

u
(s)
w+1

u
(c)
w+1

jth column of Ψ

(b) ℓ = h− 1

ψ
(j+ℓ:j)
ρ

t
(c)
wt

(c)
w

Fig. 6. Cost of the addition of a carry bit (2).

2N(h− 1) + 1, we immediately deduce that the average value of

ℓ is 1− 1/2h−1 (i.e. less than 1).

Example 5 (Example 4 continued) Assume that we want to

add carry bits to the 3rd and 8th columns of Ψ (i.e. j = 3

and h = 5). We have to consider the matrix Ψ(6:3) given by

Equation (7) and easily determine that ℓ = 2. Thus, we have to

examine the third column of Ψ(6:3) in order to compute the width

of the CRA. Since this column contains a non-null element, we

need an (ℓ+ 1)-bit CRA (see Figure 6d).

Let us now build a directed acyclic graph as follows:

• Each node represents a column of the matrix Ψ.

• The weight of the edge between nodes j and j + h is given

by the width of the CRA responsible for the addition of

ψ
(j+h−2:j)
ρ and t

(c)
w (Equation (8)), as well as the flag which

indicates a carry propagation.

A shortest path of this graph defines the high-radix carry-save

representation minimizing the hardware overhead introduced by

the computation of U [i] for a given modulus M . The algorithm

requires two parameters to control the size of the CRAs:

• Since we want to perform a modular multiplication by means

of small CRAs, we have to provide the algorithm with a

constraint on the maximal number of positions wmax between

two consecutive carry bits (without this constraint, we would

for instance have an edge from the first node to the last node).

• The minimal distance between to consecutive carries wmin

should be greater than or equal to two. It guarantees that the

smallest building block is a 2-bit CRA.

Algorithm 2 describes a way to build this graph. After having

computed Ψ, we have to determine to which columns the most

significant bit of T [i] can be added. We denote by jmax the

upper index. Recall that, when α = 2, we assume that the most

significant sum word of P [i] contains at least nk−1 = 5 bits. Thus,

we deduce that jmax = n − 2 (Figure 7a). The most significant

sum word of U [i] is computed as follows:

u
(s)
k−1 = 2

“

ψ
(n:jmax)
ρ + t

(c)
k−2

”

+ ψ
(jmax−1:jmax−1)
ρ .

When α = 1, we have nk−1 ≥ 6 and jmax = n−3 (Figure 7b). It is

sometimes possible to relax the constraint on nk−1: it suffices that

the addition of t
(c)
k−2 to ψ

(n:jmax)
ρ does not generate an output carry

(see the proof in Appendix for details). This condition is satisfied

if the length of the longest string of consecutive 1’s starting from

the jmax column of Ψ is smaller than or equal to n − jmax. We

have to distinguish three cases to build the graph:

• The first carry bit t
(c)
0 can be added to any column whose

index belongs to {2, . . . , wmax + 1}. We create an edge of

weight zero between the first node and the nodes associated

with such columns.

• The most significant carry bit t
(c)
k−2 belongs to the set {n−

wmax + 1, . . . , jmax. Let h ∈ {wmin, . . . , wmax − 1}. There is

therefore an edge between nodes j and n if j + h ≥ n.

• There is an edge between nodes j and j + h, where h ∈

{wmin, . . . , wmax}, if j + h ≤ jmax.

The next step consists in finding a shortest path in the graph.

In order to minimize the critical path, we suggest to remove all

edges whose carry propagation flag is set to one. If there is no

path between nodes 1 and n in this pruned graph, we have to

consider the full graph.

Example 6 (Example 4 continued) Let us apply Algorithm 2 to

our 16-bit example. First, we note that adding a carry bit to the

15th column of the matrix does not generate an output carry and

we set jmax = 15. Then, we build the graph illustrated on Figure 8

according to Algorithm 2. The c flag on the edge between nodes

j and j + h indicates that adding a carry bit to the jth column

of Ψ generates an output carry bit u
(c)
j . After having removed

all edges labelled with a c flag and nodes without predecessor or

successor, we obtain a pruned graph (Figure 9). Thus, P [i] is a

4-digit word with n0 = n1 = n2 = 4 and n3 = 6 (Figure 10).

