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2 Vincent Beffara et al.

1 Introduction

The study of growth processes it1l dimensions has led to a very rich the-
ory. One particular model, known as poly-nuclear growthRbIG for short) can
be described as follows: On a flat substrate, layers appe@parf each other ac-
cording to a Poisson process, and then grow laterally witistzmt speed, merging
whenever they collide. This model is interesting in the sdhat it lends itself to
the explicit computation of various quantities, such aswgincsspeed and interface
fluctuations (sed [P} 6]). However, the proofs depend ontexgebraic computa-
tions, and do not apply as soon as the dynamics are modifiedan-#ranslation-
invariant way. In particular, the response of the systemltzalized perturbation
(such as adding an independent Poisson source at the asidgnjjely unknown.

Similar questions are often raised in the setting of firgspge percolation
(see [b] for a review). More specifically, consider an FPPcpss in which the
waiting times are shortened along one of the axes, is it tiaethe asymptotic
shape of the cluster is always modified, or is there a phassiti@n for the amount
of perturbation ? Very related is the problem of polymer pignin a random
environmentice. in the presence of bulk disorder), or that of exclusion psses
with a localized obstruction to the flow (sd§ [4]). In all oéte, the central object
of interest is the speed obtained from a law of large numbers.

The process we study in this paper can be informally destidisdollows. On
each edge of the discrete lilg with some positive rat&, pedestals of width and
height 1 appear. Every pedestal will evolve into a plateawndpoints performing
independent continuous-time, discrete-space randorrswatk jump rate 1, until
one of the following happens:

— Iftwo plateauxcollide, i.e.if the right edge of one occupies the same site as the
left edge of the next one, then they merge and only the twemdt endpoints
continue to perform random walks;

— If one of the two endpoints of a plateau jumps to the locaticthe other one,
so that the plateau shrinks to width 0, then it vanishes.

If a pedestal appears on an edge which is already spanned éopfatie
plateaux, it appears on an additional layer on top of it. Qnty plateaux evolving
within the same layer can merge, and besides the growth giltteaux at dif-
ferent layers has to obey the following constraint: Evetedu which is not on
the ground level must always lie entirely on top of a platetaha layer below it.
Each jump which would break this constraint is simply suppe&. For any fixed
value of A (see Prop[]2 below) the process has linear groiehif by h(e) we
denote the height of the aggregate at tinadove the edge, then the following

limit exists:
v(A) = tE,TmMe)/t > 0. (1)

Notice that in the case of a strictly growing process (suctirsts or last-passage
percolation), the law of large numbers is usually a directseguence of a state-
ment of sub-additivity, while if the dynamics is allowed totb grow and shrink,
like in the present case, even the existence of the asyrogimied is non-trivial.
The dynamics we are considering corresponds exactly tob@tadynamics
for the two-dimensional Ising model on a solid surface atgerature 0, with
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Fig. 1 lllustration of an RPNG process. (Level lines are bold.)

additional nucleations. More precisely, consider an Isimagel onZ x Z,_, ini-
tially filled with (—) spins, and with §+) boundary condition. Every site with
two neighbors of each spin flips with rate 1; every site witfeéhneighbors of
a given spin acquire it with rate 1; and besides, each site gptn (—) whose
bottom neighbor has spif+) switches to(+) with rate A. It is very easy to
check that vertical phase boundaries perform constraic@utjnuous-time ran-
dom walks and that both the annihilation and interactioasare the same as for
RPNG.

To the best of our knowledge, a law of large numbers in suchupdes not
been given before, and while this one-sided nucleation trighm a little artifi-
cial, it may give information about mixing times for low-t@erature Ising model
in a finite box. It might also be a decent way of describing ofi¢he limiting
regimes of low-temperature Ising model in a constant egldiald, where both
the temperature and field intensity go to 0.

Next we will introduce d‘columnar defect”to the system by changing the
nucleation rate on the edgsg :=< 0,1 > from A to A + Ag, with Ag > 0, and
the main question which we address is how the asymptotic throste of the

aggregate above the origin is affected. More preciselynfl(é(teo) be the height
of the aggregate abow® at timet under the modified dynamics (we make the
dependency on implicit in this notation, since the parameter of interesi):
We are interested in whether the inequality

V(A 20) = lim K°(eo)/t > V(A) 2

holds for allAg > 0.

Define
Ac(A) =inf{Ag 1 V(A Ag) > V(A)}. (3)

Our main result, Theorem 1 below, is thatO\¢(A) < +o0. Moreover, the phase
transition is non-trivial even without nucleation in thellbgi.e. A = 0). Even in
this simplified situation, for any valugg > O the origin is eventually covered
by plateaux for all times, however9 A, := A¢(0) < + so that ifAg < Al then
v(0,Ag) = 0,i.e.there is sub-linear growth, while fag > A we havev(0,Ag) > 0.
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1.1 Structure of the paper

The dynamics we are considering is coming from two sources,io the bulk
(the nucleations on every edge with ratg and one on a particular edge (the
additional nucleation ogp). In sectior3 we first give a formal construction of the
process, in terms of a Harris-type representation. Theedtian[} we study the
homogeneous process for its own sake, without the defegt Btore specifically,
we prove a law of large numbers for the height of the interfalseve edge;

a key step towards this result is the proof of eventual cogeof any finite-size
interval of the line.

In section[p we study a related model in the half-line, whighile simpler,
exhibits the same kind of behavior as the original one. tvedl us to introduce a
description of the system in terms of interacting randorrkaal

Finally, in sectior[Jp we extend the methods of the previoetiaeto the full-
space case, first for a system with nucleation at only one @mtgeesponding to
the case\ = 0 in the previous description), then for the full model, ticosnplet-
ing the proof of the main result of the paper.

