Jean-Luc Beuchat 
  
Nicolas Brisebarre 
  
Jérémie Detrey 
  
Eiji Okamoto 
  
  
Arithmetic Operators for Pairing-Based Cryptography

Keywords: η T pairing, finite field arithmetic, elliptic curve, hardware accelerator, FPGA

Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. Software implementations being rather slow, the study of hardware architectures became an active research area. In this paper, we first study an accelerator for the ηT pairing over F3[x]/(x 97 + x 12 + 2). Our architecture is based on a unified arithmetic operator which performs addition, multiplication, and cubing over F 3 97 . This design methodology allows us to design a compact coprocessor (1888 slices on a Virtex-II Pro 4 FPGA) which compares favorably with other solutions described in the open literature. We then describe ways to extend our approach to any characteristic and any extension field.

Introduction

Introduced in cryptography for code-breaking purpose [START_REF] Frey | A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves[END_REF][START_REF] Menezes | Reducing elliptic curves logarithms to logarithms in a finite field[END_REF], the Weil and Tate pairings are at the heart of an ever increasing number of protocols since the work of Joux [START_REF] Joux | A One Round Protocol for Tripartite Diffie-Hellman[END_REF] who first discovered their constructive properties. The interested reader should refer to the survey by Dutta, Barua, and Sarkar for further details [START_REF] Dutta | Pairing-based cryptographic protocols: A survey[END_REF]. According to [START_REF] Granger | High security pairing-based cryptography[END_REF][START_REF] Koblitz | Pairing-based cryptography at high security levels[END_REF], when dealing with general curves providing common levels of security, the Tate pairing seems to be more efficient than the Weil pairing. Let E be a supersingular 1 elliptic curve over F p m , where p is a prime and m a positive integer, and let E(F p m ) denote the group of its points. Let > 0 be an integer relatively prime to p. The embedding degree (or security multiplier) is the least positive integer k satisfying p km ≡ 1 (mod ). Let E(F p m )[ ] denote the -torsion subgroup of E(F p m ), i.e. the set of elements P of E(F p m ) that satisfy [ ]P = O, where O is the point at infinity of the elliptic curve. Let P ∈ E(F p m )[ ] and Q ∈ E(F p km )[ ], let f ,P be a rational function on the curve with divisor (P ) -(O) (see [START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF] for an account on divisors), there exists a divisor D Q equivalent to (Q) -(O), with a support disjoint from the support of f ,P . Then the Tate pairing2 of order is the map e :

E(F p m )[ ] × E(F p km )[ ] → F * p km
defined by e (P, Q) = f ,P (D Q ) (p km -1)/ . It satisfies the following properties:

-Non-degeneracy. For all P ∈ E(F p m )[ ] \ {O}, there is some point Q ∈ E(F p km )[ ] such that e (P, Q) = 1. -Bilinearity. For all P, P 1 , P 2 ∈ E(F p m )[ ] and

Q, Q 1 , Q 2 ∈ E(F p km )[ ],
e (P 1 +P 2 , Q) = e (P 1 , Q)e (P 2 , Q) and e (P, Q 1 +Q 2 ) = e (P, Q 1 )e (P, Q 2 ).

Hence, for all P ∈ E(F p m )[ ] and Q ∈ E(F p km )[ ], and for all a ∈ Z, e ([a]P, Q) = e (P, [a]Q) = e (P, Q) a .

In [START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF], Barreto et al. proved that this pairing can be computed as e (P, Q) =

f ,P (Q) q k -1
, where f ,P is evaluated on a point rather than on a divisor. In this paper, we deal with the characteristic three case and consider E b , a supersingular elliptic curve over F 3 m : E b : y 2 = x 3 -x + b, with b ∈ {-1, 1}. According to [START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF], curves over fields of characteristic three often offer the best possible ratio between security level and space requirements.

Different ways for computing the Tate pairing can be found in [START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF][START_REF] Duursma | Tate pairing implementation for hyperelliptic curves y 2 = x p -x + d[END_REF][START_REF] Galbraith | Implementing the Tate pairing[END_REF][START_REF] Kwon | Efficient Tate pairing computation for supersingular elliptic curves over binary fields[END_REF]. In [START_REF] Barreto | Efficient pairing computation on supersingular Abelian varieties[END_REF], Barreto et al. introduced the η T pairing which extended and improved the Duursma-Lee techniques [START_REF] Duursma | Tate pairing implementation for hyperelliptic curves y 2 = x p -x + d[END_REF]. To do it, they first need to consider the following distortion map ψ : E b (F 3 m ) → E b (F 3 6m ) defined, for all R ∈ E b (F 3 m ) by ψ(R) = ψ(x r , y r ) = (-x r + ρ, y r σ), where σ and ρ belong to F 3 6m and respectively satisfy σ 2 = -1 and ρ 3 = ρ + b (that concept of distortion map was introduced in [START_REF] Verheul | Evidence that XTR is more secure than supersingular elliptic curve cryptosystems[END_REF]). We define the modified Tate pairing ê by ê(P, Q) = e(P, ψ(Q)) for all

