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Abstract

All maximal supergravities in four space-time dimensions are presented. The un-
gauged Lagrangians can be encoded in an Er(7)\Sp(56; R)/GL(28) matrix asso-
ciated with the freedom of performing electric/magnetic duality transformations.
The gauging is defined in terms of an embedding tensor © which encodes the sub-
group of E7(7) that is realized as a local invariance. This embedding tensor may
imply the presence of magnetic charges which require corresponding dual gauge
fields. The latter can be incorporated by using a recently proposed formulation
that involves tensor gauge fields in the adjoint representation of E77). In this
formulation the results take a universal form irrespective of the electric/magnetic
duality basis. We present the general class of supersymmetric and gauge invariant

Lagrangians and discuss a number of applications.
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1 Introduction

Maximal supergravity in four space-time dimensions contains 28 vector gauge fields, which,
in principle, can couple to charges assigned to the various fields. To preserve supersymmetry
these gauge field interactions must be accompanied by masslike terms for the fermions and
a scalar potential, as was first exhibited in the gauging of SO(8) [I]. In general it is far from
obvious which gauge groups are admissible and will lead to a supersymmetric deformation of
the ungauged Lagrangian. Initially non-compact versions and/or contractions of SO(8) were
shown to also lead to viable gaugings [2], followed, much more recently, by the so-called ‘flat’
gauge groups [3] that one obtains upon Scherk-Schwarz reductions [4. [5] of higher-dimensional
theories, as well as by several other non-semisimple groups [6].

In [7] we presented an ab initio analysis of all possible gaugings of four-dimensional max-
imal supergravity (this was reviewed in [8]). The gauge group, Gy, is a subgroup of the E7 )
duality group that leaves the combined field equations and Bianchi identities invariant. The
decomposition of the gauge group generators in terms of the E;(7) generators is parametrized
by the so-called embedding tensor ©, which determines not only the gauge-covariant deriva-
tives, but also the so-called T-tensors that define the masslike terms and the scalar potential.
The admissible embedding tensors can be characterized group-theoretically and this enables
a systematic discussion of all possible gaugings. In [7], several examples were presented which
demonstrate how one can conveniently analyze various gaugings in this way. Another exam-
ple, which is relevant for IIB flux compactifications, was worked out in [9]. The same strategy
has been applied to maximal supergravity in various space-time dimensions [10, 1T}, 12} [13],
as well as to theories with a lower number of supercharges [14} [15].

In this paper we present a complete analysis of all gaugings of maximally supersymmetric
four-dimensional supergravity. We establish that a gauging is in fact completely characterized
by the embedding tensor, which is subject to two constraints. One constraint, which is
linear, follows from supersymmetry and implies that the embedding tensor belongs to the
912 representation of E7(7). A second constraint is quadratic and implies that the square of
the embedding tensor does not contain the 133+8645 representation. This constraint ensures
the closure of the gauge group. Furthermore it implies that the embedding tensor is gauge
invariant, and it ensures that the charges can always be chosen in the electric subsector upon
a suitable electric/magnetic duality transformation. In this approach one can establish the
consistency of the gauging prior to evaluating the explicit Lagrangian. Any given embedding
tensor that satisfies these two constraints, defines a consistent supersymmetric and gauge
invariant Lagrangian. In fact, we will present universal expressions for the Lagrangian and
the supersymmetry transformations of gauged N = 8 supergravities, encoded in terms of
the embedding tensor. The fermionic masslike terms and the scalar potential have a unique
structure in terms of the so-called T-tensor, which is linearly proportional to the embedding
tensor. Here we should perhaps emphasize that we our results are obtianed entirely in a
four-dimensional setting. As is well known, gaugings can originate from the compactification

of a higher-dimensional theory with or without fluxes, or from Scherk-Schwarz reductions.



But whatever their origin, the four-dimensional truncations belong to the class of theories
discussed in this paper, provided they are maximally supersymmetric (irrespective of whether
the theory will have maximally supersymmetric groundstates).

A gauging can involve both magnetic and electric charges, each of which will require
corresponding gauge fields. These can be accommodated by making use of a new formalism
[16], which, in the case at hand, requires the presence of tensor gauge fields transforming in
the (adjoint) 133 representation of Ey(7). Neither the magnetic vector fields nor the tensor
fields lead to additional degrees of freedom owing to the presence of extra gauge invariances
associated with these fields. Because of the extra fields, any embedding tensor that satisfies
the above constraints will lead to a consistent gauge invariant and supersymmetric theory,
irrespective of whether the charges are electric or magnetic.

There are two characteristic features that play an important role in this paper. One that
is typical of four-dimensional theories with vector gauge fields, concerns electric/magnetic
duality [17]. For zero gauge-coupling constant, the gauge fields transform in the 56 represen-
tation of E7(7), and decompose into 28 electric gauge fields and their 28 magnetic duals. The
magnetic duals do not appear in the Lagrangian, so that the Lagrangian cannot be invariant
under Er(7), but the combined equations of motion and Bianchi identities of the vector fields
do transform covariantly in the 56 representation [18]. In fact the rigid symmetry group of
the Lagrangian is a subgroup of E(7) under whose action electric gauge fields are transformed
into electric gauge fields. This group is not unique. It depends on the embedding of Er(7) in-
side the larger duality group Sp(56;R), which determines which gauge fields belonging to the
56 representation play the role of electric and which ones the role of magnetic gauge fields.
The choice of the electric/magnetic frame fixes the rigid symmetry group of the ungauged
Lagrangian, and different choices yield in general different Lagrangians which are not related
to each other by local field redefinitions.