2 Preliminary considerations and statement of the results
2.1 Description of the interaction

One can describe this process in terms of an interactingcfgagystem. Each
step up (or equivalently each left-most endpoint of a platéarepresented by a
particle of type+ at the corresponding site @f, and each step down as a particle
of type — (which can be interpreted as an anti-particle). If sevelatigaux have
there endpoints at the same site, this site will containrsdparticles, but notice
that a site will never contain particles of both types.

The dynamics then looks like a zero-range process with datidn and nu-
cleation,.e.

— For each non-empty site, with rate 1, one of the particlegppmith equal
probability to a neighboring site; and if the target siteteams a particle of the
other type, then the jumping particle and one of the targdtgbas annihilate
instantaneously;

— On every edgéx, x+ 1) of Z, with rateA, there is nucleation, meaning that a
particle of type+ appears ax and a particle of type- appears ax-+ 1; and
similarly, each one is instantaneously annihilated if aiplerof the opposite
type is already present at the corresponding site.

With this description, notice that the behavior of a taggadiple is essentially
that of a continuous-time random walk, jumping at rata Whenever itis at a site
containingn particles, and which is killed whenever it meets a partidiehe
opposite type.

2.2 Stick percolation

We sidetrack for a moment and introduce a toy model sharingesaf the spirit
of the way the defect will affect the system (in the= 0 case). Lettj)icy be a
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Poisson point process of intensity> 0 on the positive real line. We assume that
they are orderedy being the point closest to the origin. To edcive associate a
positive random variabl§ (a “length”) and assume that tli§ ),y are i.i.d. with
common distribution functiofr.

The system we consider is then the following: For evieryN, construct the
segmené = [ti,ti + S] (which we will call thei-th “stick”). We say that the sticks
S and§j, i < jareconnectedf t; <tj+ S, i.e.if they have non-empty intersection;
the systenpercolatesf and only if there is an infinite chain of distinct, pairwise
connected sticks, which (with probability 1) is equivalemsaying that the union
of the sticks contains a half-line.

It is easy to see that the system percolates with probaliilay 1 (it is a tail
event for the obvious filtration); and in fact there is a coat@lcharacterization of
both cases. The proof of the following proposition is nofidifit, so we omit it at
this point.

Proposition 1 Let Rt) = P(S; > t) and ¢ (t) = [y R(u)du. Then the system per-
colates with probabilityl if and only if

00
/ e V9ds < +oo. (4)
0

A similar process was studied by Sheflp [7], the only diffegebeing that in
his case the support of the birth process is the whole linedusof positive real
line. In particular, it is easy to see that in the full-lineseaany non-integrable
distribution for S covers the whole space, whereas here there are non-infiegrab
distributions which do not percolate.

The natural distribution for the length of the sticks, inwief the previous dis-
cussion of our original problem, is the following: At timje start two continuous-
time symmetric simple random walks, from O afd respectively, and leéf+ S
be the first time when they occupy the same site. It is well kmtvat, up to mul-
tiplicative constantsR(S > t) behaves as /2 for larget. It is easy to check that
the system percolates, for apy> 0. On the other hand, it is also easy to see that
there is not linear growth, in the sense that if weNgbe the number of sticks that
contain the point, then

t
E(N) =y [ Risids=0(vD).
In the RPNG case, the walks will interact, thus leading to aenioteresting

behavior and to the existence of a non-trivial phase tramsit

2.3 Statement of the results

We are now ready to precisely state our main result. Recaﬂw}?(eo) is the
height of the interface aboeg, for a system with bulk nucleation rake> 0 and
defect nucleation ratiy.
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Theorem 1 1. There is an asymptotic speed f(ﬁPh’.e.

i (eo)
VO 20) = i,
exists, and it is a constant almost surelyAvAg) > 0V (Ag — A); moreover,
V(A,Ag) >0if A > 0.
2. LetAc(A) :=inf{Ag:V(A,Ag) > V(A,0)} be the critical value ofg: then,

Ac(A) € (0, +o0).

In proving this theorem, we actually obtain a more precissdption of the
behavior of the system in the supercritical phase> A¢(A): particles actually
accumulate linearly fast on both vertices 0 and 1, but theeh of the system
outside of those two vertices is perturbed only sub-linean other words, the
defect creates a kind of “antenna” at the origin. This caigravith the expected
behavior of the usual PNG with a supercritical localizededgffor which the re-
gion of influence of the additional nucleation process iggveld to extend linearly
in space.

3 Construction of the process
3.1 Graphical construction

LetE = {< x,x+ 1>,x € Z} be the set of edges of the integer liieWe first
construct the process using a Harris representation, lasvlDefine the follow-
ing three independent Poisson systems:

- ¥ ={%,ec E} is a collection of independent Poisson processes of left-
arrows, each with intensityt@2; the individual arrows (omarkg of the pro-
cess at edge will be denoted by %, n > 1, with similar notations for the
other two systems;

— % = {%.,e € E} is a collection of independent Poisson processes of right-
arrows, each with intensitytd2;

— A& ={A,ec E} is a collection of independent Poisson processes of undi-
rected edges, each with intensitt.

% will correspond to jumps of particles to the lef#, to jumps to the right and
A to nucleation times.

GivenT > 0, we first construct the process up to tiffigas follows. There
is positive density of edges carrying no mark of any of thesBam before time
T; between any two such edges, there are almost surely ortiglfimhany marks
appearing by timé, so that they can be ordered them chronologically, and we
need only describe the action of each of the marks.

— If there is a directed arrow at edgeand timet, and if at this time the site at
the source of the arrow is not empty, then one particle assitégumps in the
direction of the arrow; moreover, if after this jump it meatparticle of the
opposite type, they annihilate instantaneously.
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— If there is a mark of /” at edgee =< x,x+ 1 > and timet, then at this time
a particle of typet+ appears at sitg and a particle of type- appears at site
x+ 1; and if the corresponding sites contain particles of theosjie type, a
pair is annihilated instantaneously.

It is then easy to see that the obtained processes for diffesdues ofT are
consistent, and letting go to infinity gives the process for all time. We will refer
to this version of the construction as the processguenched environmerite.
seeing the Poisson processes as a random scenery in whihaidéstic process
evolves.