P, Q ∈ E(F 3 m )[ ].
Moreover, following [START_REF] Kerins | Efficient hardware for the Tate Pairing calculation in characteristic three[END_REF], we construct F 3 6m as an extension of F 3 m using the basis (1, σ, ρ, σρ, ρ 2 , σρ 2 ), which is equivalent to considering the tower

F 3 m , F 3 2m F 3 m [y]/(y 2 +1) and F 3 6m F 3 2m [z]/(z 3 -z -b).
Hence, the computations over F 3 6m are replaced by computations over F 3 m . The η T pairing is defined by η T (P, Q) = f T,P (ψ(Q)), for some T ∈ Z and for all P and Q ∈ E(F 3 m )[ ]. To get a well-defined, non-degenerate, bilinear pairing, a final exponentiation is required: namely η T (P, Q) W in our case, where

W = (3 3m -1)(3 m +1)(3 m -b3 m+1 2 
+1). Moreover, the η T pairing is related to the modified Tate pairing by (η

T (P, Q) W ) 3T 2 = ê(P, Q) Z , where T = -b3 m+1 2 -1 and Z = -b3 m+3 2 . If v denotes η T (P, Q) W ,
the modified Tate pairing can be computed as follows

ê(P, Q) = v -2 • v 3 (m+1)/2 • 3 m v 3 (m-1)/2 -b .
The algorithm given in [START_REF] Barreto | Efficient pairing computation on supersingular Abelian varieties[END_REF] for computing the η T pairing halves the number of iterations used in the approach by Duursma and Lee [START_REF] Duursma | Tate pairing implementation for hyperelliptic curves y 2 = x p -x + d[END_REF] but has the drawback of using inverse Frobenius maps. In [START_REF] Beuchat | An algorithm for the ηT pairing calculation in characteristic three and its hardware implementation[END_REF] Beuchat et al. proposed a modified η T pairing algorithm in characteristic three that does not require any inverse Frobenius map. Moreover, they designed a novel arithmetic operator implementing addition, cubing, and multiplication over F 3 97 which performs in a fast and cheap way the final exponentiation η T (P, Q) W [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. In this paper, we extend this approach to the computation of the full η T pairing (i.e. including the final exponentiation). In Section 2, we present a compact implementation of the η T pairing over the field F 3 97 . Then, we show in Section 3 that our approach can be generalized to any characteristic p and degree-m irreducible polynomial f (x) over F p . That generalization is an interesting issue since larger extension degrees could probably be considered in a close future for guaranteeing the security of pairing-based cryptosystems.

Calculation of the η T Pairing in Characteristic Three

The bilinearity of η T (P, Q) W ensures that:

η T (P, Q) W = 3 m η T 3 m-1 2 P, Q 3 m+1 2 W .
Beuchat et al. proposed an algorithm for the calculation of η T (P, Q) 3 (m+1)/2 in characteristic three without any inverse Frobenius map [START_REF] Beuchat | An algorithm for the ηT pairing calculation in characteristic three and its hardware implementation[END_REF]. Therefore, inexpensive pre-and post-processing steps allow one to perform the original η T pairing.

Recall that, for (x p , y p ) ∈ E(F), [START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF](x p , y p ) = (x 9 p -b, -y 9 p ) (see for instance [START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF]). Thus, the computation of 3 (m-1)/2 P involves only 2m-2 cubings and (m-1)/2 additions over F 3 m . The 3 m -th root over F 3 6m is a straightforward operation requiring only seven additions (or subtractions) over F 3 m (see for instance [START_REF] Beuchat | An algorithm for the ηT pairing calculation in characteristic three and its hardware implementation[END_REF]). The final exponentiation is carried out according to a novel algorithm introduced by Shirase, Takagi, and Okamoto in [START_REF] Shirase | Some efficient algorithms for the final exponentiation of ηT pairing[END_REF]. This scheme involves additions, cubings, multiplications, and a single inversion over F 3 m .

In this section we will consider the field F 3 97 = F 3 [x]/(x 97 + x 12 + 2) and the curve y 2 = x 3 -x + 1 over F 3 97 (i.e. b = 1; a straightforward adaptation makes it possible to address the b = -1 case). This choice of parameters allows us to easily compare our work against the many pairing accelerators for m = 97 described in the open literature. Instead of embedding dedicated hardware to perform the inversion over F 3 97 according to the Extended Euclidean Algorithm (EEA), Beuchat et al. [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF] proposed an algorithm based on Fermat's little theorem and on Itoh and Tsujii's work [START_REF] Itoh | A fast algorithm for computing multiplicative inverses in GF(2 m ) using normal bases[END_REF] for F 3 97 . It involves 96 cubings and 9 multiplications. Algorithm 1 summarizes the computation of the full pairing. It is worth noticing that η T (P, Q) W can be computed only by means of additions (or subtractions), multiplications, and cubings over F 3 97 . In the following, we describe the implementation of Algorithm 1 on a Virtex-II Pro 4 Field-Programmable Gate Array (FPGA) and compare our pairing accelerator against results published by other researchers.