The conventional approach for introducing local gauge invariance relies on the rigid sym-
metry group of the ungauged Lagrangian as the gauge group has to be a subgroup thereof.
The procedure involves the introduction of minimal couplings involving only the electric vec-
tor fields, and therefore it explicitly breaks the original E7(7y duality covariance of the field
equations and Bianchi identities. The advantage of the formulation proposed in [16] is two-
fold. On the one hand, minimal couplings involve both electric and magnetic vector fields in
symplectically invariant combinations with the corresponding components of the embedding
tensor. This ensures that, irrespective of the gauge group, the E7(;) invariance can formally
be restored at the level of the field equations and Bianchi identities, provided the embedding
tensor is treated as a “spurionic” object transforming under E;(7) and subject to the two
aforementioned group-theoretical constraints. On the other hand, we are no longer restricted
in the choice of the gauge group by the rigid symmetries of the original ungauged Lagrangian.
Regardless of the electric/magnetic frame, we may introduce any gauge group contained in
E7(7) corresponding to an embedding tensor that satisfies the two Eq(7)-covariant constraints.
If this gauge group is not a subgroup of the rigid symmetry group of the ungauged La-

grangian, the embedding tensor will typically lead to magnetic charges and magnetic gauge



fields together with the tensor fields. The latter will play a crucial role in realizing the gauge
invariance of the final Lagrangian. An interesting feature of the resulting theory is that the
scalar potential is described by means of a universal formula which is independent of the
electric/magnetic duality frame.

A second, more general, feature of maximal supergravity is that the scalar fields parametrize
a symmetric space, in this case the coset space E7(7)/SU(8). The standard treatment of the
corresponding gauged nonlinear sigma models is based on a formulation in which the group
SU(8) is realized as a local invariance which acts on the spinor fields and the scalars; the
corresponding connections are composite fields. A gauging is based on a group G, C E(y)
whose connections are provided by (some of the) elementary vector gauge fields of the su-
pergravity theory. The coupling constant associated with the gauge group will be denoted
by g. One can impose a gauge condition with respect to the local SU(8) invariance which
amounts to fixing a coset representative for the coset space. In that case the Eq(7)-symmetries
will act nonlinearly on the fields and these nonlinearities make many calculations intractable.
Because it is much more convenient to work with symmetries that are realized linearly, the
best strategy is therefore to postpone this gauge fixing until the end. This strategy was
already adopted in [I], but in this paper we find it convenient to introduce a slightly different
definition of the coset representative.

Let us end this introduction by making some remarks on the physical significance of the
embedding tensor. As previously anticipated, the low-energy dynamics of any superstring/M-
theory compactification that admits a four dimensional N = 8 effective supergravity descrip-
tion, has to be contained within the class of theories discussed in the present paper. From
the higher-dimensional perspective a gauging is in general characterized by constant back-
ground quantities which may be related to fluxes of higher-dimensional field strengths across
cycles of the compactification manifold (form—fluxes), or just associated with the geometry of
the internal manifold (geometric—fluxes), such as the tensor defining a twist in the topology
in an internal torus [4]. In all known instances of gauged extended supergravities arising
from superstring/M-theory compactifications, these background quantities enter the four-
dimensional theory as components of the embedding tensor. Interestingly enough, in these
cases the quadratic constraint on the embedding tensor follows from consistency of the higher-
dimensional field equations and Bianchi identities. For instance, in type-II compactifications
in the presence of form-fluxes the quadratic constraint expresses the tadpole cancellation
condition. This condition, in the context of compactifications which are effectively described
by N = 8 four-dimensional supergravity, poses severe restrictions on the fluxes since there is
no room in this framework for localized sources such as orientifold planes. This is the case,
for example, for the type-IIB theory compactified on a six-torus in the presence of NS-NS
and R-R form-fluxes. The situation is clearly different for compactifications yielding N < 4
theories in four dimensions.

Having identified the background quantities in a generic flux compactification with compo-
nents of the embedding tensor, our formulation of gauged maximal supergravity may provide

a useful setting for studying the duality relations between more general superstring/M-theory



vacua. Indeed the embedding tensor transforms covariantly with respect to the full rigid sym-
metry group Er(7) of the four-dimensional theory, which is expected to encode the various
string dualities. For instance, the generic T-duality transformations on the string moduli of
the six-torus are implemented by the SO(6, 6;Z) subgroup of Eq7).

This paper is organized as follows. In section [2] the embedding tensor is introduced
together with an extensive discussion of the constraints it should satisfy. It is demonstrated
in a special electric/magnetic frame how these constraints ensure the existence of a Lagrangian
that is invariant under the gauge group specified by the embedding tensor. Furthermore it
is explained how to incorporate both electric and magnetic charges and corresponding gauge
fields. In section Bl the corresponding T-tensor is introduced. As a result of the constraints
on the embedding tensor the T-tensor satisfies a number of identities which are important for
the supersymmetry of the Lagrangian. In section M the Lagrangian and the supersymmetry
transformations are derived. Salient features are the universal expressions for the fermionic
masslike terms and the scalar potential, which are induced by the gauging, as well as the role
played by the magnetic gauge fields. Some applications, including explicit examples of new

gaugings, are reviewed in section 5.

2 The embedding tensor

We start by considering (abelian) vector fields AMM transforming in the 56 representation of
the E7(7y duality group with generators denoted by () uN, so that (5AMM = —A%(to) N M AMN .
These vector potentials can be decomposed into 28 electric potentials A“A and 28 magnetic
potentials A,. In the conventional supergravity Lagrangians only 28 electric vectors appear,
but at this stage we base ourselves on 56 gauge fields. In due course we will see how the
correct balance of physical degrees of freedom is nevertheless realized. The gauge group must
be a subgroup of E;(7), so that its generators Xz, which couple to the gauge fields AuM , are

decomposed in terms of the 133 independent Er(7) generators ¢4, i.e.,
Xy =0y %ty , (2.1)

wherea=1,2,...,133and M =1,2,...,56. The gauging is thus encoded in a real embedding
tensor © ) belonging to the 56 x 133 representation of E7(7). The embedding tensor acts
as a projector whose rank r equals the dimension of the gauge group. One expects that
r < 28, because the ungauged Lagrangian should be based on 28 vector fields to describe
the physical degrees of freedom. As we shall see shortly, this bound is indeed satisfied. The
strategy of this paper is to treat the embedding tensor as a spurionic object that transforms
under the duality group, so that the Lagrangian and transformation rules remain formally
invariant under E7(7). The embedding tensor can then be characterized group-theoretically.
When freezing ©,/ to a constant, the E;(7)-invariance is broken. An admissible embedding
tensor is subject to a linear and a quadratic constraint, which ensure that one is dealing
with a proper subgroup of E77) and that the corresponding supergravity action remains

supersymmetric. These constraints are derived in the first subsection. A second subsection



elucidates some of the results in a convenient Ey(7) basis. A third subsection deals with the

introduction of tensor gauge fields and their relevance for magnetic charges.