Remark: If one wanted to construct the process of interacting randatiks
in higher dimension (for which it certainly does exist), #atient method should
be used.

3.2 Construction in terms of interacting random walks

To follow the path of a tagged particle in the previous carmgion, one needs a
rule to determine which of the particles at a given site withp when an arrow
appears, and which will be annihilated when a particle ofjhgosite type arises.
Obviously the process itself will not be affected by the clkoiso we have some
freedom here. Some of the more natural choices are to detlatehe oldest
particle {.e.the one that appeared earliest in the system), or the youpgegle,
or the one that has been at the given site for the longest tinthe shortest time,
is "active”. The rule can even be different for jumps and ailations. We will
refer to such a rule asgiority rule.

For a similar process with finitely many particles at eactetifwhich for in-
stance will be the case if nucleation occurs only at finitegnmsites), the previ-
ous graphical construction can be replaced with the folhgvimterpretation of the
dynamics. Whenever a partidlés born into the system, it comes together with a
"project”, i.e.a family (T;") of independent exponential times of rate 1 and a fam-
ily (¢") of independent signs, and a clock. Those will represenimggiimes and
directions of jumps for the path of this particle, if it werlo@e in an otherwise
empty system.

Choose any priority rule. When a particle is alone, it is alsvéactive”, and
its clock runs deterministically with speed 1. When theeesaveral particles at a
given site, only one of them is active, according to the chosée, and the others
are “sleeping”. The clock of the active particle runs deterstically at rate 1, the
clocks of the other particles do not run at all. Whenever thelcof any particle
reaches the next waiting time for the project of this pagtitthe particle jumps and
the clock is reset.

Another natural choice for a jumping rule could be that atta wiith n par-
ticles, the clock of each of them runs with speeth;1again the distribution of
the numbers of particles at different sites would be the sasni@ the graphical
construction.

Notice that while this construction still makes sense fdinitely many par-
ticles as long as they don’t accumulate, the technical det&ithe construction
would become significantly more technical.
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The previous construction i&belian in the following sense: one particular
priority rule is to order all the particles priori with some indices, and to declare
that the active particle at a site is the one with the loweshjghest, index. Then,
the distribution of the numbers of particles does not depmndhe ordering of
the particles. This allows one to add finitely many new nugd@apoints to an
otherwise infinite system (where the process is constrietpdsing the previous
graphical construction), by declaring that the added glagihave a lower priority
than all the others, and do not see the marks. The Abeliarepsopnsures that the
obtained process is well-defined (again in terms of theibigion of the number
of particles per site if not in terms of trajectories) andnoiiles with the process
constructed graphically from the full family of nucleatipaints.

3.3 Back to the PNG-like description

We saw how to go from a PNG-like description to a family of naigting par-
ticles, but our final goal is to describe the long term behagfahe height (e.
the number of layers) at a given edge, so we need a way to gotbdbk layer
structure. As we saw already the particles of typeorrespond to left boundaries
of plateaux (.e. to steps upward in the profile), and the particles of typeorre-
spond to right boundaries €. to steps downward in the profile). All that remains
to do is to compute the height at edge=< 0,1 >.

Let (@) be the flow of particles of type- through the edgey: (po+ =0and
@' increases (resp. decreases) by 1 whenever a particle ofitypesses to
the right (resp. to the left). Defingg ) similarly as the flow of particles of type
—. LetN; be the number of nucleation marks occurring at eelgby timet and
h: (ep) be the height of the profile at edgg and timet+ (i.e., the cadlag version
in time of the height process). Then,

h(e)) =N—q@" +q . (5)

Fromh(ep) and the previous discussion, it is then easy to obtain théengrofile
of plateaux.

From here on, we will refer to this particular aspect of thegesss as thRan-
domized Polynuclear Growth process RPNG for short.

3.4 Adding a columnar defect

We want to study how the long term behavior of the system {sagrms of the
law of large numbers foh;(ep)) is sensitive to a columnar modification, which
can be described as adding an auxiliary nucleation proggssith rate Ag > 0
localized on the edgey. In other words, the nucleation rate will Beeverywhere
except aky where it isA + Ag.

The construction of the new process can be done exactly the smay as for
the unperturbed system, using a graphical constructionedtidg the marks of
o act the same way as those.df.

The rest of the paper is organized as follows: In Seqﬂon 4study the ho-
mogeneous system and obtain the deterministic asymppeedsfor the height of



On a randomized PNG model with a columnar defect 9

the profile atey. In Sectiorﬂ5, we use a similar process in the half-space es-a s
plified model of the propagation of influence. In Seclipn 6 wieied the analysis
to the full-space process, and finish the proof of Theggem 1.

4 Behavior of the homogeneous procesa (> 0, Ag = 0)
4.1 Eventual covering of the first level line

In deriving the asymptotic speed for the height of the RPN& &br eachA > 0,
we first need to prove that it indeed goes to infinity. The fitgpss to show that
for every interval of the integer line, there is a (randomdiafter which it remains
covered by one of the plateaux of the first RPNG layer.

Let X (resp.Y;) be the position of the left (resp. right) end of the firstday
plateau containingp at timet, if there is oné.e. if h;(ey) > 1 — for completeness,
one can le = +o andY; = —oo if h(ey) = 0.

Let T be the first time at which; = X; + 2. In the absence of nucleation and
of other layers, the behavior of bo#a andY; until the first time wheny = X; +
1 would exactly be that of two independent, centered contisttime random
walks. The effect of the presence of the second and aboves|ayethe previous
description, can only be the suppression of left jump¥ @nd right jumps ofX;
— notice that if there are several particlesvaat timet and one has to jump to
the right, then so doe.