Since n = 16 and ψmax = (1010110010100101)2 = 44197, we

have:

2n−1 − 1 + 2n0 + 2n0+n1 + 2n0+n1+n2 + ψmax

2

=
215 + 24 + 28 + 212 + 44197

2
= 40666 < M ,

and α = 1 is a valid choice. Note that, if the above equality is

not satisfied, we have to build a new graph with α = 2. Recall

that there is always a solution for α = 2 and nk−1 ≥ 5.

Once the high-radix carry-save representation is known, the

automatic generation of a VHDL description of the modulo

M multiplier is rather straightforward. The computation of T [i]
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t
(c)
k−2

(n− 3)th column of Ψ

U (s)[i]

n+ 2 bits

U (c)[i]

➁ Computation of U [i]

u
(c)
k−2

nk−1 − 1 bits

T (c)[i]

nk−2 n1 n0 + 1

n− nk−2 − . . .− n0 − 1

t
(c)
k−2

ψ
(n:jmax−1)
ρ

n bits

nk−2

➀ Computation of T [i]

n+ 1 bits

0

xiY

2P (c)[i+ 1]

2P (s)[i+ 1]

nk−1 bits

ρ = P (s)[i+ 1] div 2n−α
〈

P (s)[i+ 1]
〉

2n−α

p
(c)
k−2

n+ 2 bits

(b) Computation of U [i] when α = 1 and jmax = n− 3(a) Computation of U [i] when α = 2 and jmax = n− 2

0

〈

P (s)[i+ 1]
〉

2n−αρ = P (s)[i+ 1] div 2n−α

xiY

n+ 1 bits

2P (c)[i+ 1]

2P (s)[i+ 1]

p
(c)
k−2

n+ 1 bits

n− nk−2 − . . .− n0 − 1

T (c)[i]

T (s)[i]

2
〈

P (s)[i+ 1]
〉

2n−α + 2P (c)[i+ 1] + xiY

t
(c)
k−2

0 2 〈ρ2n−α〉M

1st column of Ψnth column of Ψ jmax = (n− 2)th column of Ψ

➀ Computation of T [i]

ψ
(n:jmax−1)
ρ

T (c)[i]t
(c)
k−2

U (s)[i]

U (c)[i]

n+ 2 bits

u
(c)
k−2

➁ Computation of U [i]

n1

nk−1 bits

n0 + 1

T (c)[i]

n bits

T (s)[i]

2
〈

P (s)[i+ 1]
〉

2n−α + 2P (c)[i+ 1] + xiY

0 2 〈ρ2n−α〉M

1st column of Ψnth column of Ψ

nk−1 bits

Fig. 7. Cost of the addition of a carry bit (3).
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Fig. 8. Choice of a high-radix carry-save representation for the 16-bit modulus M = 54107 (1).

involves k CRAs of respective widths n0 + 1, n1, . . . , nk − 2,

and n− nk−2 − . . .− n0 − 1 (Figure 7). Each edge of the graph

encodes the size of the CRA determining a digit of U [i] and

the carry propagation flag indicates whether a carry bit u
(c)
j is

necessary or not. Finally, k CRAs of widths n0, . . . , nk−1 allow

one to add T (s)[i] to U [i].

V. IMPLEMENTATION RESULTS

In order to compare our algorithm against modular multipliers

published in the open literature, we wrote a VHDL code generator

whose inputs are a modulus M and wmax (maximal number of

positions between two consecutive carry bits, see Section IV). Our

tool returns a structural VHDL description of a high-radix carry-

save multiplier, as well as scripts to automatically place-and-route

the design and collect area and timing informations. This tool also
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2 FAs

13

16

9 5

13 FAs 2 FAs

0

0

2 FAs

2 FAs

8

2 FAs

12

2 FAs

15

4

3 FAs

3 FAs

Fig. 9. Choice of a high-radix carry-save representation for the 16-bit modulus M = 54107 (2). Shaded nodes belong to the shortest path.