2.1 The constraints on the embedding tensor

The fact that the X, generate a group and thus define a Lie algebra,

(Xar, Xn] = funt Xp, (2.2)

with fan? the as yet unknown structure constants of the gauge group, implies that the

embedding tensor must satisfy the closure condition,
O ON? fus? = fun’ Op7. (2.3)

Here the f,37 denote the structure constants of Er(), according to [ta,ts] = fas”ty. The
closure condition implies that the structure constants fis/n? satisfy the Jacobi identities in

the subspace projected by the embedding tensor,
fiun® frgt O =0. (2.4)
Using the gauge group generators Xj; one introduces gauge covariant derivatives,
D,=0,—gAMXy, (2.5)

where g denotes an uniform gauge coupling constant. These derivatives lead to the covariant
field strengths,

On* Fu™ =0 (0, 4M —0,A4,M — g fnp™ ANAT). (2.6)
The gauge field transformations are given by
O 0AM =0y (9,AM — g fnp™ AN AT). (2.7)

Because of the contraction with the embedding tensor, the above results apply only to an
r-dimensional subset of the gauge fields; the remaining ones do not appear in the covariant
derivatives and are not directly involved in the gauging. However, the r gauge fields that do
appear in the covariant derivatives, are only determined up to additive terms linear in the
56 — r gauge fields that vanish upon contraction with ©,,<.

While the gauge generators (2I)) act in principle uniformly on all fields that transform
under E7(7), the gauge field transformations are a bit more subtle to determine. This is so
because the gauge fields involved in the gauging should transform in the adjoint representation
of the gauge group. At the same time their charges should coincide with Xj; in the 56

P

representation, so that (X,7)n" must decompose into the adjoint representation of the gauge

group plus possible extra terms which vanish upon contraction with the embedding tensor,

(XM)NP Op* = @Mﬁ thP Op* = —fMNP Op~. (2.8)



These extra terms, pertaining to the gauge fields that do not appear in the covariant deriva-
tives, will be considered in due course. Note that (2.8]) is the analogue of (23] in the 56
representation. The combined conditions (23]) and (2Z8)) imply that © is invariant under the

gauge group and yield the E)-covariant condition
CMNaEfg»ya@Mﬁ@N’Y—l-thP@Mﬁ@pa20. (2.9)

Obviously Cyn® can be assigned to irreducible E7(7) representations contained in the 56 x
56 x 133 representation. The condition ([2.9) encompasses all previous results: it implies
that

(Xar, Xn] = —Xun' Xp, (2.10)

so that (Z9) implies a closed gauge algebra, whose structure constants, related to Xp/n*
in accord with (2.8]), have the required antisymmetry. Hence (29) is indeed sufficient for
defining a proper subgroup embedding

The embedding tensor satisfies a second constraint, which is required by supersymmetry.

This constraint is linear and amounts to restricting © ;% to the 912 representation [7]. From
56 x 133 = 56 + 912 + 6480, (2.11)

one shows that this condition on the representation implies the equations,
ta™ ONT =0,  (tgt)u ON = —LONM", (2.12)

where the index « is raised by the inverse of the Er(7)-invariant metric 1,5 = tr(tatgs).
As a result of the representation constraint, the representation content of Cy;n® can be

further restricted as from (2.I2]) one can derive the following equations,
tan” Cup® =0, (tgt*)n" Cup’=—-LCun®, tam” Cpn® =tan” Cpu®. (2.13)

They imply that Can® should belong to representations contained in 56 x 912. On the
other hand, the product of two O-tensors belongs to the symmetric product of two 912

representations. Comparing the decomposition of these two productsd,

(912 x 912); = 133 + 8645 + 1463 + 152152 + 253935,

56 x 912 133 + 8645 + 1539 + 40755, (2.14)

one deduces that C'yyny® belongs to the 133 + 8645 representation. Noting the decomposition
(133 x 133), = 133 + 8645, we observe that there is an alternative way to construct these
two representations which makes use of the fact that Sp(56;R), and thus its E7(7) subgroup,
has an invariant skew-symmetric matrix QMY which we write as,

QMY — (_01 3) . (2.15)

!Note that for an abelian gauge group we have Xy nT©p® = 0. Using [212) this leads to tr(Xn Xn) = 0.
2We used the LiE package [19] for computing the decompositions of tensor products and the branching of

representations.



The conjugate matrix Qy/n takes the same form, so that QMNQnp = —6M p. In this way

one derives an equivalent version of the constraint (2.9]),
OueON’OMN = — orle, =0, (2.16)

which is only equivalent provided the representation constraint (2.12]) is imposed. The con-
straint (2.106) implies that the ©% can all be chosen as electric vectors upon a suitable
Sp(56;R) transformation, implying that all the nonzero components of the 133 vectors O
cover an r-dimensional subspace parametrized by the gauge fields ANM with M =1,...,r

and r < 28. In this basis Xy/n? can be written in triangular form,

Xar = <_fM aM) , (2.17)
0 by

where the r x r upper-left diagonal block coincides with the gauge group structure constants
and the submatrices aps and bys do not contribute to the product (Xps) ~NFOp?. The lower-
left (56 — r) x r block vanishes as a result of (Z.8]). It is easy to see that aps and bys cannot
both be zero. If that were the case, we would have fysn? = — Xy n?', which is antisymmetric
in M and N. Hence,

ON“tarm’ = —Ontan’ . (2.18)

Contracting this result by (%) pM leads to t, t° ©* = —©F which is in contradiction with the
representation constraint (2.12]). In the next subsection we give a more detailed analysis of
the submatrices ajs and by, which shows that by; never vanishes.

Let us now proceed and find the restrictions on X n*. First of all, E7(7) invariance of
QMN implies that Xy np = XMNQQPQ is symmetric in N and P. Furthermore, X belongs
to the 912 representation (remember that (t,) transforms as an E7(7) invariant tensor, so
that X, transforms in the same representation as the embedding tensor), which is, however,
not contained in the symmetric product (56 x 56 x 56)s. Consequently it follows that the fully
symmetric part of Xy/np must vanish. Likewise, contractions of Xy;n? will also vanish, as

they do not correspond to the 912 representation. Hence X/ n % has the following properties,
Xuvp =0, Xunp) =0, Xun™ = XunM =0. (2.19)
The first condition implies that
Xun”=—-Xus, Xuaz = Xusa, X =Xy™t, (2.20)

whereas the second one implies

X(AEF) =0, 2X(FA)Z — XEAF ,

(2.21)
Xz =0, 2X(rp)” = X*ar.