Algorithm 1 Computation of η T (P, Q) W for b = 1 [START_REF] Beuchat | An algorithm for the ηT pairing calculation in characteristic three and its hardware implementation[END_REF].

Input: P = (xp, yp) and Q = (xq, yq) ∈ E(F3m )[l]
. The algorithm requires R0 and R1 ∈ F 3 6m , as well as r0 ∈ F3m and d ∈ F3 for intermediate computations. R1 ← -r 2 0 + ypyqσ -r0ρ -ρ 2 ; 13:

Output: ηT (P, Q) (3 3m -1)(3 m +1)(3 m +1-3 (m+1)/2
R0 ← (R0R1) 3 ; 14: end for 15: R0 ← R

(3 3m -1)(3 m +1)(3 m +1-3 (m+1)/2 ) 0 ; 16: R0 ← 3 m √ R0; 17: Return R0;

An Accelerator for the η T Pairing Calculation

In [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF] Beuchat et al. designed a unified arithmetic operator able to perform addition, multiplication, and cubing over F 3 [x]/(f (x)), where f (x) = x 97 + x 12 + 2 [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. The operator is based on the array multiplier architecture proposed by Shu, Kwon, and Gaj in [START_REF] Shu | FPGA accelerated Tate pairing based cryptosystem over binary fields[END_REF] (see [START_REF] Song | Low energy digit-serial/parallel finite field multipliers[END_REF] for an introduction to array multipliers). Since such multipliers process D coefficients of an operand at each clock cycle, they mainly consist of D Partial Product Generators (PPGs), a D-operand adder, and an accumulator. Figure 1 illustrates the architecture of this operator for D = 3; it is controlled by eleven bits labelled c i . Let a(x) and b(x) belong to F 3 [x]/(f (x)). In order to compute a(x) × b(x), one has to load a(x) in the shift register R0, and b(x) in registers R1 and R2. Multiplication is then carried out in m/D = 97/3 = 33 clock cycles. The first iteration computes p(x) = a 96 b(x) (c 4 = c 6 = c 7 = c 8 = 1, c 10 = 0). Then, we update p(x) as follows:

p(x) ← x 3 p(x) mod f (x) + a 3i+2 x 2 b(x) mod f (x) + a 3i+1 xb(x) mod f (x) + a 3i b(x),
where 31 ≥ i ≥ 0. Addition is somewhat more complex and we will use the toy example proposed in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF] to illustrate how the operator works. Let us assume we have to compute -a(x)+b(x). We respectively load a(x) and b(x) in registers R2 and R1 and define a control word stored in R0 so that d0 3i = 2, d0 3i+1 = 1, and d0 3i+2 = 0. We will thus compute (2a

(x) + b(x) + 0 • a(x)) mod f (x) = (-a(x) + b(x)) mod f (x). Beuchat et al. noticed that a(x) 3 = ν 0 (x) + ν 1 (x) + ν 2 (x)
, where ν 0 (x), ν 1 (x), and ν 2 (x) belong to F 3 97 (see Appendix B). Thus, cubing requires the addition of three operands as well as some wiring to compute the c i (x)'s. It suffices to load a(x) in registers R1 and R2. Depending on the control word stored in R0, the operator returns a(x) 3 or -a(x) 3 . In order to efficiently implement successive cubings, a feedback mechanism allows one to load R1 and R2 with the result of a cubing (multiplexers controlled by c 0 and c 2 on Figure 1). Figure 2 describes the architecture of our η T pairing coprocessor, which is mainly based on the hardware accelerator for the final exponentiation introduced in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. It consists of a single processing element (unified operator for addition, multiplication, and cubing), registers implemented by means of a dual-port RAM (six Virtex-II Pro SelectRAM+ blocks), and a control unit which consists of a Finite State Machine (FSM) and an instruction memory (ROM). The main difference with [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF] lies in the control unit and the register file: in order to deal with the computation of the η T pairing, our coprocessor needs a slightly more complex FSM as well as eight additional registers to store control words for additions and cubings of the pairing calculation. Each instruction consists of four fields: a control word which specifies the functionality of the processing element, address and write enable signal for port B of the dual-port RAM, address for port A of the dual-port RAM, and a counter which indicates how many times the instruction must be repeated. This approach allows for instance to execute the consecutive steps appearing in the multiplication over F 3 97 with a single instruction. Note that our implementation of the η T pairing for m = 97 and D = 3 does not require the 2 6 values of the counter. It is therefore possible to encode the required values with fewer bits in order to reduce the width of the instructions.

