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Abstract. We study experimentally the thermal fluctuations of energy input and

dissipation in a harmonic oscillator driven out of equilibrium, and search for

Fluctuation Relations. We study transient evolution from the equilibrium state,

together with non equilibrium steady states. Fluctuations Relations are obtained

experimentally for both the work and the heat, for the stationary and transient

evolutions. A Stationary State Fluctuation Theorem is verified for the two time

prescriptions of the torque. But a Transient Fluctuation Theorem is satisfied for the

work given to the system but not for the heat dissipated by the system in the case of

linear forcing. Experimental observations on the statistical and dynamical properties of

the fluctuation of the angle, we derive analytical expressions for the probability density

function of the work and the heat. We obtain for the first time an analytic expression

of the probability density function of the heat. Agreement between experiments and

our modeling is excellent.

PACS numbers: 05.40.-a,05.70.-a
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1. Introduction

Nanotechnology, as well as biology, biophysics and chemistry are using or studying

setups and objects which are smaller and smaller. In these systems, one is usually

interested in mean values, but thermal fluctuations play an important role because

their amplitude are often comparable to the mean values. This is for example the case

for quantities such as the energy injected in the system or the energy dissipated by the

system. These fluctuations can lead to unexpected and undesired effects : for instance,

the instantenous energy transfer can be reversed by a large fluctuation, leading energy

to flow from a cold source to a hot one. These events, although rare, are quantitatively

studied by the recent Fluctuations Theorems (FTs). These theorems give Fluctuation

Relations (FRs) that quantify the probability of these rare events in systems which can

be arbitrarily far from equilibrium. FTs have been demonstrated in both deterministic

systems [1, 2] and stochastic dynamics [3, 4, 5, 6, 7, 8]. Experiments searching for

FRs have been performed in dynamical systems [9, 10, 11], but interpretations are very

difficult because a quantitative comparison with theoretical prediction is impossible.

Other experiments have been performed in stochastic systems described by a first order

Langevin equation: a Brownian particle in a moving optical trap [12] and an out-of-

equilibrium electrical circuit [13] in which existing theoretical predictions [6, 7] were

verified. Interesting comments on the Langevin equation can be found in [14].

In the present article, we study a thermostated harmonic oscillator described by a

second order Langevin equation. We experimentally search FRs for the work done by

an external operator and for the heat dissipated by the system, and present analytical

derivations of FTs based on experimental observations.

This paper is organized as follows. In section 2, we present the experimental system,

write its energy balance to define the work given to the system together with the heat

dissipated. We then introduce the Fluctuation Relations (FRs) and the Fluctuation

Theorems (FTs). In sections 3, 4 and 5, we present experimental results on the

fluctuations of first the work and then the heat. A short discussion on experimental

results in given in 6. Then, in sections 7 and 8, we present some analytical derivations

of FTs based on hypothesis inspired by experimental observations. We compare these

analytical predictions to the experimental observations and finally conclude in section

9.
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Figure 1. a) The torsion pendulum. b) The magnetostatic forcing.

2. System description

2.1. The harmonic oscillator

Our system is a harmonic oscillator and we measure the non-equilibrium fluctuations

of its position degree of freedom. The oscillator is damped due to the viscosity of

a surrounding fluid that acts as a thermal bath at temperature T . Our oscillator,

depicted in Fig. 1a, is a torsion pendulum composed of a brass wire (length 10 mm,

width 0.5 mm, thickness 50 µm) and a glass mirror glued in the middle of this

wire (length 2 mm, width 8 mm, thickness 1 mm). The elastic torsional stiffness of

the wire is C = 4.65 · 10−4 N.m.rad−1. It is enclosed in a cell filled by a water-

glycerol mixture at 60% concentration. The system is a harmonic oscillator with

resonant frequency fo =
√

C/Ieff/(2π) = ω0/(2π) = 217 Hz and a relaxation time

τα = 2Ieff/ν = 1/α = 9.5 ms. Ieff is the total moment of inertia of the displaced

masses (i.e. the mirror and the mass of displaced fluid) [15]. The damping has two

contributions : the viscous damping ν of the surrounding fluid and the viscoelasticity

of the brass wire which can be neglected here.

The angular displacement of the pendulum θ is measured by a differential

interferometer [16, 17, 18]. The measurement noise is two orders of magnitude smaller

than thermal fluctuations of the pendulum. θ(t) is acquired with a resolution of 24

bits at a sampling rate of 8192 Hz, which is about 40 times fo. We drive the system

out-of-equilibrium by forcing it with an external torque M by means of a small electric

current J flowing in a coil glued behind the mirror (Fig. 1b). The coil is inside a static

magnetic field. The displacements of the coil and therefore the angular displacements

of the mirror are much smaller than the spatial scale of inhomogeneity of the magnetic

field. So the torque is proportional to the injected current : M = A.J ; the slope A

depends on the geometry of the system.
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The angular displacement θ of this harmonic oscillator is very well described by a

second order Langevin equation:

Ieff
d2θ

dt2
+ ν

dθ

dt
+ C θ = M +

√

2kBTν η, (1)

where η is the thermal noise, delta-correlated in time of variance 1 and kB the Boltzmann

constant and T the temperature of the system which is the one of the surrounding fluid.

The Fluctuation Dissipation Theorem (FDT) gives a relation between the amplitude

of the thermal angular fluctuations of the oscillator at equilibrium and its response

function. For a harmonic oscillator, the equilibrium thermal fluctuation power spectral

density (psd) is:

〈|θ̂|2〉 =
4kBT

ω
Imχ̂ =

4kBTν

(−Ieffω2 + C)2 + (ων)2
(2)

where χ̂ = M̂

θ̂
= A Ĵ

θ̂
. Using FDT (Eq. 2), we measure the coefficient A and test the

calibration accuracy of the apparatus which is better than 3%. More details on the

set-up can be found in [16, 17].

2.2. Energy balance

When the system is driven out of equilibrium using a deterministic torque, it receives

some work and a fraction of this energy is dissipated into the heat bath. Multiplying

Eq. (1) by θ̇ and integrating between ti and ti + τ , we obtain a formulation of the first

law of thermodynamics between the two states at time ti and ti + τ (Eq. (3)). The

change in internal energy ∆Uτ of the oscillator over a time τ , starting at a time ti, is

written as:

∆Uτ = U(ti + τ) − U(ti) = Qτ +Wτ (3)

where Wτ is the work done on the system over a time τ :

Wτ =
1

kBT

∫ ti+τ

ti

M(t′)
dθ

dt
(t′)dt′ (4)

and Qτ is the heat given to the system. Equivalently, (−Qτ ) is the heat dissipated by

the system. ∆Uτ , Wτ and Qτ are defined as energy in kBT units. The internal energy

is the sum of the potential energy and the kinetic energy :

U(t) =
1

kBT

{

1

2
Ieff

[

dθ

dt
(t)

]2

+
1

2
Cθ(t)2

}

. (5)

The heat transfer Qτ is deduced from equation (3) ; it has two contributions :

Qτ = ∆Uτ −Wτ

= − 1

kB T

∫ ti+τ

ti

ν

[

dθ

dt
(t′)

]2

dt′ +
1

kB T

∫ ti+τ

ti

η(t′)
dθ

dt
(t′)dt′. (6)

The first term corresponds to the opposite of viscous dissipation and is always negative,

whereas the second term can be interpreted as the work of the thermal noise which have
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a fluctuating sign. The second law of thermodynamics imposes 〈−Qτ 〉 to be positive.