The constraints (Z20) and (22I)) coincide with the constraints that we have adopted in a

more general four-dimensional context in [16].



The constraint (Z.I6]) motivates the definition of another tensor Z*® which is orthogonal
to the embedding tensor, i.e. Z":2@ % =0,

ZAa — l@Aa
)
ZMe = IoMN gy — 2 (2.22)
I\ = —%@Aa .
As a consequence of the second equation of (2.19]), one may derive,
Xy =2 daun (2.23)
where dq, pry 18 an Eq(py-invariant tensor symmetric in (M N )

do MN = (ta)MP Qnp. (2.24)

The more general significance of ([2:23]) was discussed in [20].

2.2 A special E7;) basis

To appreciate the various implications of the constraints on Xa;n*, we consider a special basis
in which all the charges are electric. Hence magnetic charges vanish by virtue of @A = 0.

A vector VM in the 56 representation can then be decomposed according to
VM — (VA V) — (VA VE VA, VL), (2.25)

with A =1,...,rand a = r+ 1,...,28; i.e., electric (gauge field) components are written
with upper indices A, a and their magnetic duals with corresponding lower indices A, a. The
components V® then span the subspace defined by the condition ©,* VA = 0. Consequently,
VA and Vy are defined up to terms proportional to the V¢ and Vj, respectively. Obviously
only the ©4% are nonvanishing and the X;n* are only nonzero when M = A. Imposing
223) and (Z.24)), it follows that a block decomposition of X 4n* is then as follows (row and

column indices are denoted by B,b and C, ¢, respectively),

—faB® hap® Capc Cage

Xan" = ’ 0 Gae 0 , (2.26)
0 0  fac® 0
0 0 —hac® O
where
hiap)® = Ciap)e = Cape) = Clano) = fap© = fas® =0. (2.27)

The last equation implies that the gauge group is unimodular. The closure relations (2.2])

imply a number of nontrivial identities,

fus® fop® = 0
fias” hepp® = 0
faB® Ceep — 4 fiea®” Copye + 4hca® Cppye = 0,
0

fus” Coipa = (2.28)



The transformations generated by (2.26]) imply that electric gauge fields transform exclusively

into electric gauge fields,

5A, A = ABfpetaA’,

6A," = —APhpcA°, (2.29)
where, for the moment, we keep the transformation parameters A“ space-time independent.

The magnetic gauge fields, on the other hand, transform into electric and magnetic gauge
fields,

5AMA _AB(fBAC AuC’ - hBAc Auc + CBAC AMC + C(BAc Auc) ’
6A,a = —APCOpa, AN (2.30)

Because the Lagrangian does not contain the magnetic gauge fields in this case, the ques-
tion arises how the gauge transformations are realized. The answer is provided by elec-
tric/magnetic duality. The above variations (2.29) and (Z30) generate a subgroup of these
duality transformations that must be contained in E7(7). General electric/magnetic transfor-
mations constitute an even bigger group Sp(56;R). In the abelian case they are defined by
rotations of the 28 field strengths F; WA and the 28 conjugate tensors G, x defined by

. oL
G;MJA = 1E€uvpo m . (231)

The corresponding field equations and Bianchi identities constitute 56 equations,
0 F ™ =0=0,,G,pn (2.32)

which are clearly invariant under rotations of the 56 field strengths GWM , defined by

A
GuM = (F“” ) . (2.33)

G/u/E

The equations (2.32]) show that the GWM can be expressed in terms of 56 vector potentials,
and this is how the electric and magnetic gauge fields appear in the abelian case. Hence we
may write,

Gu™ =20,4,M. (2.34)

Electric/magnetic duality acts in principle on (abelian) field strengths rather than on cor-

responding gauge fields, because the field strengths G4 are not independent according to

&.31).

Let us briefly return to the general Sp(56;R) dualities, which can be decomposed as

FA UAE ZAE FZ
— , (2.35)
G Was Wa* Gy

where the (real) constant matrix leaves the skew-symmetric matrix Qs invariant. This

follows,

ensures that the new dual field strengths G,,a can again be written in the form (Z3I]) but



with a different Lagrangian. These duality transformations thus define equivalence classes
of Lagrangians that lead to the same field equations and Bianchi identities. They are gen-
eralizations of the duality transformations known from Maxwell theory, which rotate the
electric and magnetic fields and inductions (for a review of electric/magnetic duality, see
[17]). An E;(7) subgroup of these transformations, combined with transformations on the
scalar fields, constitutes an invariance group, meaning that the combined field equations and
Bianchi identities (including the field equations for the other fields) before and after the E (7
transformation follow from an identical Lagrangian. Only the vector field strengths (2.33])
and the scalar fields (to be introduced in section [3)) are subject to these Er(7) transformations.
The other fields, such as the vierbein field and the spinor fields, are inert under Er(7).
To be more specific let us introduce the generic gauge field Lagrangian that is at most
quadratic in the field strengths, parametrized as in [16],
M etor =~ Nan FLAFHE - Mg Fp A P
+Fr o+ Fr O
[ — )T |of  ofm O;VAOQ“’] . (2.36)
Here the F, jf, are complex (anti-)selfdual combinations normalized such that F),, = F, ;;, +
F,. The field-dependent symmetric tensor Ny comprises the generalized theta angles and
coupling constants and Oi/ A Tepresents bilinears in the fermion fields. The terms quadratic
in OWA are such that any additional terms in the Lagrangian (which no longer depends

on the field strengths) will transform covariantly under electric/magnetic duality. From the

above Lagrangian we derive

Gl =Nz FL> 4208, . (2.37)

Upon an electric/magnetic duality transformation (2:35]) one finds an alternative Lagrangian

of the same form but with a different expression for My, and Oy,

Nps — (V./\/ + W)ar (U + Z./\/)_l]rz; ,

Ofn — OLsl(U+2ZN)"1%y, (2.38)

This result follows from requiring consistency between (Z31]) and (238]). The restriction to
Sp(56; R) ensures that the symmetry of My remains preserved. For the E7(7) subgroup of in-
variances, the transformations (2.38)) must be induced by corresponding E7(7y transformations
of the scalar fields.