Moreover, with rated there is nucleation on the edgeY;, Y; + 1 >, and when
this occursy; jumps to the right by at least one step. The last thing thabdfact
Y; is if the plateauX;, Y;] merges to the next plateau to its right, which again can
only increase the value &f. The same remarks appiyutatis mutandiso X;.

Taking all those effects into account, one obtains that tbegsgY;) stochas-
tically dominates the biased random wdl) that has rates /2 to jump to the
left and /2+ A to jump to the right. Similarly(X;) is stochastically dominated
by (X;) which is biased to the left. Since the probability

p=P(Vt>0%—%>1) (6)

is positive, one gets that the probability that the plate&@Ly;] eventually covers
the whole space also is positive. One also gets that theogrie deterministic and
finite Ty such that:

At At p
> — - —
P(Vt/Tl,Yt>2andXI< 2)>2 (7

If the first plateau appearing e vanishes at a finite time, one waits for a new
nucleation agy after this time, with the new plateau having a positive pholits
to survive forever. The argument can be repeated each tiengldteau vanishes,
always with the same positive lower bound for the probabdit survival, from
which the result easily follows.

A related fact that we will need in the sequel is the followiAgsuming that
the plateau o is already large at some timbgthen its probability of survival is
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very close to 1. Again the estimate uses standard facts aandom walk with
drift: If 7 is the vanishing time of the plateau, then

P(T=+o—X>1)>1-ce
P(T=+4o|T>1t)>1-cze ™.

Lemma 1 With the above notations, almost surelytY— +c. More quantita-
tively, there exist finite, positive constants C, ¢ apdUch that

P(Vt>To, % >cse™!) > 1-Ce R

Before giving a formal proof of this Lemma, here is a non-r@e explanation
of the phenomenon. The key idea is the following: The plaf&ay;] which we
are following grows whenever it merges with another platefdayer 0, and such
a plateau, having the same “age”[Xg Y;], will have comparable length. In other
words, (Y; — X;) essentially double with positive rate, which give it expatie!
growth.

Proof Let T > 0 be some fixed time, angr be the size of a box around site 0,
to be fixed later. For everyin [—Ky,Kt] and each > 0, letX* (resp.Y*) be the
left (resp. right) boundary of the layer O plateau containinx,x+ 1 > — or +o
(resp.—o) if there is no such plateau. As we saw previously, for evgrarge
enough, we have

A A
P {Vt > to, >qx<x—§t <x+ 3t <th} >1-Ce o,

Applying this estimate to all the edges[efKr, K] simultaneously, we obtain
the following estimate:

A A
P {VXG [—Ki, KT], Vt > 19, X< x— Et <X+ Et <th} >1-—2KsCe b,

This last event clearly implies that the involved plateavertap, which in turn
leads to
P[Vt > to, % < —K7 <K <¥] > 1-2K;Ce 0.

Now takingT > tg and sayKr = €“0/2, and applying Borel-Cantelli, we obtain
the required estimate.

This is already sufficient to ensure that the heigleyafrows at least linearly in
time. Indeed, one can apply the same reasoning to the seayerd The rightmost

edge of the second layer droplet contairmgsay\(t<2), will drift to the right with
speed at least as long as it does not toudf, and if this happens the behavior

of Y; —Yt<2) will be dominated by that of a random walk reflected at 0. Ineoth

words, one gets that after some finite tig€? > ¢, — Kt1/2+¢,
This can be repeated for every new layer, and proves thatreaeimucleation
does survive with positive probability. In other words,

ht (€o)
t

(as) liminf >0. ®)
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A trivial counterpart of that is that the speed of growtlegts bounded above
by the sum of the nucleation and immigration rates, whichliilesghat

(as.) Iimsup@ <A +1< +oo. (9)

4.2 Level lines

In this subsection, we give an additional description oftthre= evolution of the
system, in terms of a family of space-time curves similarttaanmersley process
(cf. [l). The main difference is that the paths of the paeticbetween meeting
points are random walks instead of straight lines.

More precisely, one can see the path of any given particbe fits birth to
its eventual annihilation, is a sequence of vertical andzbotal line segments.
Let %71 be the union of the space-time paths of all the particlesesponding to
endpoints of plateaux of the first layer.

From the study in the previous subsection, we know that witlability one,
every plateau either vanishes in finite time, or grows andgesewith others to
eventually cover the whole line. This means tkatis the disjoint union of a
countable family of finite loops (corresponding to plateaith a finite life span)
and one unbounded curve, which we will denotedayand call thefirst level line
of the process.

Similarly, let ¢k be the union of all the space-time paths of the endpoints of
plateaux of layek, then%j is the disjoint union of a countable family of finite
loops, and one unbounded cu®@ge Notice that in general a component#fand
a component o%; for | £ k need not be disjoint.

Using this description, it is possible to compute the heaftthe RPNG pro-
cess at any edgeand (almost) any timé& Indeed, it is equal to the sum of the
number of level lines that separd®t) from the linet = 0 (i.e.that pass below it
an odd number of times), plus the number of loops contaitéi. This means
that the law a of large numbers foy can be translated into a statement about the
asymptotic density of the level lines.

4.3 The asymptotic speed

The first important remark to make in order to get a law of largebers is that

the height of the RPNG at a given edge and a given time onlyrikpen the

marks present in a particular finite region, which we now twts. Lete be an

edge and let > 0, we say thatx,s) is in thepast cone ¥; of (et) if there is a

sequence of marki@n,tn)1<n<n (WhereN > 0) in the union of the three Poisson

systems?, # and.#" previously defined, such thats one of the endpoints &,

ey is adjacent te,1 for everyn € [1,N], eyr1 =€ ands <ty < --- <tny1 <t.
Then,h (e) only depends on marks with both endpoints in the ddnewhich

in particular means that it depends only on finitely many rmgriotice thawe;

itself can be constructed by looking at finitely many marks).
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Proposition 2 Recall that g is the edge at he origir: 0,1 >. For eachA > 0,
there exists A ) > 0 such that, almost surely,

Proof The proof is based on a sub-additivity argument. {zet, be two large
times {.e,, larger than a constant to be determined later). As we sanhéight
h, +t,(e0) depends only on what happens within the cugg, +,.