We rescale the work Wτ (the heat Qτ ) by the average work 〈Wτ 〉 (the average heat 〈Qτ 〉)
and define: wτ = Wτ

〈Wτ 〉
(qτ = Qτ

〈Qτ 〉
). The brackets are ensemble averages. In the present

article, xτ , respectively Xτ , stands for either wτ or qτ , respectively Wτ or Qτ .

2.3. Fluctuation Theorems and Fluctuation relations

There are two classes of FTs. The Stationary State Fluctuation Theorem (SSFT)

considers a non-equilibrium steady state. The Transient Fluctuation Theorem (TFT)

describes transient non-equilibrium states where τ measures the time since the system

left the equilibrium state. A Fluctuation Relation (FR) examines the symmetry of the

probability density function (PDF) p(xτ ) of a quantity xτ around 0 ; xτ is an average

value over a time τ . It compares the probability to have a positive event (xτ = +x)

versus the probability to have a negative event (xτ = −x). We quantify the FR using a

function S (symmetry function) :

S(xτ ) =
1

〈Xτ 〉
ln

(

p(xτ = +x)

p(xτ = −x)

)

. (7)

The Transient Fluctuation Theorem (TFT) states that the symmetry function is

linear with xτ for any values of the time integration τ and the proportionality coefficient

is equal to 1 for any value of τ .

S(xτ ) = xτ , ∀xτ , ∀τ. (8)

Contrary to TFT, the Stationary State Fluctuation Theorem (SSFT) holds only in the

limit of infinite time (τ).

lim
τ→∞

S(xτ ) = xτ , ∀xτ . (9)

The questions we ask are whether fluctuation relations for finite time satisfy the two

theorems and what are the finite time corrections. In a first time, we test the correction

to the proportionality between the symmetry function S(xτ ) and xτ . In the region where

the symmetry function is linear with xτ , we define the slope Σx(τ) : S(xτ ) = Σx(τ)xτ .

In a second time we measure finite time corrections to the value Σx(τ) = 1 which is the

asymptotic value expected by the two theorems.

3. Transient non-equilibrium state

For the Transient Fluctuation Theorem, we choose the torque M(t) depicted in Fig. 2a).

It is a linear function of time : M(t) = Mo t/τr with Mo = 11.28 pN.m and

τr = 0.1 s = 10.52 τα. The value of Mo is chosen such that the mean response of

the oscillator is of order of the thermal noise, as can be seen in Fig. 2b) where θ(t) is

plotted during the same time interval of Fig. 2a). The system is at equilibrium at ti = 0

(M(ti = 0) = 0 pN.m and M(t) = 0 pN.m ∀t < ti). In this section the starting time ti

6



Figure 2. a) Typical driving torque applied to the oscillator; b) Response of the

oscillator to the external torque (gray line). The dark line represents the mean response

θ̄(t) to the applied torque M(t).

of integration of all quantities defined before (Wτ , ∆Uτ and Qτ ) is ti = 0. So the work

is :

Wτ =
1

kB T

∫ τ

0

M(t′)
dθ

dt
(t′)dt′. (10)

3.1. Average values informations

In Fig. 3a), we represent the time average (〈τ−1Wτ 〉) of the power injected into the

system, the internal energy difference 〈τ−1∆Uτ 〉 and the time average (〈τ−1Wτ 〉) of the

power dissipated by the system. 〈τ−1Wτ 〉 and 〈τ−1∆Uτ 〉 are linear in τ after some short

relaxation time τα defined in the Langevin equation : for τ/τα smaller than 1, some

oscillations around the linear behavior can be seen. The average value of work 〈Wτ 〉
is therefore quadratic in τ and is equal to 33 kBT for τ = τr. The difference between

〈Wτ 〉 and 〈∆Uτ 〉 corresponds to the mean value of dissipated heat 〈−Qτ 〉 (Eq. (6)). As

can be seen in fig.3a), 〈Wτ 〉 is larger than 〈∆Uτ 〉 for all times τ . The average of the

dissipated power (〈−τ−1Qτ 〉) is therefore positive for all times τ as expected from the

second principle. For τ larger than several τα, the dissipated power is constant and

equal to a few kBT per second because 〈τ−1Wτ 〉 and 〈τ−1∆Uτ 〉 have the same slope

after some τα. So we have the following behavior : the work done by the external work

is used by the system to increase its internal energy but a small amount of energy is

lost at a constant rate by viscous dissipation and exchange with thermostat.

3.2. Work fluctuations

The probability density functions (PDFs) p(Wτ ) of wτ is plotted in Fig. 3b) for different

values of τ/τα. Four typical value of τ are presented : the first is smaller than the

relaxation time and the last equals five relaxation times ; the results are the same

for any value of τ . The PDFs of wτ are Gaussian for any τ . We observe that wτ takes

negative values as long as τ is not too large. The probability of having negative values of

wτ decreases when τ is increased. From the PDFs, we compute the symmetry functions.

7



Figure 3. TFT. a) Average value of τ−1Wτ (◦), τ−1∆Uτ (�) and τ−1Qτ (⋄) plotted

as a function of τ . b) PDFs of wτ for various τ/τα : 0.31 (◦), 1.015 (�), 2.09 (⋄) and

4.97 (×). Continuous lines are theoretical predictions with no adjustable parameters.

c) Corresponding functions S(wτ ). The straight continuous line is a line with slope 1.

d) PDFs of τ−1∆Uτ for two values of τ/τα : 4.97 (◦) and 8,96 (�). e) Corresponding

PDFs of qτ . Continuous lines are Gaussian fits. f) Corresponding functions S(qτ ).

The straight continuous line is a line with slope 1.
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They are plotted in Fig. 3c) as a function of wτ . They all collapse on the same linear

function of wτ for any τ , which implies they all have the same slope Σw(τ). The straight

line in fig 3c) has slope 1. Within experimental error bars, Σw(τ) is equal to 1 for all

time τ . Therefore work fluctuations for a harmonic oscillator under a linear forcing

satisfy the TFT. We checked that this property is true for other values of Mo and τr.

3.3. Heat fluctuations

The PDFs of τ−1∆Uτ are plotted in Fig. 3d) for two values of τ/τα : they are not

symmetric and have exponential tails. The PDFs of qτ can be seen in Fig. 3e) for the

same values of τ/τα. They are qualitatively different from the ones of the work. We

have plotted in the same figure the Gaussian fit of the two PDFs of the dissipated heat.