Since the implementation of the final exponentiation on such an architecture has already been discussed in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF], we will focus here on the computation of η T 3 (m-1)/2) P, Q

3 (m+1)/2
. It is now well known that the tower field representation and Karatsuba-Ofman's algorithm allows one to replace a multiplication over F 3 6m by 18 multiplications and 58 additions over F 3 m (see for instance [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF][START_REF] Kerins | Efficient hardware for the Tate Pairing calculation in characteristic three[END_REF]). Further optimizations are however possible in the case of the η T pairing calculation. Multiplying R 0 = -y p r 0 + y q σ + y p ρ by R 1 = -r 2 0 + y p y q σ -r 0 ρ -ρ 2 involves for instance only 8 multiplications and 9 additions over F 3 m (see Algorithm 4 in Appendix A for details). As pointed out by Bertoni et al [START_REF] Bertoni | Parallel hardware architectures for the cryptographic Tate pairing[END_REF], the multiplication over F 3 6m occurring in the main loop of the pairing calculation (Algorithm 1) requires 13 multiplications over F 3 m . The implementation of Algorithm 1 on this architecture takes 895 instructions 3 which are executed in 32618 clock cycles. The inversion over F 3 97 is performed by means of 96 cubings and 9 multiplications over F 3 97 [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. Eighteen control words, stored in the dual-port RAM, manage all additions and cubings involved in the computation of the full pairing. Table 1 summarizes the operations over F 3 m needed in the computation of η T (P, Q) W . The last column indicates the number of clock cycles during which only load/store operations are performed. When m = 97, our coprocessor is for instance idle during 1704 clock cycles (i.e. 5.2% of the total computation time). Grabher and Page designed a coprocessor dealing with arithmetic over F 3 m , which is controlled by a general purpose processor [START_REF] Grabher | Hardware acceleration of the Tate Pairing in characteristic three[END_REF]. The ALU embeds an adder, a subtracter, a multiplier (with D = 4), a cubing unit, and a cube root operator based on the method highlighted by Barreto [START_REF] Barreto | A note on efficient computation of cube roots in characteristic 3[END_REF]. This architecture occupies 4481 slices and allows one to perform the Duursma-Lee algorithm and its final exponentiation in 432.3 µs. The main advantage is maybe that the control can be compiled using a re-targeted GCC tool-chain and other algorithms should easily be implemented on this architecture. Our approach leads however to a much simpler control unit and allows us to divide the number of slices by 2.3.

Another implementation of the Duursma-Lee algorithm was proposed by Kerins et al. in [START_REF] Kerins | Efficient hardware for the Tate Pairing calculation in characteristic three[END_REF]. It features a parallel multiplier over F 3 6m based on Karatsuba-Ofman's scheme. Since the final exponentiation requires a general multiplication over F 3 6m , the authors can not take advantage of the optimizations described in this paper and in [START_REF] Bertoni | Parallel hardware architectures for the cryptographic Tate pairing[END_REF] for the pairing calculation. Therefore, the hardware architecture consists of 18 multipliers and 6 cubing circuits over F 3 97 , along with, quoting [START_REF] Kerins | Efficient hardware for the Tate Pairing calculation in characteristic three[END_REF], "a suitable amount of simpler F 3 m arithmetic circuits for performing addition, subtraction, and negation". Since the authors claim that roughly 100% of available resources are required to implement their pairing accelerator, the cost can be estimated to 55616 slices [START_REF] Shu | FPGA accelerated Tate pairing based cryptosystem over binary fields[END_REF]. The approach proposed in this paper reduces the area and the computation time by 29 and 3.8 respectively.

Beuchat et al. described a fast architecture for the computation of the η T pairing [START_REF] Beuchat | An algorithm for the ηT pairing calculation in characteristic three and its hardware implementation[END_REF]. The authors introduced a novel multiplication algorithm over F 3 6m which takes advantage of the constant coefficients of R 1 . Thus, this design must be supplemented with a coprocessor for final exponentiation and the full pairing accelerator requires around 18000 LEs on a Cyclone II FPGA [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. The computation of the pairing and the final exponentiation require 4849 and 4082 clock cycles respectively. Since both steps are pipelined, we can consider that a new result is returned after 4849 clock cycles if we perform a sufficient amount of consecutive full η T pairings. In order to compare our accelerator against this architecture, we implemented it on an Altera Cyclone II EP2C35F672C6 FPGA with Quartus II 6.0 Web Edition. Our design occupies 2846 LEs and the maximal clock frequency of 125 MHz allows one to compute a pairing in 261 µs. The architecture proposed in this paper is therefore 8 times slower, but 6.3 times smaller. Note that the critical path is located in the control unit: the glue logic generated by Quartus II to interconnect M4K memory blocks storing the instructions seems to slow the whole design down. It is possible to further pipeline the control unit and to compute the full pairing in 222 µs.