Algorithm 2 Selection of a high-radix carry-save number system.

Input: An n-bit modulus M , wmax, and wmin such that wmax ≥

wmin ≥ 2. A parameter α ∈ {1, 2}.

Output:

1: Compute the matrix Ψ according to α;

2: if α = 2 then

3: jmax ← n− 2;

4: else

5: jmax ← n− 3;

6: j ← n− 2

7: while #
“

ψ
(n:j)
ρ

”

≤ n− j do

8: jmax ← j;

9: j ← j + 1;

10: end while

11: end if

12: for j = 2 to wmax do

13: Create an edge of weight 0 between nodes 1 and j;

14: end for

15: for j = 2 to jmax do

16: for h = wmin to wmax do

17: if j + h ≥ n and h < wmax then

18: ℓ← max
ρ

#
“

ψ
(n:j)
ρ

”

;

19: Create an edge between nodes j and n;

20: Compute the weight of the edge (see Figure 6);

21: h← wmax + 1 (exit the loop);

22: else if j + h ≤ jmax then

23: ℓ← max
ρ

#
“

ψ
(j+h−2:j)
ρ

”

;

24: Create an edge between nodes j and j + h;

25: Compute the weight of the edge (see Figure 6);

26: end if

27: end for

28: end for

generates a VHDL description of two architectures proposed by

other researchers. The first one, described by Peeters et al. in [10],

is summarized by Algorithm 3. Intermediate results are carry-save

numbers denoted by (C[i], S[i]). At each step, a CRA computes

the sum k of the three most significant bits of C[i + 1] and

S[i+1]. This four-bit word addresses a table storing
D

k · 2n−2
E

M
,

0 ≤ k ≤ 15. Thanks to an additional iteration with x−1 = 0, this

algorithm returns a carry-save number (C[−1], S[−1]) which is

18 bits

t
(c)
2 t

(c)
1 t

(c)
0

0 2 〈ρ2n−α〉M

1st column of Ψ16th column of Ψ

U (s)[i]

U (c)[i]

➀ Computation of U [i]

5 bits

17 bits

u
(c)
2 u

(c)
1 u

(c)
0

0

U (s)[i]0

T (s)[i]

U (c)[i]u
(c)
2 u

(c)
1 u

(c)
0

p
(c)
2 p

(c)
1 p

(c)
0

n0 = 4 bitsn1 = 4 bitsn2 = 4 bitsn3 = 6 bits

➁ Computation of P [i]

T (c)[i]

Fig. 10. Choice of a high-radix carry-save representation for the 16-bit
modulus M = 54107 (3).

smaller than 2M . Since our multiplier satisfies the same property,

conversion in a non-redundant number system is performed with

the same operator2. We will therefore only consider iteration

stages in our experiments in order to compare high-radix carry-

save and carry-save number systems.

Amanor et al. introduced a carry-save architecture optimized

for modular multiplication on FPGAs in [13]. The authors assume

that both M and Y are known at design time. This hypothesis

allows for the design of an iteration stage embedding a single CSA

and a table addressed by the most significant bit of xi, C[i+ 1],

and S[i+ 1] (Algorithm 4). They show that the sum of the most

significant bits of C[i+1] and S[i+1] is always a two-bit number.

Therefore the table only contains eight values. Unfortunately, the

authors did not address the final conversion issue. However, since

2Our approach further reduces the wiring since high-radix carry-save
numbers involve less carry bits than carry-save numbers.
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Algorithm 3 Peeters et al.’s modulo M multiplication [10].