It is clear that the PDFs of qτ are not Gaussian. Extreme events of qτ are distributed

on exponential tails. These tails can be interpreted noticing that Qτ = ∆Uτ −Wτ and

∆Uτ have exponential tails. The variance of the PDFs of qτ is also much larger than

the variance of the PDFs of wτ .

We plot on Fig. 3f) symmetry functions S(qτ ) for the same times τ/τα. Only the

behavior of large events can be analyzed here because the variance is much larger than

the mean σwτ
≫ 1. As it can be seen in Fig. 3f, S(qτ ) is not proportional to qτ , therefore

TFR is not satisfied for finite time. Within experimental resolution, S(qτ ) is constant

for extreme events and equal to 2. This behavior can be interpreted by writing for large

qτ , p(qτ ) = A± exp(−α±|qτ |) where α+ and α− are the decrease rate on the exponential

tails. Each coefficient depends on τ . There is a simple expression of S(qτ ) for large

fluctuations:

S(Qτ ) = (α+ − α−)Qτ +
1

〈Qτ 〉
ln

(

A+

A−

)

. (11)

In Fig. 3c), the PDFs of qτ are symmetric around the mean value for the two values of

τ . It is not the case for small τ/τα. Thus we can conclude that α+ = α− and that the

symmetry function is so equal to the constant : (〈Qτ 〉)−1(ln(A+) − ln(A−)).

As it can be seen in Fig. 3e), the PDFs become more and more Gaussian when τ

tends to infinity. It is expected that for infinite time, the PDF of qτ is a Gaussian. Thus,

TFT appears to be satisfied experimentally in the limit of infinite τ . Our interesting

finding is that, for Qτ TFT if not valid for any times.

4. Steady state : linear forcing

4.1. Definition of the work given to the system

We call a steady state a state in which both forcing and response to the forcing do not

depend on the initial time ti, but only on τ . This implies that 〈M(ti + τ)〉 i ndependant

of ti ; and so is 〈θ(ti + τ)〉. If the torque drifts along time, the mean of M(ti + τ) is

linear with ti +τ . Thus we have to change the definition of the work done on the system
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to be in a steady state. This is equivalent to a Galilean change of reference frame. The

work is now defined as :

Wτ =
1

kBT

∫ ti+τ

ti

[M(t) −M(ti)]
dθ

dt
(t′)dt′. (12)

With this definition, the forcing is M(t) − M(ti) and the response to the forcing

θ(t) − θ(ti). When we impose a forcing linear in time (M(t) = Mo t/τr), the first

condition (〈M(ti+τ)〉 independent of ti) is satisfied. The second (〈θ(ti+τ)〉 independent

of ti) is also satisfied if ti ≥ 3τα, i.e. after a transient state. Thus the system is on a

steady state. We remark that, in the transient state, this definition of the work reduces

to the usual one, because M(ti) = M(t = 0) = 0 pN.m.

4.2. Work fluctuations

The average of Wτ is quadratic in τ for any value of τ/τα. There are no oscillations

in time for small τ/τα. The PDFs of wτ are Gaussian for any value of τ/τα (Fig. 4a).

Probability of negative values is high and decreases with τ , like in the transient case.

The symmetry functions S(wτ) are again proportional to wτ (Fig. 4b) but the slope Σw

is not equal to 1 for smaller τ and tends to 1 for τ ≫ τα only, as can be seen in Fig. 4c.

Thus we obtain a fluctuation relation for the work done on the system in this steady

state and this relation satisfy the SSFT. The slope at finite time is slightly oscillating

at a frequency, close to f0.

4.3. Heat fluctuations

The heat dissipated during this linear forcing has a behavior very similar to the one

observed in the transient case (section 3.3). We can so transpose here all what we said

in section 3.3.

5. Steady state : sinusoidal forcing

We now consider a periodic forcing M(t) = Mo sin(ωdt). This is a very common kind

of forcing but it has never been studied in this context. Using Fourier transform, any

periodical forcing can be decomposed in a sum of sinusoidal forcing. We explain here

the behavior of a single mode. We choose Mo = 0, 78 pN.m and ωd/(2π) = 64 Hz. This

torque is plotted in Fig. 5a. The mean of the response to this torque is sinusoidal, with

the same frequency, as can be seen in Fig. 5b. We studied other frequencies ωd. The

system is clearly in a steady state. We choose the integration time τ to be a multiple

of the period of the driving (τ = 2nπ/ωd with n integer). The starting phase tiωd is

averaged over all possible ti in order to increase statistics ; in the remaining of this

section, we drop the brackets 〈.〉ti.
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Figure 4. SSFT with a ramp forcing. a) PDF of Wτ for various τ/τα: 0.019 (◦), 0.31

(�), 2.09 (⋄) and 4.97 (×). b) Corresponding functions S(Wτ ). c) The slope Σw(τ)

of S(Wτ ) is plotted versus τ (�: experimental values; continuous line: theoretical

prediction eq.(20) with no adjustable parameters).

Figure 5. a) Sinusoidal driving torque applied to the oscillator. b) Response of

the oscillator to this periodic forcing (gray line) ; the dark line represents the mean

response 〈θ(t)〉.
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Figure 6. Sinusoidal forcing. a) PDFs of the work wn integrated over n periods of

forcing, with n = 7 (◦), n = 15 (�), n = 25 (⋄) and n = 50 (×). b) The function S(wn)

measured at ωd/2π = 64 Hz is plotted as a function of wn for several n: (◦)n = 7;

(�)n = 15 (⋄)n = 25; (×)n = 50. For these two plots, continuous lines are theoretical

predictions with no adjustable paramaters (Eq. (.11) and Eq. (.14)). c) The slopes

Σw(n), plotted as a function of n for two different driving frequencies ωd = 64 Hz

(�) and 256 Hz (◦); continuous lines are theoretical predictions from Eq. (21) with no

adjustable parameters.

5.1. Work fluctuations

The work is written as a function of n, the number of periods of the forcing :

Wn =
1

kBT

∫ ti+τn

ti

M(t′)
dθ

dt
(t′)dt′. (13)

The PDFs of wn are plotted in Fig. 6a. Work fluctuations are Gaussian for all values of

n as in previous cases. Thus symmetry functions are again linear in wn (Fig. 6b). The

slope Σw(n) is not equal to 1 for all n but there is a correction at finite time (Fig. 6c).

Nevertheless, Σw(n) tends to 1 for large n, so SSFT is satisfied. The convergence is very

slow and we have to wait a large number of periods of forcing for the slope to be 1 (after

30 periods, the slope is still 0.9).

This behavior is independent of the amplitude of the forcing Mo and consequently

of the mean value of the work 〈Wn〉. The system satisfies the SSFT for all forcing

frequencies ωd but finite time corrections depends on ωd, as can be seen in Fig. 6c.
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Figure 7. Sinusoidal forcing. a) Average value of Wn (◦) and Qn (�). In the next

plots, the integration time τ is a multiple of the period of forcing, τ = 2nπ/ωd, with

n = 7 (◦), n = 15 (�), n = 25 (⋄) and n = 50 (×). Continuous lines are theoretical

predictions with no adjustable parameters. b) PDFs of ∆Uτ . c) PDFs of qτ . d)

Symmetry functions S(qτ ). e) The slope Σq(n) of S(qτ ) for qτ < 1, plotted as a

function of n (◦). The slope Σw(n) of S(wτ ) plotted as a function of n(�). Continuous

line is theoretical prediction.