Firstlook at what happens inside the cdfg;, _ 5. Attimet; —/ty, there are
htl,\/rl(eo) layers inthe RPNG processet This height is equal to the number of
pairs of particle paths exiting the cone from opposite s{tles+-particle exiting
at position 1 or to the right of 1, and the-particle at position O to the left of 0).
We know in advance that this number is at most lineat jibut we will not use
this fact.

By a previous estimate, any one of those lines has a positofzapility, uni-
formly bounded below by > 0 (as in equatioﬂ 6), not to annihilate before time
t; + /to. Besides, survival of one of them ensures the survival dhalblder {.e.
lower) ones, so that the number of annihilating lines issastically dominated
by a geometric distribution of parameter- 0.

Lemma[]l ensures that a surviving plateau is very likely teehigs/width in-
crease at least exponentially fast, so similarly the nunzbef lines created in
Veo’tr& and which either vanish before tinte+ /t2, or survive up to this time
but do not reach widtlsse®s(vVi+v%) is stochastically dominated by a geometric
variable of parametgr for somep’ > 0 independent of; andts.

Let N; be the number of pairs of lines created/g&tl_\/q, N; be the number

of those pairs that exife, 1, +t, from opposite sides before tinte+ />, and let
N be the number of pairs of lines created in the cone of depth /t; with tip at
(ep,t1 +1t2) and exiting that cone from opposite sides. By the monottnafithe
dynamics in terms of the height function, together with thénition of\4, ,+,, we
almost surely have

h[1+'[2 (eo) 2 Ni + N2~

Let (H;) and(H{) be two independent copies of the procéssey)): the pre-
vious construction leads to the following stochastic dation statement:

iyt = Hy -y +HG- 5 —9(F) (10)

where the notatio®(p’) stands for an independent geometric variable with pa-
rameterp’. Use the fact thaltl, grows at most linearly imto obtain

H, +t, = Hy + Htlz -94(p)—C[viL+vi].

This super-convolutive relation readily implies a stroag lof large numbers (see

@D
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Fig. 2 The interaction between the two cones in the proof of the gsition

5 The half-space system
5.1 Description of the simplified model

We first consider a simplified model, where we can study thecefff the slow-
down present in the real model when several particles octhggame site. The
initial configuration is empty; at each occurrence of a Rwiggrocess iR, of
intensityA, a particle is created at site 1 — and this is the only sourgadfcles
in the system. Particles move according to the same mechasglescribed in
the basic homogeneous model, and are annihilated uponchitie site 0. Note
that this implies that the negative half-space remains eioptall time.

Analogous to the question treated in Sec{ipn 4 we considevahdity of the
law of large numbers for the total numkiéyr of particles present at tinte

Theorem 2 There exista (" € (0, +0) such that:

1. IfA < )\C(l), then N/t tends to zero almost surely, ast +, and the law of
the particle system converges to a measure under which trected number
of particles at any site is finite;

2. 1fA > ALY, then there exists® (A) € (0,+) so that N/t — vV (A ) almost
surely, as t— 4o, and the number of particles at siteat time t tends te-o
linearly in t almost surely;

3. IfA= /\C(l), then N/t tends to zero almost surely, ast +o, but the expected
number of particles at any site goes to infinity with time.

We will give two independent proofs of this theorem, corgfing to two
distinct interpretations of the behavior of the system. fiits¢ one uses a descrip-
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tion of the dynamics in terms of a zero-range process; ikiyithat it already
appeared in some form in the literature, but we still giveoitg$ake of complete-
ness. The second proof, which uses the interpretation gfdties of the individual
particles as interacting random walks, provides a bettderstanding of the na-
ture of the phase transition.

5.2 Interpretation in terms of a zero-range process

We start with the study of the system for a low rate of partarkeation, namely
with A < 1/2. For anyp € (0,1), let u, be the measure on particle configurations
onZ., defined as followsp,-almost surely there is no particle at site 0, and the
numbers of particles at the sites- O are i.i.d. geometric random variables of
parametep. In particular, the probability that sifeés non-empty is equal tp.

Notice that the particle system in this case is a zero-rangeegs or¥., with
a particular boundary condition: Indeed, from each nontgnsgge i > 0, with
rate 1 one particle jumps, with equal probability to eitherghboring site. The
boundary condition at the origin is the combination of a seuand a sink: A
particle jumping from site 1 to the left disappears, anddesihere is a raté of
particle creation at site 1.

It is easy to see that for the particular chowe= 2, the measurg, is sta-
tionary: Indeed, products of geometric distributions dveags stationary for the
zero-range process, all that needs to be checked is theibehathe boundary.
Underpp, site 1 loses particles with rape(i.e. with rate 1 when it is non-empty),
and gains particles with rat® + p/2 (from the source and from site 2). So, if
P =2A, Up is stationary, and ip < 2A, the occupation probability of site 1 in-
creases with time.

Since the dynamics is attractive, we have convergencémsidirom the empty
configuration, and by what precedes, the limit mustbe. Moreover, if p;(i)
denotes the probability that sités occupied at time, thenp (i) increases to 2
ast — +oo, and besides the expected numbegrof particles entering the system
between times 0 anfl (counted algebraically,e. counting the particles that leave
the system negatively) satisfies:

E(Ny) :/(;T ()\ _@> dt = o(T).

Now, assume that > 1/2: From what precedesg (i) is still non-decreasing
as a function of, and it is bounded by 1, so that it converges. But again by mono
tonicity, the limit has to be at least equal td’Zor anyA’ < 1/2. Hence, we get
that

Vi>0, p(i)—1
Then, by the same reasoning as previously, we see thatlparticter the system

at rateA and leave it at a rate that converges @ ,1so that with probability 1, as
I — oo,
N; 1

A Z>o0.
T A=5>0
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The last thing we need to prove is that, for> /\é”, particles accumulate
at site 1. Once again, one sees that at timgarticles arrive at site 1 with rate
A+ p(2)/2, and leave with rate; (1). Since bothp; (1) andp(2) converge to 1,
one gets that the number of particles at site 1 grows lineditlye same rate &§.