In order to study the trade-off between circuit area and calculation time of the η T pairing, Ronan et al. wrote a C program which automatically generates a VHDL description of a coprocessor and its control unit according to the number of multipliers over F 3 m to be included and the parameter D [START_REF] Ronan | Hardware implementation of the ηT pairing in characteristic 3[END_REF]. An architecture embedding three multipliers processing D = 8 coefficients at each clock cycle computes for instance a full pairing in 178 µs. Though 1.25 times faster, this design requires five times the amount of slices of our pairing accelerator. Our approach offers a better compromise between area and calculation time. The unified operator for arithmetic over F 3 [x]/(x 97 + x 12 + 2) introduced in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF] allowed us to design the smallest FPGA-based pairing accelerator in the open literature. However, in order to guarantee the security of pairing-based cryptosystems in a near future, larger extension degrees will probably have to be considered, thus raising the question of designing such a unified operator for other extension fields. We wrote a C++ program which automatically generates a synthesizable VHDL description of a unified operator according to the characteristic and the irreducible polynomial f (x).

Addition, Multiplication, and Frobenius Map over F p m

The architecture of the operators generated by our program is directly inspired from the unified operator given in Figure 1 and can be adapted to any prime characteristic p and any irreducible polynomial f (x) of degree m. Addition over F p [x]/(f (x)) is performed in the same way as in the operator over F 3 97 presented in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]: the digits of the two operands are all added in parallel, thus requiring m additions over F p . In the current version of the generator, those additions over F p are implemented as simple look-up tables addressed by the bits of the two operands, particularly suited for small values of p (typically p = 2 to 7). For higher characteristics, it will be necessary to resort to more complex methods for modular addition [START_REF] Rodríguez-Henríquez | Cryptographic Algorithms on Reconfigurable Hardware[END_REF].

Also as in the original operator, multiplication over F p [x]/(f (x)) relies on a parallel-serial algorithm, with D digits of the multiplier being processed at each iteration. The generation of the partial products, which consists in multiplying all the digits of the multiplicand with each digit of the multiplier, requires m multiplications over F p in parallel for each of the D partial products. Here also, the multiplications over F p are directly tabulated, as this is the best solution for small characteristics. Once the D partial products are computed, the D -1 most significant ones along with the accumulator are then multiplied by x k (where k ranges from 1 to D) and reduced modulo f (x). After the modular reductions, the D partial products and the accumulator are added thanks to a binary tree of adders over F p m . Consequently, in order to optimize the critical path of this multioperand adder, one should choose a parameter D of the form 2 n -1 (typically D = 3, 7, 15 or 31).

Concerning the Frobenius map, which consists in raising the operand a(x) to the pth power, our generator first computes the normal form of a(x) p mod f (x), for a generic polynomial a(x), by reducing the following expression modulo f (x):

a(x) p mod f (x) = m-1 i=0 a p i x ip mod f (x) = m-1 i=0 a i x ip mod f (x).
This general expression of the Frobenius map can then be seen as a sum of elements of F p m . The coefficients of those polynomials are directly mapped to the coefficients of the operand, possibly multiplied by a constant. As presented in [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF], it is possible to reuse the partial product generation hardware of the multiplication in order to compute those polynomials, only some extra wiring being required for the permutation of the coefficients. The sum of all the polynomials can then be computed by the final multi-operand adder.

In order to decrease the number of partial products necessary to compute the Frobenius map, a simple decomposition technique can be applied to share the maximum amount of hardware between these partial products. In case this is still not enough, a second technique can further pack the partial products, at the expense of some additions over F p . The intuition behind these two techniques is given in a simple example in Appendix B.

Inverse Frobenius Map

Although the algorithm we present here for the η T pairing over F 3 m does not require to compute any inverse Frobenius map (i.e. p a(x)), some other algorithms still rely on this function. To also support those algorithms, the generic unified operator proposed in this paper is available in two flavors: namely either only addition, multiplication and Frobenius map as presented in the previous section, or a four-in-one operator with extra hardware for the inverse Frobenius map. This function is computed exactly in the same way as the Frobenius map: first, the normal form of p a(x) mod f (x) is obtained by solving the m-dimensional linear system given by the equation p a(x) p mod f (x) = a(x). The result is then expressed as a sum of polynomials, each one being a permutation of the coefficients of the operand a(x) multiplied by a constant. Note that the reduction techniques presented for the Frobenius map also apply in the case of the inverse map.