5.2. Heat fluctuations

We first do some comments on the average values. The average of ∆Uτ is obviously

vanishing because the time τ is a multiple of the period of the forcing. 〈wn〉 and

〈qn〉 have consequently the same behavior and they are linear in τ , as can be seen in

Fig. 7a) but the PDFs of heat fluctuations qn have exponential tails (Fig. 7c). This can

be understood noticing that, from Eq. (6), −Qτ = Wτ − ∆Uτ and that ∆Uτ has an
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exponential PDF independent of n (Fig. 7b). Therefore, in a first approximation, the

PDF of qτ is a convolution between an exponential distribution (PDF of ∆Uτ ) and a

Gaussian distribution (PDF of wτ ).

Symmetry functions S(qn) are plotted in Fig. 7d) for different values of n ; three

different regions appear:

(I) For large fluctuations qn, S(qn) equals 2. When τ tends to infinity, this region

spans from qn = 3 to infinity.

(II) For small fluctuations qn, S(qn) is a linear function of qn. We then define Σq(n)

as the slope of the function S(qn), i.e. S(qn) = Σq(n) qn. This slope is plotted in Fig. 7e)

where we see that it tends to 1 when τ is increased. So, SSFT holds in this region II

which spans from qn = 0 up to qn = 1 for large τ .

(III) A smooth connection between the two behaviors.

We observe that Σw(n) matches experimentally Σq(n), for all values of n (Fig. 7e).

So the finite time corrections to the FT for the heat are the same than the ones of FT

for work : Σw(n) = Σq(n).

These regions define the Fluctuation Relation from the heat dissipated by the

oscillator. The limit for large τ of the symmetry function S(qτ ) is rather delicate and

we will discuss it in section 8.2.

6. Discussion and conclusion on experimental results

In the previous sections, we have presented experimental results on a harmonic oscillator

driven out of equilibrium by an external deterministic forcing M . We operated with

two different time-prescriptions : one in which M is a linear function of time, and one

in which M is a sinusoidal function of time.

The energy injected into the system is the work W of the torque M . The PDFs of

the work W are Gaussian whatever the time prescription of M is, and work fluctuations

satisfy a TFT (M linear in time) and a SSFT (M linear or sinusoidal in time).

The energy dissipated by the system is represented by the heat Q, and we measured

it using the first principle of thermodynamics (eq. 6). Heat probability distributions are

not Gaussian and are very different from the ones of the work. They nevertheless satisfy

a SSFT in both the case of a sinusoidal forcing and a linear forcing. But they do not

satisfy a TFT in the case of a linear forcing, because the symmetry functions are not

linear for all values of dissipated heat qτ .

In the next two sections, we use some experimental evidences to derive analytical

expressions of the PDFs of work and the heat exchanged on an arbitrary time interval

τ . We then derive FTs together with their finite time corrections.

7. Work fluctuations : theoretical predictions

In this section, we derive the analytical expression of the PDF of the work given to the

system, and defined as the work of the torque applied to the pendulum, which is either
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linear or sinusoidal in time. Experimentally, we observed that the PDFs are always

Gaussian, so we restrict our task to deriving expressions for the first two moments of

the work distribution.

To do so, we use experimental observations on the fluctuations of the angle θ,

as described in section 7.1 below. We then compute in section 7.2 the mean and the

variance of the work Wτ in the different experimental situations, and then write formally

the corresponding Fluctuations Relations, from which we obtain analytical expressions

of the finite time corrections to the Fluctuation Theorems.

7.1. Angular fluctuations in the presence of forcing.

We discuss here the angular fluctuations. We decompose the angle θ into a mean value

〈θ〉 and a fluctuating part δθ, writing θ = 〈θ〉 + δθ. The mean value corresponds to an

ensemble average. It is obtained experimentally by averaging over realisations of the

forcing, and it is presented in Fig. 2 and 5.

A first experimental observation is as follows. The measured mean response 〈θ〉 is

exactly equal to the solution of the deterministic second order equation obtained when

removing the noise term (η = 0) in the Langevin equation (1). We checked this from

our data, and found this way a value of the calibration A (see section 2.1) in perfect

agreement with the one obtained from the application of the Fluctuation Dissipation

Theorem.

A second experimental observation concerns the probability distribution of δθ in

out-of-equilibrium conditions. We know and observed that at equilibrium, δθ has a

Gaussian distribution with variance σ2
θ = kB T/C, and the associated momentum θ̇ has

fluctuations δθ̇ which also have a Gaussian distribution, with a variance kB T/Ieff . We

observe that the statistical properties of angular fluctuations δθ when a torque M(t)

linear in time is applied are the same as the statistical properties at equilibrium, when

no torque is applied. In figure 8a, we plot the PDF of δθ measured at M 6= 0 together

with the Gaussian fit of the PDF at equilibrium (continuous line). The two curves

matches perfectly within experimental accuracy. Thus we conclude that the external

driving does not perturb the equilibrium distribution of angular fluctuations, so we use:

P (δθ,M 6= 0) = P (δθ,M = 0) =
1

√

2πσ2
θ

exp

(

− δθ2

2σ2
θ

)

. (14)

The third experimental observation concerns time correlations. In figure 8b, we plot

the power spectral density function of δθ when applying an external forcing (◦). We

compare it to the prediction of fluctuation dissipation theorem at equilibrium (Eq. 2)

computed using the oscillator parameters. The two spectra are identical, so we can

confidently use for our system a description in terms of a second order Langevin dynamic

where the noise term is not perturbed by the presence of the driving. From the power

spectral density function of θ (Eq. 2), we derive the autocorrelation function Rδθ(τ) of

δθ during a time interval τ . It is the same at equilibrium and out of equilibrium, and
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Figure 8. a) PDF of the fluctuations δθ = θ − θ̄(t) when the torque is applied (◦),
compared with a Gaussian fit of the PDF at equilibrium (continuous line). b) The

measured spectrum of δθ (◦) is compared with the prediction of fluctuation dissipation

theorem in equilibrium (continuous line).

decreases exponentially:

Rδθ(τ) = 〈δθ(t+ τ)δθ(t)〉 =
kB T

C sin(ϕ)
exp

(

−|τ |
τα

)

sin(ψ|τ | + ϕ) (15)

where ψ2 ≡ (ω0)
2 − (1/τα)2 and ϕ is defined by cos(ϕ) = 1/(ω0τα) and sin(ϕ) = ψ/ω0.

Thus we observe experimentally that when we drive the system out of equilibrum,

the angular fluctuations δθ are identical (with respect to the expressions above) to those

at equilibrium. We verify the same properties for the sinusoidal time prescription of the

torque, and use equilibrium expression for the correlation function in the next sections.