Comparison with the cases < Ac(l) andA > Ac(l) directly tells us that, at
criticality, N; /t — 0 almost surely, while the expected number of particlestat si

i and timet is bounded below by that of the system for ahy /\C(l>, which
converges to A(1— 2A). In other words, the expected number of particles at site
i goes to infinity with time.

The construction also tells us that, still far> Ac(l), almost surely there is a

(random) timer after which site 1 will always be occupied. This means eyactl
that, seen from the sité$: 2, it will act like a source of rate /R, so the restriction
of the system to{2,3,...} behaves asymptotically the same way as the whole

system taken at = )\c(l). In particular, the number of particles that are present in
{2,3,...} grows sub-linearly (which we knew already by comparisoiNo&and
the number of particles at site 1).

5.3 Interpretation in terms of random walks

Here we will present an alternative proof of Theor@m 2 in ®ofthe interacting
random walks described in the beginning of this Section. Agaamn-up, let us
prove that there is indeed linear accumulation of partiatesite 1 ifA > 1. Atany
given timet, there is a certain number of particles, and each of themdasit

for some time, as given by its project (but only one of themasting, the others
are sleeping). Lelt; be the sum of these waiting times. Then by our rules, up to
timet + L; at least one of these particles will still be at site 1.

Between times andt + h, a few things can happen. If there is no new particle
born or arriving, ther.; ., = Ly — h; if on the other hand a new particle is born
(which happens with probability of orderh if h is small, and ift is the first
waiting time of its project, then the new valuelofs at least equal tb; —h+T1.

If a particle is arriving at site 1 (from site 2), agdins increased by an Exf)
random variable, but we omit this for now.

In other words); stochastically dominates a proces®in with constant drift
—1 and rateA to make jumps to the right that are distributed as i.i.d. Bxpan-
dom variables. IfA is larger than 1, then this process has a positive probabilit
never return to 0 after its first jump. This means that thetkaivays be particles
at site 1 after some (random) finite time.

Now, we can obtain linear growth as follows: Split the incamparticles into
two Poisson processes, one with intensity 4 wheree is chosen small enough
that 1+ ¢ < A, and an independent one with intensky- 1 — ¢ > 0. Chose a
jumping rule such that particles of the second process haverlpriority than
those of the first one. Then, by the previous reasoning teexreandom finite time
after which there will always be at least one particle of th& forocess at site 1;
and after this time, every particle of the second process abt will never move.
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In particular, lettinge go to 0, we see that the number of particles at 1 will grow
linearly with time, with speed at least— 1. Of course this is far from optimal, as
was seen in the previous subsection.

We now address the case wheris smaller than\c(l). The general idea is the
following: It is well known that ifX; is a continuous time random walk started at
site 1 and killed at the first time it hits O, then for edck 1 the expected timi;
spends at sitkis equal to 2. Lety (k) be 1 if there is at least one particle at dite
attimet, and O in the opposite case. I&tbe the total number of particles created
by timet. By the previous construction, we have for eviry

t G
/O ne(K)ds < i; 7(K), (11)

whereT; (k) is the total time spent at siteby the project of the-th walk. Since
E(7i(k)) = 2, we immediately get that

. 1/t
limsup= [ ns(k)ds< 2A.
t—+oo t 0

What we want to quantify is the following remark:Af< 1/2, thepedestalsre-
ated by the particles when they interact do not cover the avtioie line at any
level (because their density is smaller than 1), meaningahg added particle,
even with very low priority, will have a chance to jump in fimitime, and its ac-
tual path will look like a time-stretched random walk. Thendomparison with
stick-percolation, we automatically obtain a sub-lineavgh.

To make these remarks precise, we need some quantitativeatest on the
distribution of the lengths of pedestals at different lsvélirst of all, consider
what happens at level 1. Particles are created withyaimmigrate from site 2 at
some of the times of a Poisson process of intensi®/(Le. whenever there is at
least one patrticle at site 2, one of these jumps to 1 with ra2¢; land when site
1is occupied, it loses particles with rate 1, either to theratary or to site 2. Let
T be any (possibly random) stopping time at which site 1 is pxll As long as
it remains so, the number of particles at 1 behaves like a jprapess, jumping
by —1 with rate 1 and b1 with rate at mosf +1/2 < 1. Hence, the drift is
negative, and if we denote by + 1 the first time aftefT when site 1 becomes
empty, we have an exponential estimate of the form

VteR,, P(T>t)<Me ™ (12)

whereM; andm, are positive constants depending on the valug ofet A’ =
%(/\ +1/2): then by Cramér’s theorem, for evely € (A’,1/2), we get the fol-
lowing estimate, for positivé1; andm; depending o\ andAs:

:
VTi<To, P (/ * ns(1)ds > 2)\1(T2—T1)> < Mle Mt (13)
JTy

(Notice that if we restricted ourselvesTp= 0, then this kind of estimate would
hold all the way down t@\1 > A, because the integral on the left is then bounded
above by the sum of the times particles spend at site 1.)
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Now consider the next level. Particles immigrate to site drfrsite 1 with
intensity at mosf\; < 1/2, and from site 3 with intensity at mosf24. Using the
previous estimates, but lettingbe the survival time of a pedestal at site 2, we
obtain

VteR,, P(T>t)<Me ™ (14)

whereM; andm, depend omt andA;. Then one can choske € (A{,1/2), and
continue similarly for each successive level.