Input: An n-bit modulus M such that 2n−1 < M < 2n, an r-bit

number X ∈ N, and Y ∈ {0, . . . ,M − 1}. We assume that

x−1 = 0.

Output: P = 〈XY 〉M .

C[r]← 0; S[r]← 0;

for i in r − 1 downto −1 do

k ← C[i+ 1] div 2n−2 + S[i+ 1] div 2n−2;

T [i]← xiY + 2
D

k · 2n−2
E

M
;

(C[i], S[i])← 2(〈C[i+ 1]〉2n−2 + 〈S[i+ 1]〉2n−2) + T [i];

end for

P ← (S[−1] + C[−1])/2;

if P > M then

P ← P −M ;

end if

C[i+ 1] div 2n−1 + S[i+ 1] div 2n−1 ≤ 3, we deduce that:

C[i] + S[i] = (C[i+ 1] div 2n−1 + S[i+ 1] div 2n−1) · 2n−1

+ 〈C[i+ 1]〉2n−1 + 〈S[i+ 1]〉2n−1

≤ 3 · 2n−1 + 2 · (2n−1 − 1) = 2n+1 + 2n−1 − 2.

Since M belongs to {2n−1 + 1, . . . , 2n − 1}, C[i] + S[i] may

be greater than 2M and Algorithm 4 requires more hardware

resources than our algorithm or Peeters et al.’s scheme to perform

a conversion.

Algorithm 4 Amanor et al.’s modulo M multiplication [13].

Input: An n-bit modulus M such that 2n−1 < M < 2n, an r-bit

number X ∈ N, and Y ∈ N.

Output: P = 〈XY 〉M .

C[r]← 0; S[r]← 0;

for i in r − 1 downto 0 do

k ← 2(C[i+ 1] div 2n−1 + S[i+ 1] div 2n−1);

T [i]←
D

k · 2n−1 + xiY
E

M
;

(C[i], S[i])← 2(〈C[i+ 1]〉2n−1 + 〈S[i+ 1]〉2n−1) + T [i];

end for

P ← 〈C[0] + S[0]〉M ;

Figure 11 describes place-and-route results on a Xilinx Spartan-

3 FPGA. In these experiments, the moduli are 256-bit randomly

generated primes. Compared against Algorithm 3, we observe

that:

• Our high-radix carry-save architecture allows us to signif-

icantly reduce the number of slices, while only slightly

augmenting the critical path. At the price of a longer critical

path, we are able to further diminish the area by increasing

the parameter wmax. Note that conversion from (high-radix)

carry-save to unsigned binary integer is usually based on

pipelined CRAs (see for instance [3]). Depending on the

trade-off between area and delay, this operator can be slower

than an iteration stage based on (high-radix) carry-save

arithmetic.

• The area of our operator is less sensitive to the choice of M .

This is mainly related to the architecture of Xilinx FPGAs:

in most cases, α = 1 and each operator embeds a table

addressed by three bits. Since our target FPGA embeds four-

input LUTs, this table is embedded within the slices of the

adder computing P [i] [11]. Since four bits address the table

of Algorithm 3, additional LUTs are requested. Their amount

depends on the modulus M : if ψM contains null or identical

columns, synthesis tools are able to simplify the design.

For the moduli considered in these experiments, high-radix carry-

save multipliers have roughly the same area as the operator

proposed by Amanor et al. in [13]. Recall that a CSA requires

twice the number of slices of a CRA on our target FPGA family.

Since moduli involved in these experiments require only three

bits to perform a modulo M reduction, our architecture is mainly

based on two CRAs. High-radix carry-save representations enable

here the design of a more versatile modular multiplier (both X

and Y are inputs) with the same number of slices.

Table III summarizes further results obtained with a Spartan-3

FPGA. We generated 100 prime moduli for each experiment, and

reported the interval in which lie the area and delay ratios between

our proposal and Algorithms 3 and 4. These experiments indicate

that our approach always allow one to select a prime number for

which reduces the circuit area without increasing the critical path.