7.2. Work distribution

In Figs. 3, 4 and 6, we see that the PDFs of the work are Gaussian for any integration

time τ and whatever the forcing is. So these distributions are fully characterized by

their mean value 〈Wτ 〉 and their variance σ2
Wτ

= 〈δW 2
τ 〉 = 〈(Wτ −〈Wτ 〉)2〉. The external

torque M is determistic, so the mean value of the work done on the system can be

written as :

〈Wτ 〉 =
1

kBT

∫ ti+τ

ti

M̃(t′)〈θ̇(t′)〉dt′. (16)

We have defined M̃(t′) = M(t′)−aM(ti). The value a depends on the time-prescription

of the torque we apply to the oscillator. Choosing a = 1 describes the linear ramp and

a = 0 corresponds to the sinusoidal forcing.

The variance of the PDFs is :

σ2
Wτ

=
1

(kBT )2

∫ ti+τ

ti

∫ ti+τ

ti

M̃(t1).M̃(t2)〈δθ̇(t2)δθ̇(t1)〉dt1dt2. (17)
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This expression involves the autocorrelation function of the angular speed δθ̇,

(〈δθ̇(t2)δθ̇(t1)〉). Using the expression of the autocorrelation function of angular

fluctuations (Rδθ, Eq. (15)), we can calculate exactly the expression of 〈δθ̇(t2)δ ˙θ(t1)〉:

〈δθ̇(t1)δθ̇(t2)〉 = − kBT

Ieff sin(ϕ)
exp

(

−|t2 − t1|
τα

)

sin(ψ|t2 − t1| − ϕ). (18)

We have calculated the mean value and the variance of the PDFs in the three situations

of interest: stationary and transient cases with a forcing linear in time, and stationary

case with a forcing sinusoidal in time. Details and results can be found in the appendix.

In all of the cases, we compare the theoretical PDFs and the symmetry functions with

the experimental results. We have plotted in Fig. 3, 4 and 6 our theoretical PDFs and the

corresponding symmetry functions with no adjustable parameters. Within experimental

error bars, our analytical and experimental results are in excellent agreement. S(wτ)

is linear in wτ because the PDFs of the work are Gaussian. We now want to calculate

analytically the corrections to the slope Σw(τ) for finite time τ . For a Gaussian

distribution, the symmetry function is :

S(wτ) =
2〈Wτ 〉
σ2

W

wτ = Σw(τ)wτ . (19)

The expression of the slope Σw(τ) uses only the mean value and the variance of the

Gaussian distribution. We define Σ(τ) = (1 − ǫ(τ))−1, where the correction ǫ(τ) is a

decreasing function of τ . We obtain ǫ(τ) = 0 for the transient case, which is in agreement

with a TFT. For the two steady states, there are corrections to the value 1; we find:

i) Linear forcing

ǫ(τ) =
1

ψτ

[

A

ω0τ
− e−τ/τα

(

B +
D

ω0τ

)]

. (20)

ii) Sinusoidal forcing

ǫ(τ) =
E

τ/τα
+

F

τ/τα
e−τ/τα . (21)

Exact values of the coefficients A,B,D,E, F are given in the appendix. These two

expressions are in perfect agreement with experimental results as can be seen in Fig. 4

and Fig. 6. These corrections depend on the kind of forcing and it is difficult to predict

their form for an arbitrary forcing. Nevertheless, the two situations we consider are

useful as building blocks of such an arbitrary forcing, and they provide a very nice test

of our method.

8. Heat fluctuations : theoretical predictions

We now determine an analytical expression of the PDF of the dissipated heat. To do

so, we make the same hypothesis as in the case of the work (see section 7.1 above),

and we complete them by additional assumptions to simplify our derivations. We are

interested by PDFs of the heat for integration time τ large compared to τα, so that
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exponential corrections which are scaling like e−τ/τα can be neglected. In the case of

sinusoidal forcing, this is correct after 3 or 4 periods of forcing (τ/τα = 1.64n). Within

this assumption, θ(ti + τ) and θ(ti) are independent, and so are dθ
dt

(ti + τ) and dθ
dt

(ti).

Additionally, as the equation of motion of the oscillator is second order in time, θ and
dθ
dt

are independent at any given time t. We use the technique proposed in [7]. To obtain

the PDF p(Qτ ) of the heat, we define its Fourier transform, the characteristic function,

as

P̂τ (s) ≡
∫ ∞

−∞

dqτe
isqτp(qτ ) (22)

We then write p(qτ ) using Eq. (6) as:

p(qτ ) =

∫ ∫

dθdθ̇P̃
(

∆Uτ −Qτ , θ(ti + τ), θ(ti), θ̇(ti + τ), θ̇(ti)
)

. (23)

where P̃ is the joint distribution of the work Wτ , θ and dθ

dt
at the beginning and at the

end of the time interval τ . This distribution is expected to be Gaussian because Wτ is

linear in θ̇ and additionally θ, θ̇ and Wτ are Gaussian. The details of the calculation

are given in the appendix.

8.1. Linear forcing

The Fourier transform of the PDF of dissipated heat can be exactly calculated :

P̂τ (s) =
1

1 + s2
exp

{

−d2is

(

2
τ

τα
+ is

[

2
τ

τα
+ 2

]

+
−16 cos(ϕ)2 + 4 + 4is(4 cos(ϕ)2 + 1)

1 + s2

)}

.

As far as we know, there is no analytic expression for inverse Fourier transform of this

function, so for the PDF of dissipated heat. However we can do some comments. This

expression is very similar to the one found in the case of a Brownian particle [7]. The

factor (1 + s2)−1 is the Fourier transform of an exponential PDF and this is directly

connected to the exponential tails of the PDF. Moreover the PDF is not symmetric

around its mean, because there is a non vanishing third moment. In this expression,

only two terms depend on τ . For large τ , this expression reduces to:

P̂τ (s) =
1

1 + s2
exp

{

−2id2 τ

τα
s(1 + is)

}

. (24)

This expression will turn out to be similar to the one obtain with a sinusoidal forcing,

as we will comment in the next section.

Both expressions depend on the non-dimensional factor d defined as:

d =

√

1

CkBT

Mo

ω0τr
. (25)

All moments of the distribution of Qτ are linear with d2 and 〈θ̇〉/
√

〈δθ̇2〉 = d. So d2

compares the mean value of the angular speed to the root mean square of the angular
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speed fluctuations. This coefficient d2 increases when the system is driven further from

equilibrium. We consider it as a measure of the distance to equilibrium. In our system

d is positive, but smaller than 1, so we are out-of-equilibrium but not very far from it

(d = 0.059).