Let K be a positive integer. We split the particles into two clasgieose that
remain within{1,...,K} at all times (which we cathallowparticles), and those
that visit siteK + 1 at least once (which we calkepparticles). Fix a priority rule
such that deep particles have lower priority than shallowiglas. So, we first
consider the shallow particles; I be the number of shallow particles that are
present at timé. Assume that it grows linearlyie. that there exist two (random)
real numbers > 0 andb such that for alt > 0, N > at+ b. For ease of notation,
let us assume thdt= 0 — up to a time shift, it does not reduce the generality of
the argument.

Then, for eaclh > 0, there is an integd¢ € {1,...,K} such that at time, site
ki contains at leastt/K particles. The survival time of the corresponding pedestal
is then bounded below by the sum [@ft/K | exponential variables of parameter
1 — indeed, before the site becomes empty again, all theselpameed to jump
out, which they do with rate 1. So we get a lower bound for theigal time
which is of ordert. By the previous computations and the Borel-Cantelli lemma
this can only happen finitely many times, hence the numbehafeav particles
cannot grow linearly in time.

The last remark is the following: The number of particled i@ present in
the system at time is equal to the sum of the number of shallow particles, of
which there are sub-linearly many, and the number of deejces. But a given
particle is shallow with probability exactly equal te-11/(K + 1), and deep with
probability 1/(K + 1), in other words the number of deep particles cannot grow
faster thamt/(K + 1), and we obtain the following upper bound: Almost surely,

. N A

IltTiEop t S K+1
Since this holds for everig > 0, we can conclude that the total number of particles
indeed grows sub-linearly.

6 The full-space system
6.1 Without bulk nucleation

We begin the study of the full-space system with the case evties bulk nucle-
ation rate is equal to 0. The dynamics are the following: A0, the system is
empty; at the occurrences of a Poisson process of intehs#yparticle is created
at site 1 and an anti-particle is created at site 0. The jumghar@sm is the same
as previously: Whenever there degarticles at a given site, each of them jumps
away symmetrically with rate/k; or equivalently, one of them, chosen according
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to some priority rule, jumps away symmetrically with raté ast, whenever a par-
ticle and an anti-particle occupy the same site (be it bexans was just created
or through a jump), they annihilate instantly, so that catagion of particles of
different types at any site is impossible.

As previously, lefN; be the number of particles alive at tirhe— note that this
is also the number of anti-particles present in the syst@ameghey are created
and annihilated in pairs.

Theorem 3 There existd¢(0) € (0,+) such that:

1. If Ap < Ac(0), then N/t tends to zero almost surely ast +o;

2. If Ao > Ac(0), then there exists(@, Ag) € (0,+o0) so that N/t — v(0,Aq) al-
most surely as t- +o0; moreover, the number of particles at siteat time t
also tends tot-o linearly with the same speed.

We first give a general stochastic domination lemma. ForyeverZ, letn; (t)
be the number of particles present at site timet, ny (t) be the number of anti-
particles present at siteat timet, and letny(t) := n; (t) — n (t).

Lemma 2 There exists a countable fami(X*)xcz of continuous-time random
walks onZ., with jump ratel, and a coupling of théX*) with the previously
described particle system, satisfying the following ctiadiwith probability1:

vxeZ\{0,1}, Wt>0, |n(t)] <X

Proof Letx € Z, and in the graphical construction of the process (cf. 8a3),
let (Txk)kso0 (resp.(Ty,)) be thek-th time at which there is an arrow pointing
toward (resp. away from) site DefineX* as follows: X} = 0, X* jumps up by
1 at each of thdr,,, and jumps down by 1 at eatke {T,, } such that*. > 0.
Clearly, X* behaves like a continuous-time random walk whenever it sitpe;
and it can only jump up when it is equal to O.

Now assumex ¢ {0,1}. This means that, can only change when a particle at
Xjumps away (in which cadey| decreases by 1), or when a particleatl jumps
onto x (in which case, depending on the types of particles involed either
increases on decreases by [h)| remains constant otherwise. In other words,
wheneverny| jumps up, so doeX*, and wheneveK* jumps down, so doesy|
— provided it is positive. It is then easy to verify that forcha > 0, [nk(t)| < X~

Notice that theX* are not independent from each other, sidceand X*+1
(say) share some of their jump times (howevet,and XY are independent as
soon agy — x| > 2). Nevertheless, the existence of {he) is sufficient to obtain
the following fact: With probability 1,

wez\{01}, fim

Jim = —o. (15)

In other words, the number of particles at a site which is nebarce can never
grow linearly. A slight generalization of this fact is thdléwing:
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Lemma 3 For each x> 1, the expected total number of particles to the right of x
grows sub-linearly; equivalently, as a consequence of tegipus Lemma, with

probability 1
1_|&
iE k;lnka)\ —0

Proof Let py(t) be the probability that site is non-empty at timé. Imagine for
a moment that there were not anti-particles in the systeem,ttlearly we would

have
dE[ 5 nk(t)] _ Px() = pena(t).

k=x+1 2

Indeed, particles move into the half-line to the rightxoWith rate /2 when-
ever sitex is non-empty, and they exit with the same rate wheneverxsité is
non-empty. Taking the existence of anti-particles intocaict (which can only
decrease the total number of particles to the right tfrough annihilation) and
integrating ovet, one gets:

E |nk / Px(s px“ P(S) = Peia(S) (16)
k_x+1
Now, let

¢ = limsup- E[zmx ]

t——+oo

As a consequence of Lemrfja 2, the same holds when summingroveat-line
{X,x+1,...}. Besides, for everi € Z..,

/ p2 p2+K / P24 k(S p2+k+1(5) ot
k 0

g kZOE LszH'nX( )|] .

Lettingt go to infinity, one gets

limsup— /p2 p2+|< )dt>K¢.

t—+oo t

On the other hand, thg(t) are bounded by 1, so we obtaiK@ < 1. Since this
holds for allK, it implies thatp = 0, which concludes the proof.