Let us now return to the infinitesimal gauge transformations corresponding to the charges
([228), which act on the field strengths according to § F WM = A X WM F WN . The abelian
field strengths F; WA and G, thus transform as

6F,* = AP fpctFL°,
0F,* = —APhpc"F,°,
0Guwa = —AP(f5a°Guwe —hea°Gue+ Crac Fu® + Cpac Fu°),
0Gwa = —APCpadFu?. (2.39)
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According to ([2.37) the field strengths G4 depend also on fields other than the vector fields,
and in order to have an invariance, the transformations of the these fields should combine
with the transformations of the vector fields to yield the above variations for the dual field
strengths G,a. Therefore the gauge group must be a subgroup of E7(7). In that case it follows
that the transformations (2.39)) for F, WA and G A leave the Lagrangian (236) invariant, up
to

0L ox &7 A [ Capo Fiu® Fpo® +2 Capa Fiu® Foo®| (2.40)

This variation constitutes a total derivative when the A“ are constant. When the parame-
ters A4 are space-time dependent, one needs to introduce extra terms into the Lagrangian.
According to ([2.20]) the gauge fields transform as,

SAN = 9A — g fpct AB AT,
§AL" = 9N+ ghpc” AP AC, (2.41)

and the covariant field strengths acquire the standard non-abelian modifications,

F;wA — f;u/A = 8MAVA - 8VAMA -9 fBCA AMBAVC ’
ija - fwja _ 8;,LAI/G - aVAua +ghBCa AMBAVC . (242)

Likewise the derivatives on the scalar fields are extended to properly covariantized derivatives
according to (Z3]). The only gauge fields that appear in the covariant derivatives are the fields
AMA, so that only these gauge fields couple to the matter fields. Note that, according to
(241)) and (2.42]), the abelian gauge fields A,* couple to charges that are central in the gauge
algebra. Therefore the resulting gauge algebra is a central extension of (2.2]). Introducing

formal generators X 4 and X,, it reads,
[Xa,X5] = fap® Xc — hap*Xa. (2.43)

On the matter fields the central charges X, vanish and X4 = X 4.
In (2.40) the abelian field strengths will be replaced by the covariant field strenths (2.42)),
so that (2.40]) is no longer a total derivative. Therefore the invariance of the action requires

the presence of extra Chern-Simons-like terms,

LY o get? |Cape A AP (0,A,C — 29 fopC AP ALT)
+ Capa AN (APO,A, 4 A,%0,A,P)
+39Capa A (hep® AP — fop® Aya)ApCAUD] L (244)

The identities ([2.28]) ensure that these terms are indeed sufficient for restoring the gauge
invariance of the Lagrangian [21, 22]. In this connection it is important that the definition
of the dual field strengths remains as in (231)), so that G,,a will be defined by ([2.37) with
F WA replaced by the non-abelian field strengths .7-"#,/\ defined in (2:42]).

Hence we have shown that any embedding tensor that satisfies the two constraints (2.9])

and ([2I2]), leads to a gauge invariant Lagrangian. We emphasize once more that this was
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done in the special basis ([2.25]), in which the charges are electric. The magnetic gauge fields

do not play a role here and in the non-abelian case they can no longer be defined in terms of

a solution of ([2.34]).

2.3 Magnetic potentials and antisymmetric tensor fields

In the more general setting with magnetic charges, the gauge algebra does not close, simply
because the Jacobi identity is only valid on the subspace projected by the embedding tensor
(c.f. 24)). As was generally proven in [16] for four-dimensional gauge theories, one can still
obtain a consistent gauge algebra, provided one introduces magnetic gauge fields from the
beginning, together with tensor gauge fields B,,,. In the case at hand these fields transform
in the adjoint 133 representation of E(7). At the same time, to avoid unwanted degrees
of freedom, the gauge transformations associated with the tensor fields should act on the
(electric and magnetic) gauge fields by means of a transformation that also depends on the
embedding tensor,

sAM =D AM —gZMeE, (2.45)
where the AM are the gauge transformation parameters and the covariant derivative reads,
DMAM = OHAM + g XpoM AMP A®. The transformations proportional to E,« enable one to
gauge away those vector fields that are in the sector of the gauge generators X/n' where
the Jacobi identity is not satisfied (this sector is perpendicular to the embedding tensor).

These gauge transformations form a group, as follows from the commutation relations,

[0(A1),6(A2)] = 6(A3) +6(53),
[6(A),6(E)] = 6(3), (2.46)
where
AM = g XpnpMAYAT
Esua = danp(AY DAy — AY DAY,
Epo = A (Xpa + 2dapnZV )25 (2.47)

In order to write down invariant kinetic terms for the gauge fields we have to define a
suitable covariant field strength tensor. This is an issue because the Jacobi identity is not
satisfied and because we have to deal with the new gauge transformations parametrized by
the parameters =Z,,,. Indeed, the usual field strength, which follows from the Ricci identity,
[Dys D] = —9F ™ X,

Fut = 0, AN = 0,AM + g Xivpy™ AN AT (2.48)

is not fully covariant The lack of covariance can be readily checked by observing that fwM
does not satisfy the Palatini identity,

(5fMVM = 2D[M5A,/}M - 29 X(pQ)M A[MP (5AV]Q s (2.49)

3Observe that the covariant derivative is invariant under the tensor gauge transformations, so that the field

strengths contracted with X/ are in fact covariant.
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under arbitrary variations 5AHM . This result shows that .7-"WM transforms under gauge

transformations as
6Fu™ = g A" Xnp™ Fu™N — 29 ZM (DB 0 + darg Al 6A,9), (2.50)

which is not covariant. The standard strategy [11} 20} [16] is therefore to define modified field
strengths,
HMVM = }—MVM +gZM’a Buva s (2.51)

where we introduce the tensor fields B, o, which are subject to suitably chosen gauge trans-
formation rules.