Local Routing
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Routing From

Register Chain

LAB Carry-In

Carry

Chain

Look-Up

Table

(LUT)data4

data3
data2
data1
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Three-Input
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Three-Input

LUT

Sum Bit
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data2
data1

CLRN
ENA
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LAB Carry-Out

LAB Carry-Out

And Direct Link

Routing

Row, Column,

And Direct Link

Routing

Register Chain

Fig. 12. Simplified diagram of a LE in arithmetic mode (Cyclone II family).

Table IV digests experiment results involving an Altera Cy-

clone II FPGA. Figure 12 describes a Logic Element (LE), which

is the smallest unit of configurable logic in the Cyclone II archi-

tecture. Each LE includes a four-input LUT, a storage element,

as well as dedicated carry logic, and operates in normal mode or

arithmetic mode. CRAs are based on LEs in arithmetic mode, in

which the LUT implements two three-input function generators. It

is therefore impossible to store ψM within LUTs of a CRA. This

explains why our algorithm leads to slightly smaller area savings

for this FPGA family. On Cyclone-II devices, CSA operators

are significantly faster; however, conversion to a non-redundant

number system involves pipelined CRAs. If this operator is based

on 32-bit blocks, our high-radix carry-save iteration stage has a

slower critical path. In this case, our approach leads to smaller

modular multipliers than CSA schemes, without impacting on

computation time.

VI. CONCLUSION

We proposed an algorithm to automatically generate VHDL

descriptions of modular multipliers for FPGAs. The main orig-

inality of our approach is the selection of an optimal high-

radix carry-save encoding of intermediate results according to a

given modulus M . High-radix carry-save number systems take
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■ Proposed algorithm; ▼ Algorithm 3; ✕ Algorithm 4.
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(c) Area and delay comparisons for n = 256 and wmax = 24
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(d) Area and delay comparisons for n = 256 and wmax = 32

Fig. 11. Area and delay of modular multipliers on a Spartan-3 FPGA. 50 prime moduli were randomly generated for each experiment.
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TABLE III

AREA AND DELAY RATIOS BETWEEN OUR PROPOSAL AND ALGORITHMS 3 AND 4 ON A SPARTAN-3 FPGA. 100 PRIME MODULI WERE RANDOMLY

GENERATED FOR EACH EXPERIMENT.

N wmax
Peeters et al. [10] Amanor et al. [13]

Area of Algorithm 1
Area of Algorithm 3

Delay of Algorithm 1
Delay of Algorithm 3

Area of Algorithm 1
Area of Algorithm 4

Delay of Algorithm 1
Delay of Algorithm 4

64
8 [0.45, 0.68] [0.89, 1.45] [0.77, 1.12] [1.10, 1.62]

16 [0.39, 0.58] [0.97, 1.49] [0.73, 0.97] [1.12, 1.84]

8 [0.48, 0.68] [0.99, 1.32] [0.89, 1.28] [0.99, 1.38]

128
16 [0.44, 0.55] [0.99, 1.32] [0.79, 0.96] [0.99, 1.44]

32 [0.43, 0.53] [1.00, 1.44] [0.77, 0.91] [1.01, 1.61]

48 [0.40, 0.50] [1.04, 1.69] [0.74, 0.89] [1.11, 1.79]

8 [0.51, 0.64] [0.98, 1.15] [0.90, 1.09] [0.99, 1.23]

160
16 [0.48, 0.56] [0.99, 1.19] [0.84, 0.96] [0.99, 1.32]

32 [0.44, 0.53] [1.04, 1.36] [0.78, 0.94] [1.04, 1.45]

48 [0.36, 0.52] [1.11, 1.56] [0.79, 0.89] [1.18, 1.63]

8 [0.53, 0.63] [0.57, 1.38] [0.92, 1.12] [0.67, 1.49]