We are now ready to prove Theorén 3. We already know from pusvion-
siderations that ifA is large enough (compared to the jump rate), then particles
accumulate at site 1 and anti-particles at site 0 — if (ay) 2 it works very
easily. Conversely, assume now tiats chosen such that there is linear growth
of the total number of particles in the systdrs, that there existg > 0 such that,
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for t large enoughE[N(t)] > vt. From what precedes, this implies that particles
accumulate linearly at site 1, and anti-particles accutediaearly at site 0.

In particular, after some random time sites 0 and 1 remaistamitly occupied.
The number of particles at site 1 can then change for se\eaabns:

— Particles can jump from 1 to one of its neighbors. This happeith rate 1,
and decreasey by 1;

— Anti-particles can jump from 0 to 1. This happens with raf@ {remember
that we are in a case when site 0 is never empty), and decneglbeq;

— Particles or anti-particles can jump from site 2 to site lisHtappens with rate
at most 2, and can increase or decreagédy 1;

— A nucleation can happen 6n 0,1 >. This happens with ratk, and increases
ny by 1.

Taking all these influences into account, we find that the sétshange ofn; is

bounded above by1—1/2+1/2+A = A —1. In particular, ifA <1, comparison
with a random walk with negative drift ensures that site 1 wihpty eventually,
which contradicts our assumption. In other words, we ob&{®) > 1 > 0, as
claimed.

The process can then be compared to the half-space versibe gfevious
section: Once we know that site 1 never empties, then it e=hbke a source
of particles with critical intensity, and in particular tbecupation probability of
site 2 increases to 1. Re-injecting this into the above atioy of the variations
of ny, the third source (particles jumping from 2 to 1) has rateragghing 12,
meaning that the upper bourdd— 1 is sharp as — 4. So, if A > 1, we do
have accumulation of particles at site 1, which allows usotectude that indeed
Ac(0) =1.

6.2 With bulk nucleation

We are now ready to put all the pieces of the constructionttegeStart with a
full-space RPNG as described in Secflon3i¢k) be its height functioni,e. the
height at time& of the highest layer covering the edgex,x+ 1 >. Notice that the
whole dynamics can be described in terms of this functiopairticular, with the
previous notation we hawg(t) = h(x— 1) — hy(X).

Now add an extra rat& of nucleation on the edg® =< 0,1 >, and leth/ be
the height function of the modified process. By monotonioitthe dynamics, it is
obvious that{ > h; leth; (x) = h{(x) —h(x) > 0. We are interested in differences
in the law of large numbers between the two versions of thegqa®, and this can
be interpreted as asymptotic propertiesy@D) /t.

We introduce an auxiliary particle system, composed of wietall virtual
particles defined as follows: Lety{t)h(x — 1) — h(X); if fix(t) is positive (resp.
negative), we say that at tiniehere arefiy(t)| virtual particles (resp. virtual anti-
particles) at sitex. A good way of thinking of this process is as the symmetric
difference between the two original ones.

The dynamics of the virtual particles is easy to describhiatdoint: They use
the same arrows as in the graphical construction of ther@igirocess, except
that the presence of a true particle inhibits the jumps dlsirparticles at the
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same site (equivalently, a virtual particle only sees asrtivat are “uncovered” by
the original process); and they annihilate with virtualigoarticles, as expected.

We want to apply the same strategy to this process as we dietiprevious
subsection, in particular we will need equivalents to leraphand[3.

Lemma 4 With probability1, for every xc Z\ {0, 1}, fix(t) = o(t).

Proof From the previous subsection, we know that for eveeyZ\ {0, 1}, nk(t)
is at most of ordet'/2. Assume that for some) € Z \ {0,1},
Fixy (1)

Y :=limsup——— > 0.
t—+oo t

Becausens defined as a difference of height functions, we know that

ie(t) = fixs1(t) = (e (x— 1) = Pe(x)) — (R0 — Pe(x+ 1))
= — (2 () —h(x+1) —h(x—1))

+ (2 () — he(x+1) —h(x— 1))
= (MG(t) = b2 (1) = (Me(t) — s (1)),

where as abovg)(t) := h{(x— 1) — h{(x). This last expression is at most of order
t¥/2, by Lemmdp.

Now let () be a sequence of times increasingte, such thatny () ~
Ytx. By the previous estimate, we obtain that for everyZ\ {0,1} of the same
sign asxp, we also haveng(ty) ~ Ytx. On the other hand, the total number of
virtual particles is at most equivalent Agt, because they are created by the extra
nucleations at the edge 0,1 >. Hencey = 0.

Lemma 5 For each x> 1, the expected total number of virtual particles to the
right of x grows sub-linearly; as a consequence of the previemma, this is
equivalent to saying that with probabilitly

1 [fmm] ~o0
U &
Proof The proof is the same as that of Lemfiha 3, replagig(@) with
Px(t) := P[fix(t) > 0, nx(t) = 0],
and of course making use of Lemifja 4 instead of Leffjma 2.

The end of the proof of Theorefh 1 is the same as in the previthsestion: If
there is a change in the law of large numbers when adding aicteon< 0,1 >,
then this implies that there is linear accumulation of \attparticles at 1 and
virtual anti-particles at 0; and because the number of gdagtiat these sites for the
original process grows less than linearly (by Lenjiha 2),ithiglies accumulation
of real particles in the modified process — because as we savealy = n, — n.

In particular, after some random time sites 0 and 1 remaistemitly occupied.
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All that remains to be done is to account for all the sourceshahge oft}. In
addition to the ones mentioned in the previous subsectiemeed to take care of
bulk nucleation at edges 0,1 > and< 1,2 >, but this adds a martingale term to
n}, hence the end-result is the same: The drift/pfs bounded above b — 1,
and in particulai¢(A) > 1.

One thing that is missing though in this case is a preciserigtien of the
half-space process, which is not the same as above becaogik ofucleation. In
particular we cannot prove that the occupation probabilityite 2 increases to 1,
and thus are unable to determine the exact valug@f); the best we obtain here
isAc(A) €11,2].
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