8.2. Sinusoidal forcing

Just like in the experiments, we choose the integration time τ to be a multiple of

the period of the forcing, so 〈∆Uτ 〉 = 0 and therefore 〈Wτ 〉 = −〈Qτ 〉. Within this

framework, we find that the PDF of ∆Uτ is exponential:

P (∆Uτ ) =
1

2
exp(−|∆Uτ |) . (26)

It is independant of τ because ∆Uτ depends only on θ and dθ

dt
at times ti and ti + τ

which are uncorrelated. This expression is in perfect agreement with the experimental

PDFs for all times (see Fig. 7b). Some algebra then yields for the characteristic function

of Q:

P̂τ (s) =
1

1 + s2
exp

(

i〈Qτ 〉s−
σ2

W

2
s2

)

(27)

The characteristic function of heat fluctuations is therefore the product of the

characteristic function of an exponential distribution ( 1
1+s2 ) with the one of a Gaussian

distribution (exp
(

i〈Qτ 〉s− σ2

W

2
s2
)

). Thus the PDF of heat fluctuations is nothing but

the convolution of a Gaussian and an exponential PDF, just as if Wτ and ∆Uτ were

independent. The inverse Fourier transform can be computed exactly:

P (Qτ ) =
1

4
exp

(

σ2
W

2

)

[

eQτ−〈Qτ 〉Erfc

(

Qτ − 〈Qτ 〉 + σ2
W

√

2σ2
W

)

+

e−(Qτ−〈Qτ 〉)Erfc

(

−Qτ + 〈Qτ 〉 + σ2
W

√

2σ2
W

)]

, (28)

where Erfc(x) = 1 − Erf(x) stands for the complementary Erf function. In Fig. 7c, we

have plotted the analytical PDF from Eq. (28) together with the experimental ones,

using values of σ2
W and 〈Qτ 〉 from the experiment and no adjustable parameters. The

agreement is perfect for all values of n, i.e. for any time τ . From Eq. (28), we isolate

three different regions for S(qτ ):

(I) if Qτ > σ2
W + |〈Qτ〉| = 3|〈Qτ〉| + O(1), then S(qτ ) = 2 + O( 1

τ
). This domain

of Sτ corresponds to fluctuations larger then three times the average value. The PDF

has exponential tails, corresponding to an exponential distribution with a non-vanishing

mean.

(II) if Qτ < σ2
W − |〈Qτ〉| = |〈Qτ 〉| + O(1), then S(qτ ) = Σ(n)qτ + O( 1

τ
) with

Σq(n) = 2|〈Qτ 〉|
σ2

W

= Σw(n). In this domain, values of the heat are small and heat

fluctuations behave like work fluctuations. The slope Σ(τ) is the same as the one

found for work fluctuations. The exact correction to the asymptotic value 1 is plotted

in Fig. 7e and again it describes perfectly the experimental behavior.
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(III) for σ2
W −|〈Qτ 〉| < Qτ < σ2

W +|〈Qτ 〉|, there is an intermediate region connecting

domains (I) and (II) by a second order polynomial: S(qτ ) = 2− Σ(τ)
4

(qτ − (1 + 2
Σ(τ)

))2 +

O( 1
τ
).

These three domains offer a perfect description of the three regions observed

experimentally (Fig. 7d).

Now, we examine the limit of infinite τ in which SSFT is supposed to hold. To

do so, we distinguish two variables : the heat Qτ or the normalized heat qτ . Their

asymptotic behavior are different because the average heat 〈Qτ 〉 depends on τ , more

precisely it is linear in τ .

We discuss first Qτ . The asymptotic shape of the PDF of Qτ (Eq. (28)) for large

τ is a Gaussian whose variance is σ2
W , the variance of the PDF of Wτ . Thus, the PDF

of Qτ coincides with the PDF of Wτ for τ strictly infinite. As we have already shown,

work fluctuations satisfy the conventional SSFT ; therefore heat fluctuations also satisfy

the conventional SSFT (Eq. (9)). We have found three different regions separated by

two limit values: the mean and three times the mean. But in the limit of large times

τ , the PDF shrinks and only region (II) is relevant. Region (II) corresponds to small

fluctuations and it is bounded from above by |〈Qτ 〉|+O(1) with the average 〈Qτ 〉 being

linear in τ . So all the behavior of the fluctuations of Qτ for large τ lays in region (II)

where the symetry function is linear and SSFT holds.

We turn now to the normalized heat qτ . As the average value of Qτ is linear in

τ , rescaling by 〈Qτ 〉 is equivalent to a division by τ ; the mean of qτ is then 1. This

normalization makes the two limit values constant. The boundary between regions (II)

and (III) is 1 + O(1/τ) and the boundary between (III) and (I) is 3 + O(1/τ). The

function S(qτ ) is not linear for large values of qτ > 1 but it is linear only in region (II),

for qτ < 1, i.e. for small fluctuations. So SSFT is satisfied only for small fluctuations

but not for all values of qτ , and we obtain for qτ a fluctuation relation which prescribes

a symetry function that is non-linear in qτ .

These two different pictures, in terms of Qτ or qτ , results from taking two non-

commutative limits differently. The first description using Qτ implies that the limit τ

infinite is taken before the limit of large Qτ . The second description does the opposite.

However, the probability to have large fluctuations decreases with τ and experimentally,

for large τ , only the region (II) can be seen, and it is the region in which where SSFT

holds.

As we have done in the case of the linear forcing, we introduce a non-dimensional

factor d such as :

d =

√

1

CkBT

Moωd

ω0ρ(ωd))
(29)

ρ(ωd) =

√

√

√

√

(

1 −
(

ωd

ω0

)2
)2

+ 4

(

ωd

ω0
cos(ϕ)

)2

(30)

The moments of the distribution of Qτ are linear with d2 and, like the linear torque, d

is equal to the amplitude of θ̇ divided by
√

〈δθ̇2〉. We consider it also as a measure of
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the distance to equilibrium. In our system d is positive, but smaller than 1, so we are

out-of-equilibrium but not very far it : here d = 0.18.

9. Discussion and conclusion

In this paper, we have studied the fluctuations of energy input and energy dissipation

in a harmonic oscillator driven out of equilibrium. This oscillator is very well described

by a second order Langevin equation. We have performed experiments using a torsion

pendulum driven out of equilibrium following a stationary protocol in which either the

torque increases linearly in time, or oscillates at a given frequency. We have also studied

transient evolutions from the equilibrium state. We have defined the work given to the

system as the work of the torque applied during a time τ . Accordingly we have defined

the heat dissipated by the pendulum during this time τ , by writing the first principle

of thermodynamics between the two states separated by time τ .

Fluctuations Relations are obtained experimentally for both the work and the heat,

for the stationary and transient evolutions.

We have experimentally observed that angle fluctuations of the brownian pendulum

have the same statistical and dynamical properties at equilibrium and for any non-

equilibrium driving. From this observation, we have derived expressions for the

probability density functions of the work and the heat. In our system, fluctuations of the

angle are Gaussian, and so are fluctuations of the work wτ . So the symmetry functions

S(wτ ) of the work are linear, and we have calculated exactly the time-correction to the

proportionality coefficient between S(wτ) and wτ . These corrections match perfectly the

experimental results, both in the case of a forcing linear in time, and sinusoidal in time.