At this point we recall that the invariance transformations in the rigid case implied that
the field strengths G, transform under a subgroup of Sp(56,R) (c.f. (Z3H)). Our aim is to
find a similar symplectic array of field strengths so that these transformations are generated
in the non-abelian case as well. This is not possible based on the variations of the vector fields
A“M , which will never generate the type of fermionic terms contained in G, ». However, the
presence of the tensor fields enables one to achieve this objective, at least to some extent.

Just as in the abelian case, we define an Sp(56, R) array of field strengths QWM by

Hyu?
QWME< . ) , (2.52)

guuZ
so that
A A
g;—i—u = H:y )
Gha = NasHp»+20/,. (2.53)

Note that the expression for G,,,a is the analogue of (2.37), with F, WA replaced by HWA.
Following [I6] we introduce the following transformation rule for B, (contracted with

ZMe because only these combinations will appear in the Lagrangian),

ZMO5 By o = 2ZM (DB + da NP AN 6A,T) = 2 X(vpy) AT G (2.54)

where D,Z,o = 0,50 — gAHMXMaﬁE,,g with Xne” = —@M“Yfmﬁ the gauge group gener-
ators embedded in the adjoint representation of E(7). With this variation the modified field
strengths (251]) are invariant under tensor gauge transformations. Under the vector gauge

transformations we derive the following result,

5GHA = —gAXpNtGEN — g ATXT RN (G, M),
0Gtn = —gA " XpyaGLYN —gNan APXTp¥(GE, — HE)r,
8(Gr, —HL)A = g AP (XTpp — XTp™ Nsa) (G —Hb)r (2.55)
Hence 5QWM = —gAPXpyM QWN, just as the variation of the abelian field strengths GWM

in the absence of charges, up to terms proportional to @Aa(gw — Huw)a- According to [16],

the latter terms represent a set of field equations. The last equation of (2.55]) then expresses
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the well-known fact that under a symmetry field equations transform into field equations.
As a result the gauge algebra on these tensors closes according to (2.46]), up to the the same
field equation.

Having identified some of the field equations, it is easy to see how the Lagrangian should
be modified. First of all, we replace the abelian field strengths F, WA in the Lagrangian (2:36])
by HWA, so that

. OLect
g,uz/A = 1€uvpo 8,}_\2‘:0_;): . (256)
Under general variations of the vector and tensor fields we then obtain the result,
e 10 Lyector = —1G T A | DS AN + 1900 (0B e — 2dapg A, 0A9) | +hie..  (2.57)

From this expression the reader can check that the Lagrangian (2.36]) is indeed invariant
under the tensor gauge transformations. Even when including the gauge transformations of
the matter fields, the Lagrangian is, however, not invariant under the vector gauge trans-
formations. For invariance it is necessary to introduce the following universal terms to the

Lagrangian [16],
Lip = Ligem oM B, <2apAc, A+ 9 Xuna AMAN +190,°B,, 5)
+ Lig e Xy o A“MAI,N<8PA0A +1g XpQAApPA0Q>
+ 3ig e X AM AN (9,400 + 9 Xpoad,” 4,9) (2.58)

The first term represents a topological coupling of the antisymmetric tensor fields with the
magnetic gauge fields, and the last two terms are a generalization of the Chern-Simons-like
terms (2.44) that we encountered in the previous subsection. Under variations of the vector

and tensor fields, this Lagrangian varies into (up to total derivative terms)
e 10 Liop = THTA DdAyn + 2ig HT A 02 (6Bva — 2dapA 0A,9) +he..  (2.59)

Under the tensor gauge transformations this variation becomes equal to the real part of
2ig HTHM @, D, =Z,q. This expression equals a total derivative by virtue of the invariance
of the embedding tensor, the constraint (2.16]), and the Bianchi identity

Dy = 59 2" [3 DBy o + 6 dap Ay (0,4, + S9Xing " A 4,%)] . (2:60)

In this Bianchi identity, D, H,," = 0,Hyp™ + gA, L Xpn"H,,~ and DyBuya = 9pBuva —
gApM X B,,3. This expression for the Bianchi identity is suitable for our purpose here,
but we note that it is not manifestly covariant in this form, in view of the fact that the fully

covariant derivative of H“,,M reads,
DpH/wM = apH;wM + gApPXPNM g;u/N + gApPXNPM (g/u/ - H/W)N ’ (2'61)
and the covariant field strength of the tensor fields equals

Hywpa =3 DpuBugjat6danry A (045" + 39X ms ™ 45455 4G, N =, Y ) - (2.62)
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The manifestly covariant form of the Bianchi identity (2.60]) then reads,
D[,uHup]M = %g ZM’a H/u/poz . (263)

The various modifications described in this subsection ensure the gauge invariance of the
Lagrangian Lyect + Liop, provided we include the gauge transformations of the scalar fields

[16]. Furthermore, variation of the tensor fields yields the field equations identified above,
5£VCCtOI‘ + 5£t0p = _iig 5B,uz/a @Aa [(g+,ul/ - H—HW)A - (g—,uz/ - H_'LW)A] . (264)

This result shows that the Lagrangian is invariant under variations of the tensor fields for
those components that are projected to zero by the embedding tensor component @2, This
implies that these components of the tensor field do not appear in the action, which plays a
crucial role in ensuring that the number of degrees of freedom will remain unchanged.

A similar phenomenon takes place for the magnetic gauge fields A, 4. Evaluating the field
equation for the gauge fields ANM one finds that the equation for the magnetic gauge fields

is only proportional to @Ao‘éA“A. To see this, one evaluates
5£voctor + 5£top = %1 ghvpa DugpoMQMNéAuN 5 (265)

up to a total derivative and up to terms that vanish as a result of the field equation for
Bjya. Here one makes use of (2.2I)). Note that DVQPUM = DVQPUM , and furthermore that
D,,QPJA = D,,HPUA, up to terms that vanish by virtue of the field equation for B,,. Using
the Bianchi identity (2.63)) we can thus rewrite (2.65]) as follows,

0 Lvector + 5£t0p = %iguypg [_DugpoA 5A;LA + %g Hupcra ®Aa5AuA] ) (266)

under the same conditions as stated above. Note that the minimal coupling of the gauge
fields is always proportional to the embedding tensor. Therefore the full Lagrangian does not
depend on those components of the magnetic gauge fields that are projected to zero by the
embedding tensor component ©A?,

In the spririt of the analysis presented in [20], one may thus regard the absence of the
components of B, and A, as resulting from an additional gauge invariance (which would
then lead to rank-three tensors fields). However, since these fields will not appear in the
Lagrangian, there is no need for doing so. Somewhat unexpectedly, and not in line with
the general analysis of the vector-tensor hierarchies, there is an additional (local) invariance

which involves only the tensor field [15],
OM Bya o AN, (G — H) s — 6 AP (G —H) s, (2.67)

where AM#, = ©@A*A ZF, This new invariance has, of course, a role to play in balancing
the degrees of freedom, but in [16] this aspect was bypassed in the analysis. We note that
not all of these gauge invariances have a bearing on the dynamic modes of the theory as they
also act on fields that play an auxiliary role.