192
16 [0.48, 0.55] [0.62, 1.47] [0.82, 0.97] [0.82, 1.59]

24 [0.46, 0.53] [0.55, 1.49] [0.83, 0.98] [0.85, 1.69]

32 [0.46, 0.52] [0.65, 1.46] [0.79, 0.93] [0.94, 1.66]

8 [0.54, 0.63] [0.89, 1.48] [0.93, 1.11] [0.59, 1.27]

256
16 [0.49, 0.55] [0.94, 1.45] [0.85, 0.98] [0.67, 1.34]

24 [0.48, 0.53] [0.99, 1.59] [0.83, 0.97] [0.71, 1.38]

32 [0.47, 0.53] [1.01, 1.68] [0.79, 0.94] [0.66, 1.35]

TABLE IV

AREA AND DELAY RATIOS BETWEEN OUR PROPOSAL AND ALGORITHMS 3 AND 4 ON A CYCLONE II FPGA. 100 PRIME MODULI WERE RANDOMLY

GENERATED FOR EACH EXPERIMENT.

N wmax
Peeters et al. [10] Amanor et al. [13]

Area of Algorithm 1
Area of Algorithm 3

Delay of Algorithm 1
Delay of Algorithm 3

Area of Algorithm 1
Area of Algorithm 4

Delay of Algorithm 1
Delay of Algorithm 4

64
8 [0.63, 0.77] [1.45, 1.87] [1.14, 1.36] [1.92, 2.54]

16 [0.60, 0.66] [1.58, 2.02] [1.06, 1.19] [2.18, 2.75]

8 [0.67, 0.74] [1.42, 1.87] [1.14, 1.30] [1.77, 2.49]

128 16 [0.62, 0.65] [1.63, 2.04] [1.07, 1.15] [2.09, 2.85]

32 [0.58, 0.63] [1.85, 2.73] [1.01, 1.09] [2.18, 3.79]

advantage of dedicated carry logic available in almost all FPGA

families and reduce the amount of interconnects. Therefore, our

approach allows us to significantly reduce the area of modular

multipliers.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for their

valuable comments. The work described in this paper has been

supported in part by the New Energy and Industrial Tech-

nology Development Organization (NEDO), Japan, and by the

Swiss National Science Foundation through the Advanced Re-

searchers program while Jean-Luc Beuchat was at École Normale
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APPENDIX

This Appendix aims at proving the correctness of Algorithm 1.

We proceed in three steps: after establishing a property of the

modulo M correction considered in this paper, we show that

P (s)[i] is an (n + 2)-bit number. We conclude by computing a

bound on P [−1] which indicates that P [−1]/2 < 2M . This proof

also provides the reader with all the technical details requested

to implement the algorithm or an automatic code generator.

A. A Property of Modulo M Correction

The first step consists in establishing a property which will

allow us to compute bounds on P [i]. Let γ = 2n − 2n−4 =

2n−1 +2n−2 +2n−3 +2n−4 and M ∈ {2n−1, . . . , 2n−1}. Then,
D

k · 2n−2
E

M
< γ, ∀k ∈ 0, . . . , 24 − 1. (9)

The proof is straightforward if the modulus M is smaller than

or equal to γ. Let us assume now that M = γ + β, where β

satisfies the following inequality:

1 ≤ β ≤ 2n−4 − 1.

For k ∈ {0, 1, 2, 3}, we easily check that
D

k · 2n−2
E

M
= k ·

2n−2 < γ. Since 〈2n〉M = 2n −M , we obtain:
D

4 · 2n−2
E

M
= 2n−4 − β < γ.

Consequently, we have:
D

5 · 2n−2
E

M
= 2n−2 + 2n−4 − β < γ,

D

6 · 2n−2
E

M
= 2n−1 + 2n−4 − β < γ, and

D

7 · 2n−2
E

M
= 2n−1 + 2n−2 + 2n−4 − β < γ.