We have also computed the analytic expression of the Fourier transform of the PDFs of

the dissipated heat. For the sinusoidal forcing, we have obtained for the first time an

analytic expression of the PDF of the heat. This expression is in excellent agreement

with the experimental measurements. For a torque linear in time, the PDF of the heat

has no simple expression but its Fourier transform gives insight on the behavior of the

symmetry function of the heat. It is very similar to the one obtained in the case of a

first order Langevin dynamics [7]. We emphasize here that our analytical derivations

are strongly connected to experimental observations on the properties of the noise ; and

are therefore different from any previous theoretical approach.

We have introduced a dimensionless variable d which we think is a measure of

the distance from equilibrium: the average dissipation rate is proportional to d, and

it increases when the system is further from equilibrium. d is also proportional to the

strength of the driving and in the Fluctuation Relations, it gives a proper unit to measure

the amplitude of fluctuations. So d plays the same role as the dissipation coefficient (the

viscosity in our case) in the Fluctuation Dissipation Theorem at equilibrium. We have an

expression of d for the two different time-prescriptions we have used. These expressions
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can be generalized:

d2 =
〈θ̇2〉
〈δθ̇2〉

(31)

The numerator corresponds to the solution of the Langevin equation when removing the

thermal noise term (η = 0). The denominator corresponds to the variance of thermal

fluctuations of angular speed δθ̇.

We thank G. Gallavotti for useful discussions. This work has been partially

supported by ANR-05-BLAN-0105-01.

Work fluctuations

In this section, we will calculate the mean and the variance of the work given to the

system in the cases :

(i) Transient state, linear forcing

(ii) Steady state, linear forcing

(iii) Steady state, sinusoidal forcing

TFT, forcing linear in time

The torque is : M(t) = Mo t/τr. The mean value of the angular displacement is the

solution of Eq. 1 :

〈θ〉 =
Mo

ψCτr

(

e−t/τα sin(ψt+ 2ϕ) + ψt− sin(2ϕ)
)

. (.1)

For the work done on the system, the PDFs are Gaussian for all integration time τ . The

mean of the PDF of Wτ for a given τ is:

〈Wτ 〉 =
M2

o

kBTψCτ2
r

[

1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ)

+
1

ω0

(

e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ)
)

]

(.2)

and its variance is:

σ2
Wτ

=
2M2

o

kBTψCτ2
r

[

1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ)

+
1

ω0

(

e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ)
)

]

, (.3)

σ2
Wτ

= 2〈Wτ 〉 . (.4)
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SSFT, forcing linear in time

The torque is : M(t) = Mo t/τr. The mean value of the angular displacement is the

solution of Eq. 1 after some τα. Thus the exponential term is vanished:

〈θ〉 =
Mo

ψCτr
(ψt− sin(2ϕ)) . (.5)

For the work done on the system, the PDFs are Gaussian for all integration time τ . The

mean of the PDF is:

〈Wτ 〉 =
M2

o

2kBTC τ 2
r

τ 2 (.6)

and the variance is:

σ2
Wτ

=
2M2

o

kBTψCτ2
r

[

1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ)

+
1

ω0

(

e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ)
)

]

. (.7)

From this, we deduce:

ǫ(τ) =
1

ψτ

{

A− e−τ/τα

(

B +
D

ω0τ

)}

, (.8)

where

A = 2
sin(3ϕ)

ω0τ
,

B = 2 sin(ψτ + 2ϕ) ,

D = 2 sin(ψτ + 3ϕ) .

SSFT, forcing sinusoidal in time

The torque is M(t) = Mo sin(ωdt). The mean value of the angular displacement is:

〈θ〉 = θ0 sin(ωdt+ β) where θ0 =
M0

C ρ(ωd)
(.9)

where

cos(β) =
1 −

(

ωd

ω0

)2

ρ(ωd)
and sin(β) =

−2
(

ωd

ω0

)

cos(ϕ)

ρ(ωd)
,

ρ(ωd) =

√

√

√

√

(

1 −
(

ωd

ω0

)2
)2

+ 4

(

ωd

ω0

cos(ϕ)

)2

. (.10)

For the work done on the system, the PDFs are Gaussian for all integration time τ . The

mean of the PDF is:

〈Wn〉 =
M2

o

kBTC

(

ω/ω0

ρ(ω)

)2

(τ/τα) (.11)

and the variance is:

σ2
n = 2〈Wn〉 + E + Fe−τ/τα (.12)

23



where

E = −〈Wn〉(1 + (ω/ωd)
2) cos(2β)

(ω/ω0)2(τ/τα)
(.13)

F = − 〈Wn〉
(ω/ω0)2.(τ/τα))

[

sin(ψτ + ϕ) cos(2β) + (ω/ω0)
2 sin(ψτ − ϕ) cos(2β)

+(ω/ω0) sin(ψτ) sin(2β)] . (.14)

Heat fluctuations

In this section, we will calculate the Fourier transform of the PDF of the dissipated heat

in two cases :

(i) Linear forcing

(ii) Sinusoidal forcing

Linear forcing

We introduce non-dimensional parameters in order to simplify calculations :

x̃(t) =

√

C

kBT

(

θ(t) − M(t)

C

)

,

ẋ =

√

Ieff
kBT

θ̇(t). (.15)

The mean value and the variance of x̃ and ẋ can be simply expressed :

d =

√

M2
o

CkBT

1

ω0τr
,

〈x̃〉 = − 2.d. cos(ϕ) , 〈ẋ〉 = d , 〈δx̃2〉 = 1 , 〈δẋ2〉 = 1. (.16)

where d is a non-dimensional value. Integrating by part, the work Wτ can be rewritten:

Wτ = d.ω0 [(ti + τ)x(ti + τ) − tix(ti)] −
(dω0)

2

2

[

(ti + τ)2 − t2i
]

+W ∗,

W ∗ = − (dω0)

∫ ti+τ

ti

x̃(t′)dt′. (.17)

With these definitions, we obtain : Qτ = 1
2
∆x̃τ + 1

2
∆ẋτ −W ∗ and 〈Qτ 〉 = −〈W ∗〉. Like

the distribution of Wτ , the distribution of W ∗ is gaussian for all values of τ and we find:

〈W ∗〉 = 2d2τ/τα,

σ2
W ∗ = 2d2

(

2τ/τα + 1 − 4 cos(ϕ)2
)

. (.18)

For notational convenience, we introduce a five dimensional vector : Y = (W ∗, x̃(ti +

τ), x̃(ti), ẋ(ti + τ), ẋ(ti)). P̃ is Gaussian and is so fully characterized by the covariance

matrix C defined as:

Cij = 〈(Yi − 〈Yi〉)(Yj − 〈Yj〉)†〉 (.19)
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where Z† denotes the complex conjugate of Z. So the distribution P̃ is written :

P̃ (Y ) =

√

1

(2π)5detC exp

(

−1

2
(Y − 〈Y 〉)TC−1(Y − 〈Y 〉)

)

(.20)

where ZT denotes the transpose of Z. We suppose that the integration time is larger

than the relaxation time. Within this assumption, θ(ti + τ) and θ(ti) are independent,

and so are θ̇(ti + τ) and θ̇(ti). As the equation of motion of the oscillator is second order

in time, θ and θ̇ are independent at any given times t. With these hypotheses, we get :