In spite of the modifications above, supersymmetry will be broken by the gauging. In
section [ we show how supersymmetry can be restored. But first we have to deal with the

effect of the gauge transformations on the scalar fields.
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3 The T-tensor

We already stressed in the introduction that the scalar fields parametrize the E7(;)/SU(8)
coset spaceH These fields are described by a space-time dependent matrix V(x) € Er(7) (taken
in the fundamental 56 representation) which transforms from the right under local SU(8) and
from the left under rigid E(7). The matrix V can be used to elevate the embedding tensor
to the so-called T-tensor, which is the SU(8)-covariant, field-dependent, tensor that appears
in the fermionic masslike terms and the scalar potential of the Lagrangian. The T-tensor is
thus defined by,

(O, ¢ ta =V 1N ON* (V7 V), (3.1)

where the underlined indices refer to local SU(8). The appropriate representation for (3.1) is

the 56, so that we may write,
Tyun®(0, 6] =V i VAN Vel Xun” . (3.2)

Because the constraints on the embedding tensor are covariant under E7(7), it is clear that
they induce a corresponding set of SU(8) covariant constraints on the T-tensor.

However, we employ a somewhat unconventional definition of the coset representative V.
Note that the T-tensor is defined in an SU(8) covariant basis, where the maximal compact
SU(8) subgroup of Er(7) takes a block-diagonal form according to the branching under SU(8),
56 — 28 +28. This implies the existence of a pseudo-real vector UX decomposing according
to UM = (U¥,Uy,;), where ij and kl denote antisymmetric index pairs with 7, j,k,1 = 1,...,8.
This basis facilitates the coupling to the fermions which transform under SU(8). On the other
hand, just as in the preceding section, we decompose the gauge fields in a real basis according
to VM = (VA V&) which branches under the maximal real SL(8) subgroup of E7(7) according
to 56 — 28 + 28’. Therefore we define 56-dimensional complex vectors V% = (VA¥, V*4)
and their complex conjugate Varij = (Vaij, VEZ-]-), which together constitute a 56 x 56 matrix
Vv, .

VA" VA
Yl = (VM“,VMM) - . (3.3)

Vi pS,,
This matrix thus transforms under rigid E;(7) from the left and under local SU(8) from the
right. It does not really constitute an element of E7(7), but it is equal to a constant matrix (to
account for the different bases adopted on both sides) times a space-time dependent element

of E7(7y. We note the following useful properties of V&Y, which also fix the normalization,

Vi Vniig — Vi YN? = iQun,
QN VI VN = 169,
QMN iy = 0. (3.4)

The sign on the right-hand side is determined by the relative phase between Vo™ and VAW,

Because we have already fixed the definition of the E7(7) transformations on the field strenghts

4Strictly speaking the isotropy group equals SU(8)/Zs.

16



(F WA, Gwa), we can no longer adjust this relative phase. Therefore we must distinguish two
different cases characterized by the sign on the right-hand side of ([84]). As it turns out,
supersymmetry selects the sign shown above.
The equations ([3.3) and (3.4) imply that the inverse coset representative V! reads,
—iVAZ'j iVsij
V™ =0 (= Vpiy, Ve = . (3.5)
[PARL okl

The most relevant restriction is, however, not captured by ([B.4]), namely that V& can be
[¢]
written as a constant tensor Vjs? times a space-time dependent E7(7) matrix VN (x). The

latter 56 x 56 matrix, sometimes called the 56-bein, is usually expressed in the form,

urg(z)  —vprs(x)
V¥ (z) = . 3.6
o —UinL(x) UszL(CU) Y

The indices I, J,... and 1, 7, ... take the values 1,...,8, so that there are 28 antisymmetrized
index pairs representing the matrix indices of V; the row indices are Z = ([IJ],[KL]), and
the column indices are N = ([ij], [kl]), so as to remain consistent with the conventions of
[1]. The above matrix is pseudoreal and belongs to E7(7y C Sp(56;R) in the fundamental
representation. We use the convention where u®;; = (u;/7)* and v;j;; = (v917)*. The
indices 1, j, . . . refer to local SU(8) transformations and capital indices I, J, ... are subject to

rigid E7(7) transformations.

(¢}
A crucial question regards the nature of the constant matrix ). Obviously (3.4]) leaves
the freedom to perform a redefinition by acting with an Sp(56; R) transformation from the

left. Because Vs is defined with a lower index, such a transformation acts as follows,

W = BV - Wys VR

A e e A LU (3.7)

These redefinitions lead to an obvious ambiguity in the definition of 102 and correspondingly
in the definition of V5% and VA%. However, some of this ambiguity can be removed, either
by absorbing an E7(7) transformation emerging on the right into the definition of VpZ(z), or
by absorbing an GL(28) transformation emerging on the left into the definition of the gauge
fields. The ambiguity thus takes the form of an E7(7)\Sp(56; R)/GL(28) matrix (or rather its
inverse) [23] [7]. The Lagrangian will implicitly depend on this matrix, as it will be written
in terms of VA% and VAU,

Let us now briefly discuss the pseudoreal representation of E(7). The maximal compact
subgroup SU(8) coincides with the R-symmetry group of four-dimensional N = 8 supersym-
metry which is relevant for the fermions, as the chiral and antichiral gravitino and spinor
fields transform in the 8 + 8, and 56 + 56 representation of that group. Therefore the
pseudoreal basis, based on the SU(8) decomposition 56 — 28 + 28, is particularly relevant.