For k = 8, the following modulo M operation has to be carried

out:
D

8 · 2n−2
E

M
=

D

2n + 2n−4 − β
E

M
.

Since M < 2n + 1 ≤ 2n + 2n−4− β ≤ 2n + 2n−4− 1 < 2M , we

deduce that:
D

8 · 2n−2
E

M
= 2n + 2n−4 − β −M = 2n−3 − 2β.

Thus, we have:
D

9 · 2n−2
E

M
= 2n−2 + 2n−3 − 2β < γ,

D

10 · 2n−2
E

M
= 2n−1 + 2n−3 − 2β < γ, and

D

11 · 2n−2
E

M
= 2n−1 + 2n−2 + 2n−3 − 2β < γ.

A modulo M reduction is again required for k = 12. Since

M < 2n + 2 ≤ 2n + 2n−3 − 2β ≤ 2n + 2n−3 − 2 < 2M ,

we obtain:
D

12 · 2n−2
E

M
=

D

2n + 2n−3 − 2β
E

M

= 2n + 2n−3 − 2β −M

= 2n−3 + 2n−4 − 3β.

Since β ≥ 1, we conclude the proof by noting that
D

13 · 2n−2
E

M
= 2n−2 + 2n−3 + 2n−4 − 3β < γ,

D

14 · 2n−2
E

M
= 2n−1 + 2n−3 + 2n−4 − 3β < γ, and

D

15 · 2n−2
E

M
= 2n−1 + 2n−2 + 2n−3 + 2n−4 − 3β < γ.

B. Width of P (s)[i]

Let us prove by induction that P [i] is an (n + 2)-bit number.

Since P [r] = 0, we check that k = 0, and T [r − 1] = P [r −

1] = xr−1Y , which is an n-bit number. This property holds for

i = r− 1. Assume now that P (s)[i+ 1] is an (n+ 2)-bit number.

We have to consider two cases according to the parameter α:

• Our hypotheses guarantee that nk−1 ≥ 5 for α = 2.

Therefore, 2
D

P (s)[i+ 1]
E

2n−2
contains k sum words of

respective widths n′0 = n0 + 1,. . . , n′k−2 = nk−2, and

n′k−1 = nk−1 − 4 (Figure 13a). Let us split the partial

product xiY into k blocks in order to add it word by word

to 2
D

P (s)[i+ 1]
E

2n−2
. We know that

k−1
X

i=0

n′i = n− 1.

Since xiY is an n-bit integer, we deduce from the above

equation that its most significant sum word contains n′′k−1 =

n′k−1 + 1 = nk−1 − 3 bits. Therefore the sum of the most

significant bits of 2
D

P (s)[i+ 1]
E

2n−2
, xiY , and a carry bit

is bounded by:

(2n′

k−1
+1 − 1) + (2n′

k−1 − 1) + 1

= 2nk−1−3 + 2nk−1−4 − 1

= 3 · 2nk−1−4 − 1,

which is an (nk−1 − 2) bit number. Therefore, since
Pk−1

i=0 ni = n+ 2, T (s)[i] is an (n+ 1)-bit number. Indeed,

we have:

(nk−1 − 2) +

k−2
X

i=1

ni + (n0 + 1) =

k−1
X

i=0

ni − 1

= n+ 1.

Four most significant bits of P (s)[i + 1] address the table

responsible of the modulo M correction (Figure 13b). Recall

that we have to combine the output of this table and carry bits

of T [i] in order to generate a high-radix carry-save number

U [i], whose format is the one of P [i]. Since 2
˙

k · 2n−α
¸

M
is an (n+1)-bit number, we split it in k words of respective

lengths n0, n1,. . . , nk−2, and (nk−1 − 1). Consider now

the addition of the most significant words of 2
˙

k · 2n−α
¸

M

and T (s)[i], and the most significant carry bit of T (c)[i].