〈δx̃(ti)δx̃(ti + τ)〉 = 〈δx̃(ti)δẋ(ti)〉 = 〈δx̃(ti)δẋ(ti + τ)〉
= 〈δẋ(ti)δx̃(ti + τ)〉 = 〈δẋ(ti)δẋ(ti + τ)〉
= 〈δẋ(ti + τ)δx̃(ti + τ)〉 = 0. (.21)

The other coefficients of the covariance matrix are :

〈δW ∗δx̃(ti)〉 = 〈δW ∗δx̃(ti + τ)〉 = −2d cos(ϕ),

〈δW ∗δẋ(ti)〉 = 〈δW ∗δẋ(ti + τ)〉 = −d. (.22)

The Fourier transform of the PDF of the heat will be calculated here. We define

two quantities :

~e =















1

0

0

0

0















N =















0 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1















. (.23)

One can write Qτ as : Qτ = 1
2
Y TNY − eTY . The Fourier transform can be so written :

P̂τ (s) =

∫

dY
√

(2π)5detC
exp (M) ,

M = − 1

2
(δY )TC−1(δY ) + i s

(

1

2
Y TNY − eTY

)

. (.24)

We use a new variable defined as :

Y ′ = Y − (1 − i sC.N)−1(〈Y 〉 − is.C.e). (.25)

With this definition, the argument in the exponential M can be rewritten :

M = − 1

2
Y ′(C−1 − isN)Y ′ + γ,

γ =
i s

2

[

(N〈Y 〉 − e)T (1 − i sCN)−1(〈Y 〉 − i sCe) − 〈Y 〉Te
]

. (.26)

Changing the integration variable to Y ′ yields :

P̂τ (s) =

∫

dY ′

√

(2π)5detC
exp

(

−1

2
Y ′T (C−1 − i sN)Y ′

)

. exp(γ)

=
exp(γ)

√

det(1 − i sC.N)
. (.27)
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To make Eq. .27 into an explicit expression for P̂τ , the inverse of matrix (1 − isC.N) is

required in the expression for γ and its determinant. These are obtained as follows. We

find:

1 − i sC.N =















1 i s(2d cos(ϕ)) i s(−2d cos(ϕ)) i sd −i sd
0 1 − i s 0 0 0

0 0 1 + i s 0 0

0 0 0 1 − i s 0

0 0 0 0 1 + i s















.

The determinant of the matrix is (1 + s2)2. For the inverse of this matrix, we get :

(1 − i sC.N)−1 =















1 − i s
1−i s

(2d cos(ϕ)) i s
1+i s

(2d cos(ϕ)) − i s
1−i s

d i s
1+i s

d

0 1
1−i s

0 0 0

0 0 1
1+i s

0 0

0 0 0 1
1−i s

0

0 0 0 0 1
1+i s















.

We now have the material needed to calculate γ. We find :

γ = −i s〈W ∗〉 − s2

2

[

σ2
W + 2d2(1 + 4 cos(ϕ)2) +

4i sd2

1 + s2
(4 cos(ϕ)2 − 1)

+
4s2d2

1 + s2
(4 cos(ϕ)2 + 1)

]

. (.28)

The analytic expression of the Fourier transform of the PDF of the heat dissipated

during a linear forcing is :

P̂τ (s) =
1

1 + s2
exp

{

−d2is

(

2
τ

τα
+ i s

[

2
τ

τα
+ 2

]

+
−16 cos(ϕ)2 + 4 + 4i s(4 cos(ϕ)2 + 1)

1 + s2

)}

. (.29)

Sinusoidal forcing

We will determine in a first time the Gaussian joint distribution P̃ of Wτ , θ(ti), θ(ti +τ),

θ̇(ti) and θ̇(ti + τ). For notational convenience, we introduce a five dimensional vector

: ~X = (Wτ , θ(ti + τ), θ(ti), θ̇(ti + τ), θ̇(ti)). The PDF P̃ is fully characterized by the

covariance matrix C.

Cij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)†〉 (.30)

where Z† denotes the complex conjugate of Z. We suppose that the integration time

is larger than the relaxation time. Within this assumption, θ(ti + τ) and θ(ti) are

independent, and so are θ̇(ti + τ) and θ̇(ti). As the equation of motion of the oscillator

is second order in time, θ and θ̇ are independent at any given times t. With these

hypotheses, we get :

〈δθ(ti)δθ(ti + τ)〉 = 〈δθ(ti)δθ̇(ti)〉 = 〈δθ(ti)δθ̇(ti + τ)〉
= 〈δθ̇(ti)δθ(ti + τ)〉 = 〈δθ̇(ti)δθ̇(ti + τ)〉
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= 〈δθ̇(ti + τ)δθ(ti + τ)〉 = 〈Wτθ(ti)〉
= 〈Wτθ(ti + τ)〉 = 〈Wτ θ̇(ti)〉
= 〈Wτ θ̇(ti + τ)〉 = 0. (.31)

The covariance matrix is so a diagonal matrix :

C =















σ2
W 0 0 0 0

0 kBT/C 0 0 0

0 0 kBT/C 0 0

0 0 0 kBT/Ieff 0

0 0 0 0 kBT/Ieff















. (.32)

∆Uτ is a function of the positions and velocities at the beginning (ti) and at the end

(ti + τ). Thus, ∆Uτ and Wτ can be considered as independent. The PDF of Qτ is so

the convolution between the PDF of Wτ which is Gaussian and the PDF of ∆Uτ :

P (Qτ ) =

∫ +∞

−∞

PWτ
(z)P∆Uτ

(Qτ + z)dz. (.33)

We first calculate exactly the PDF of the variation of internal energy. We have

shown that θ(ti), θ(ti + τ), θ̇(ti) and θ̇(ti + τ) are independent. The Fourier transform

of the PDF is :

P̂∆Uτ
(s) = P̂Ep(ti+τ)(s).P̂Ec(ti+τ)(s).P̂Ep(ti)(−s).P̂Ec(ti)(−s) (.34)

where Ep = 1
2kBT

Cθ2 and Ec = 1
2kBT

Ieff θ̇
2. The distribution of θ is gaussian with

variance kBT/C. The distribution of Ep and the distribution of Ec are the same :

PEp
(x) = PEc

(x) =
1√
πx

exp(−x). (.35)

The Fourier transform of this distribution is : P̂ (s) = (1 − is)−1/2. This distribution is

the same for Ep and Ec at ti and ti + τ . Thus the Fourier transform of the variation of

internal energy is

P̂∆Uτ
(s) = (1 + s2)−1 (.36)

and the probability is :

P (∆Uτ ) =
1

2
exp(−|∆Uτ |). (.37)

As ∆Uτ and Wτ are independent, the Fourier transform of the dissipated heat can

be calculated :

P̂Qτ
(s) =

exp
(

i〈Qτ 〉 − σ2

W

2
s2
)

1 + s2
. (.38)

This expression can be inversed because it is simply the convolution between a Gaussian

distribution and an exponential distribution. So we find Eq. (28).
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