Inversion over F p m

Recall that, in the case of F 3 97 [5], our pairing accelerator performs the inversion required for the final exponentiation according to Fermat's little theorem and Itoh and Tsujii's work [START_REF] Itoh | A fast algorithm for computing multiplicative inverses in GF(2 m ) using normal bases[END_REF] by means of 96 cubings and 9 multiplications. Algorithm 2 describes a generalization of this method to any characteristic and extension degree. Inversion over F p m involves m -1 Frobenius maps and

#M Algo. 2 =    log 2 (m -1) + wt(m -1) -1 if p = 2, log 2 (m -1) + log 2 (p -1) + log 2 (p -2) + wt(m -1) + wt(p -1) + wt(p -2) -2 otherwise
multiplications over F p m , where wt(k) denotes the Hamming weight of the binary representation of the integer k. A unified operator with addition, multiplication, and Frobenius allows one to implement this inversion algorithm. At the price of a slightly more complex shift register (register R0 on Figure 1) and another control bit, we can further reduce the calculation time. Let r = (p m -1)/(p -1) and a ∈ F * p m . Since (a r ) p-1 = a p m -1 = 1, a r belongs to F p and the multiplicative inverse of a is computed as a r-1 (a r ) -1 [START_REF] Guajardo | Itoh-Tsujii inversion in standard basis and its application in cryptography and codes[END_REF]. Algorithm 3 summarizes this scheme which is often applied for inversion in optimal extension Algorithm 2 Inversion over F p m (1). [START_REF] Cohen | Handbook of Elliptic and Hyperelliptic Curve Cryptography[END_REF]. Since the p-adic representation of r-1 is p m-1 +. . .+p 2 +p we compute s = a r-1 by means of m -1 Frobenius maps and log 2 (m -1) + wt(m -1) -1 multiplications over F p . Another multiplication over F p m is required to get t = as. The last step consists in computing the inverse of t ∈ F p and to multiply all coefficients of s by t -1 ∈ F p . In characteristic three, this inversion is implemented by means of two LUTs on a Virtex-II Pro FPGA. We load s = a r-1 in register R2 and t = a r in R0. Since t belongs to F p , we have t i = 0, ∀i = 0, and therefore d0 3i+1 =d0 3i+2 = 0. An additional multiplexer allows us to select d0 3i = t -1 0 and our operator returns st -1 = a -1 . We can neglect this last operation and estimate the cost of Algorithm 3 to m -1 Frobenius maps and #M Algo. 3 = log 2 (m -1) + wt(m -1) multiplications over F p m .

Algorithm 3 Inversion over F p m (2).

Input: A prime number p, a positive integer m, and a ∈ Fpm .

Output: a -1 ∈ Fpm . 1: r ← (p m -1)/(p -1); 2: s ← a r-1 ; 3: t ← as; 4: Return st -1 ;

Table 3 provides the reader with a comparison between Algorithm 2, Algorithm 3, and the EEA. We assume that the accelerator embeds a single unified operator and carries out the pairing calculation according to Algorithm 1. Recall that the EEA performs an inversion over F 3 m in 2m clock cycles [START_REF] Kerins | Algorithms and architectures for use in FPGA implementations of identity based encryption schemes[END_REF]. Then, Table 1, #M Algo. 2 , and #M Algo. 3 allow us to find out the number of clock cycles and to give examples for D = 3 and 7. Our results indicate that supplementing our coprocessor with dedicated hardware for the EEA would only improve performance by less than 1%. Furthermore, an EEA-based inversion over F 3 97 occupies 2210 slices on a Virtex-II Pro FPGA [START_REF] Kerins | Algorithms and architectures for use in FPGA implementations of identity based encryption schemes[END_REF] and would more than double the area of the accelerator. Since the calculation of the η T pairing requires a single inversion over F p m , Algorithm 3 does not significantly reduce the number of clock cycles. 

Results

Our VHDL code generator as well as the general formulas from Table 3 allowed us to estimate the cost of the full η T pairing computation for several extension fields. Table 4 summarizes these estimations. Note that the reported figures do not take the control unit into account. However, this should not impact on the critical path. 

Conclusion

We proposed a compact implementation of the η T pairing in characteristic three over F 3 [x]/(x 97 + x 12 + 2). Our architecture is based on a unified arithmetic operator which leads to the smallest circuit proposed in the open literature, without impacting too severely on the performances. We also showed that our approach can be generalized to any characteristic p and degree-m irreducible polynomial f (x) over F p . Moreover, our VHDL code generator allows one to rapidly explore the trade-off between computation time and circuit resource usage for a large set of architectural parameters (e.g. p, m, f (x)). However, even though we now have automatic tools to generate unified operators, the main difficulty still lies in the scheduling of all the instructions required for the η T pairing calculation. The next step will therefore be to develop an ad-hoc compiler for architectures based on such unified operators. y p ρ)(-r 2 0 + y p y q σ -r 0 ρ -ρ 2 ). We assume here that b = 1. Since σ 2 = 1 and ρ 3 = ρ + 1, we obtain: a 0 = y p r 3 0 -y p y 2 q , a 2 = -y p , a 4 = 0, a 1 = -y 2 p y q r 0 -y q r 2 0 , a 3 = -y q r 0 + y 2 p y q , a 5 = -y q .

This multiplication over F 3 6m is carried out according to Algorithm 4 which requires 8 multiplications and 9 additions over F 3 m . Note that the number of additions may depend on the architecture of the coprocessor.

Algorithm 4 First multiplication of the η T pairing calculation.