According to our hypotheses, nk−1 ≥ 5 and this most

significant word contains at least 4 bits. Consider the worst

case (Figure 13b), where nk−1 = 5 and the weight of the
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most significant bit of T (c)[i] is equal to 2n−2. We deduce

from Equation (9) that U (s)[i] is an (n+ 2)-bit number and

that its most significant sum word is smaller than or equal

to 24. The addition of the most significant words of T (s)[i]

and U (s)[i], and a carry bit never generates an output carry

and P (s)[i] is therefore an (n+ 2)-bit number (Figure 13c).

• Assume now that α = 1. The same approach allows us

to show that T (s)[i] is an (n + 1)-bit word (Figure 14a).

According to our hypotheses, the most significant word of

P (s)[i − 1] contains at least six bits. Therefore, the weight

of the most significant carry bit of T (c)[i] is at most 2n−3.

Since Equation (9) guarantees that 2
˙

k · 2n−α
¸

M
< 2n +

2n−1 + 2n−2 + 2n−3, we deduce that U (s)[i] is an (n+ 1)-

bit number (Figure 14b). Note that, for some moduli, we

can relax the constraint on nk−1: the remaining of the proof

will only assume that U (s)[i] is an (n + 1)-bit number. An

automatic code generator can check this condition very easily

for a given value of M . Since the most significant words of

T (s)[i] and U (s)[i] have the same size, their addition may

generate an output carry and P (s)[i] is therefore an (n+ 2)-

bit number (Figure 14c).

C. Final Modulo M Correction

The last step consists in proving that P [−1]/2 is smaller than

2M . We have again to consider two cases according to α:

• Assume that α = 2 and consider the last iteration (i.e. i =

−1). Since the partial product x−1Y is equal to zero, we

have:

T [−1] = 2 ·
“D

P (s)[0]
E

2n−2
+ P (c)[0]

”

≤ 2 ·
“

2n−2 − 1 + 2n−2 − 1
”

= 2n − 4.

Thus, P [−1] ≤ 2n +2M − 6 and P [−1]/2 ≤ 2n−1 +M − 3.

Since the modulus M is supposed greater than 2n−1, we

know that P [−1]/2 is smaller than 2M .

• When α = 1,
D

P (s)[i+ 1]
E

2n−α
is smaller than or equal

to 2n−1 − 1. Recall that the weight of the most significant

carry bit of P (c)[i + 1] is equal to n0 + n1 + . . . + nk−2

(Section II). Thus,

T [−1] ≤ 2n − 2 + 2n0+1 + . . .+ 2n0+...+nk−2+1
,

and

P [−1] ≤ 2n − 2 + 2n0+1 + . . .+ 2n0+...+nk−2+1 + 2ψmax.

Therefore, P [−1]/2 is smaller than 2M if

2n−1 − 1 + 2n0 + . . .+ 2n0+...+nk−2 + ψmax

2
< M .
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Fig. 13. Proof of Algorithm 1 for α = 2. a) Computation of T [i]. b) Modulo M reduction and conversion. c) Computation of P [i].

P (s)[i]

P (c)[i]

1

ρ = P (s)[i+ 1] div 2n−α

1

1

1

1

1 2P (s)[i+ 1]1

2P (c)[i+ 1]

1

xiY 1

T (s)[i]

1

T (c)[i]

1

2P (s)[i+ 1] div 2n−α

0

n+ 1 bits

0

0

0

0

n+ 2 bits

1

n bits

11 11 1

0

nk−1 = 6

1

n0 + 1

(c)

n+ 1 bits

n bits

Table

(a) (b)

T (c)[i]

2〈ρ2n−α〉M

U (s)[i]

U (c)[i]

n+ 2 bits

n+ 1 bits

6 bits

T (s)[i]

U (s)[i]

U (c)[i]

1

Fig. 14. Proof of Algorithm 1 for α = 1. a) Computation of T [i]. b) Modulo M reduction and conversion. c) Computation of P [i].