Input: R0 = -ypr0 + yqσ + ypρ and R1 = -r 2 0 + ypyqσ -r0ρ -ρ 2 ∈ F 3 6m . Output: A = R0R1 ∈ F 3 6m .

1: e0 ← r0r0; e1 ← yqr0; e2 ← ypr0; 2: e3 ← e0e2; (e3 = ypr 3 0 ) 3: e4 ← ypyq; 4: e5 ← e4yq; (e5 = ypy 2 q ) 5: e6 ← e4yp; (e5 = y 2 p yq) 6: e7 ← -e2 + y9; (e7 = -ypr0 + yq) 7: e8 ← -e0 + e4; (e8 = -r 2 0 + ypyq) 8: e9 ← e7e8; (e9 = (-ypr0 + yq)(-r 2 0 + ypyq)) 9: a1 ← e9 -e3 -e5; a0 ← e3 -e5 -yp; 10: a3 ← -e1 + e6; a2 ← -yp; a4 ← 0; a5 ← -yq;

B Techniques for Reducing Partial Products in the Frobenius Map

For our unified operators to be able to compute Frobenius maps, we implement this function as a sum of elements of F p m . With p = 3 and f (x) = x 97 + x 12 + 2, we obtain a(x) p mod f (x) = µ 0 (x) + µ 1 (x) + µ 2 (x) + µ 3 (x), with

      
µ 0 (x) = a 0 + a 65 x + a 33 x 2 + . . . + a 96 x 94 + a 64 x 95 + a 32 x 96 , µ 1 (x) = a 89 + 0 + 0 + . . . + a 88 x 94 + 0 + 0, µ 2 (x) = a 93 + 0 + 0 + . . . + a 92 x 94 + 0 + 0, µ 3 (x) = ( 0 + a 61 x + 0 + . . . + 0 + a 60 x 95 + 0 ) × 2.

We can see that the Frobenius map in this extension field can be mapped as the sum of four polynomials µ 0 (x) to µ 3 (x), the first three with the multiplicity 1 and the last one with the multiplicity 2. Directly implementing our unified operator from this expression therefore would require at least D = 4. However, as noticed by Beuchat et al. [START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF], for each degree i for which the coefficient for x i in µ 3 (x) is not zero, the corresponding coefficients in µ 1 (x) and µ 2 (x) are always null. Rewriting 2 as 1 + 1, we can then distribute µ 3 (x) and merge it to µ 1 (x) and µ 2 (x) to obtain the following expression, requiring only D = 3 partial product generators: a(x) p mod f (x) = ν 0 (x) + ν 1 (x) + ν 2 (x), with    ν 0 (x) = a 0 + a 65 x + a 33 x 2 + . . . + a 96 x 94 + a 64 x 95 + a 32 x 96 , ν 1 (x) = a 89 + a 61 x + 0 + . . . + a 88 x 94 + a 60 x 95 + 0, ν 2 (x) = a 93 + a 61 x + 0 + . . . + a 92 x 94 + a 60 x 95 + 0.

This technique was fully automatized and implemented in our generator, which can minimize the number of partial products necessary to compute Frobenius maps in any extension field F p [x]/(f (x)). However, in some cases where it is not possible to decrease the number of required partial products to an acceptable value, the generator can also insert adders over F p in order to share each partial product between several polynomials with the same multiplicity. For instance, in our example, we can rewrite the expression of a(x) p mod f (x) with only D = 2 partial products as: a(x) p mod f (x) = π 0 (x) + π 1 (x), with π 0 (x) = ν 0 (x), π 1 (x) = ν 1 (x) + ν 2 (x).

Similar techniques can also be applied to the inverse Frobenius map p a(x).

Fig. 1 .

 1 Fig.1. Operator for addition, multiplication, and cubing over F3[x]/(x 97 + x 12 + 2) introduced in[START_REF] Beuchat | A coprocessor for the final exponentiation of the ηT pairing in characteristic three[END_REF]. Boxes with rounded corners involve only wiring.

Fig. 2 .

 2 Fig. 2. Architecture of the ηT pairing accelerator.

Table 1 .

 1 Operations over F3m involved in the computation of ηT (P, Q) W .The architecture described by Figure2was captured in the VHDL language and prototyped on a Xilinx Virtex-II Pro 4 device (XC2VP4-6FF672). Both synthesis and place-and-route steps were performed with ISE WebPACK 8.2.03i. Our processor requires 1888 slices and 6 memory blocks. Since a Virtex-II Pro 4 does not have enough I/Os for parallel communications with a computer, the number of slices reported here includes shift registers to receive/send data in a serial fashion. The clock frequency of 147 MHz allows one to compute η T (P, Q) W according to Algorithm 1 in 222 µs. Table2provides the reader with a comparison against architectures proposed by other researchers for p = 3 and m = 97.

		Additions Cubings Multiplications Inversion	Idle
	Point tripling Pairing	m-1 2 25m -6	2m -2 5m + 1	-15 • m-1 2	+ 8	--	5 14m -4
	Final exp. 3 m √	477 7	3m + 3 -	78 -		1 -	344 1
	Total	51 • m-1 2	+ 503 10m + 2 15 • m-1 2	+ 86	1	14m + 346
	2.2 Results and Comparisons			

Table 2 .

 2 Comparisons against FPGA-based accelerators over F 3 97 . The parameter D refers to the number of coefficients processed at each clock cycle by a multiplier.

		Grabher and	Kerins	Beuchat
		Page [12]	et al. [17]	et al. [5, 6]
	Algorithm	Duursma-Lee	Duursma-Lee	ηT pairing
	FPGA	Virtex-II Pro 4 Virtex-II Pro 125 Cyclone II EP2C35
	Multiplier(s)	1 (D = 4)	18 (D = 4)	9 (D = 3)
	Area	4481 slices	55616 slices	∼ 18000 LEs
	Clock cycles	59946	12866	4849
	Clock frequency	150 MHz	15 MHz	149 MHz
	Calculation time	432.3 µs	850 µs	33 µs
		Ronan et al. [23]	Proposed architecture
	Algorithm	ηT pairing	ηT pairing	ηT pairing
	FPGA	Virtex-II Pro 100 Virtex-II Pro 100 Virtex-II Pro 4
	Multiplier(s)	3 (D = 8)	2 (D = 8)	1 (D = 3)
	Area	10000 slices	7491 slices	1888 slices
	Clock cycles	15113	17190	32618
	Clock frequency	70.4 MHz	70.4 MHz	147 MHz
	Calculation time	178 µs	203 µs	222 µs

  Input: A prime number p, a positive integer m, and a ∈ Fpm .

	Output: a -1 ∈ Fpm .
	1: k ← log 2 (m -1) -1; n ← wt(m -1); y0 ← a;
	2: [b1, . . . , bn] ← finite increasing sequence of the exponents in the binary expansion
	of m -1 (i.e. m -1 = n i=1 2 b i );
	3: for i = 0 to k do 4: zi ← y p 2 i i ;
	5:	yi+1 ← ziyi;
	6: end for
	7: for i = n -1 downto 1 do
	8:	z k+n-i ← y p 2 b i k+n-i ;
	9:	y k+n+1-i ← z k+n-i y b i ;
	10: end for
	11: if p = 2 then
	12:	Return y 2 k+n ;
	13: else
	14: 15:	y k+n+1 ← y p-1 k+n ; y k+n+2 ← y p k+n+1 ;
	16:	Return y0y k+n+2 ;
	17: end if
	fields	

Table 3 .

 3 Relationship between the choice of an inversion algorithm and the calculation time of a full pairing.

		(a) Arithmetic over F 3 97 .
		Inversion	Clock cycles for the full pairing
	Algorithm	Cost	General formula D = 3 D = 7
	Algorithm 2 96 cubings, 9 mult.	5723 + 815 • 97/D	32618 17133
	Algorithm 3 96 cubings, 8 mult.	5723 + 814 • 97/D	32585 17119
	EEA	2 • m = 194 clock cycles 5821 + 806 • 97/D	32419 17105
		(b) Arithmetic over F 3 193 .
		Inversion	Clock cycles for the full pairing
	Algorithm	Cost	General formula D = 3 D = 7
	Algorithm 2 192 cubings, 10 mult. 10571 + 1536 • 193/D 110411 53579
	Algorithm 3 192 cubings, 9 mult. 10571 + 1535 • 193/D 110346 53551
	EEA	2 • m = 386 clock cycles 10765 + 1526 • 193/D 109955 53493

Table 4 .

 4 Estimated area, frequency, and full pairing computation time for various extension fields and values for the parameter D (Virtex-II Pro family).

	Polynomial	D = 3	D = 7
	x 97 + x 12 + 2 [5] 1402 slices -147 MHz -222 µs 2189 slices -117 MHz -146 µs
	x 97 + x 16 + 2 [1] 1392 slices -151 MHz -216 µs 2246 slices -116 MHz -148 µs
	x 193 + x 64 + 2 [1] 2811 slices -126 MHz -877 µs 4450 slices -108 MHz -495 µs

We give here the definition from[START_REF] Barreto | Efficient algorithms for pairing-based cryptosystems[END_REF], slightly different from the initial one given in[START_REF] Frey | A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves[END_REF].

229 instructions for the computation of ηT (3 (m-1)/2 P, Q) 3 (m+1)/2 ; 666 instructions for the final exponentiation and the 3 m -th root over F 3 6m .

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

A Computation of the η T Pairing

The first multiplication over F 3 6m of the η T pairing calculation (Algorithm 1) requires only 8 multiplications over F 3 m . Let A = (a 0 , a 1 , a 2 , a 3 , a 4 , a 5 ) ∈ F 3 6m . We have to compute a 0 + a 1 σ + a 2 ρ + a 3 σρ + a 4 ρ 2 + a 5 σρ 2 = (-y p r 0 + y q σ +