In the 56 representation, the basis vectors in the 56 representation are then denoted by
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(217,251 with 2!/ = (27,)*; here the indices are antisymmetrized index pairs [I.J] and [K L]
and I,J,K,L = 1,...,8. The 2!/ transform according to the 28 representation of SU(8).

Infinitesimal Sp(56; R) transformations now take the form,

KL KL
0zr;g = Ay " zrkr+ XLz,

621 = A KL IIKL (3.8)
where A7 /5L and X k1 are subject to the conditions
(AIJKL)* — AIJKL — _AKLIJ7 (EIJKL)* — ZKLIJ . (39)

The matrices A;;5% are associated with the maximal compact U(28) subgroup. In this
basis the invariant skew-symmetric tensor €2 is proportional to (2I5]). The E7(7) subgroup of

Sp(56;R) is obtained for fully antisymmetric 3//%% with the additional restrictions,
ArfE =g 5 A M, Ayl =Ny,
A =0, S1kL = gerkmunpg SMNPC. (3.10)

The A;’ generate the group SU(8). Closure of the full algebra is ensured by the fact that

two tensors Y1 and Yo satisfy the relation

MNKL MNKL

Y1 I1IMN 22 — Yo rJMN 21

=25, (21 e DM 5 e ZlL]MNP> : (3.11)

which follows from the selfduality of X. All this is in accord with the branching of the adjoint
representation of Eq(7) with respect to its SU(8) subgroup: 133 — 63 + 70.

Before returning to the T-tensor, let us first reconsider the representation of the scalar
fields based on V5% and VM. Under arbitrary variations of the E7(7) matrix (3.6) we note
the result,

VY SVnE = VT 6V, (3.12)

(0]
which follows from the fact that the constant matrix ) cancels in the expression on the
left-hand side. This observation leads to

Varij SYNFLQMN _i(UijIJ Sukt,, — Vit 5vkuJ)
Varij OV QMY = —i<vijIJ S — ui 5vkl1J> . (3.13)

The expression on the right-hand side shows that the equation (8.12]) can be decomposed into
the generators of E;(7). The first term should be proportional to the SU(8) generators in the
28 representation, and the second term should belong to the 70 representation. Using these

restrictions, we derive,

Varij 5VNkl QMN  _ %5[i [k VMj]m 5VN”7” QMN 7
Va sy QMN = _ﬁgijklmnm Vitmn 6Vpg QY (3.14)
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In what follows these equations play an important role.

Let us now return to the T-tensor. First we draw attention to the fact that, when treating
the embedding tensor as a spurionic object that transforms under the duality group, the equa-
tions of motion, the Bianchi identities and the transformation rules remain formally invariant
under E(7). Under the latter ©/% would transform as O/ to — gy ON® (gtag™'), with
g € Ez¢7y. The same observation applies to the T-tensor. To make this more explicit we
note that every variation of the coset representative can be expressed as a (possibly field-
dependent) E;(7) transformation acting on V from the right. For example, a rigid Er )
transformation acting from the left can be rewritten as a field-dependent transformation
from the right,

VoV =gV=Vo !, (3.15)

with o1 = V7lgV € E7(7), but also a supersymmetry transformation can be written in
this form. Consequently, these variations of V induce the following transformation of the
T-tensor,

Tyn® — Ty n* = ou@ont (07" s% Tor® . (3.16)

This implies that the T-tensor constitutes a representation of Ez(7). Observe that this is not
an invariance statement; rather it means that the 7-tensor (irrespective of the choice for the
corresponding embedding tensor) varies under supersymmetry or any other transformation in
a way that can be written as a (possibly field-dependent) E7(7)-transformation. Note also that
the transformation assignment of the embedding tensor and the T-tensor are opposite in view
of the relationship between g and o, something that is important in practical applications.

Subsequently we determine the T-tensor according to ([B.2]). First we define
OV VNG Xup? VoM = —iQumi"
P VN i XupVor = — iPuijul - (3.17)
We note that Qps and Pjs are subject to constraints,
ZMe Qi =0, ZM Py =0, (3.18)

by virtue of the quadratic constraint (ZI6). The tensor ZM:® was defined in (Z22). For the

convenience of the reader, we also note the relation,
Xun" Ve =Py Vg + Quiw™ V™. (3.19)

The generators X, define a subgroup of E7(7) in a certain electric/magnetic duality basis,
which in (3I7) is converted to the pseudoreal representation. Compatibility with the Lie
algebra of Ey(7) implies that Pk is a selfdual SU(8) tensor,

igkl _ 1 _ijklmnpgq
P =53¢ Prt mnpq » (3.20)

and that Q) transforms as a connection associated with SU(8). Hence, Q, Z-jkl satisfies the

decomposition,
Quit = 5[i[k QMj]l] ; (3.21)
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with QMij = —QMji and Q% = 0. Decomposing
Tunt = <Tz‘jﬁ£, TMM£> : (3.22)

we write the components of the T-tensor in matrix notation,

- %6[]6 lp Tq} l)ig ﬁgklrstuvw Ttuvw i
T, = , (3.23)

Tmnpq i %5[7’ (m Tn] slij

where (1), 7]y are the row indices and (IP9, irs]) the column indices, and

B Zop.lP Ty Thirs"
T = . (3.24)

1 t i.j 2 0]
ﬂemn;uq wowp, i §5[r (m s]n} ]

Multiplicative factors have been included to make contact with the definitions of [I} 23, [7]. In
order to belong to the Lie algebra of E7(7), the matrix blocks in the above expressions satisfy
Tk = 0 and T klm”ij =T [klm”]ij. Note that we always use the convention where complex
conjugation is effected by raising and lowering of indices SU(8).

Comparing the above expressions, one can directly establish the following expressionsﬁ

lij 3: OMN Iy ij
T, = 1077 Oy VNY,

Tiimn” = TN Pasptmn VN . (3.25)

Note that so far no constraints have been imposed on the T-tensor.

We already noted that every variation of the coset representative can be cast in the form
of an E7(7) transformation acting on the right of V. This implies that any variation of the
T-tensor is again proportional to the T-tensor itself (c.f. (B.16)). In view of the covariance

under the SU(8) subgroup, the only relevant variation is therefore

0 X
VoV . (3.26)
¥ 0
In this way one can derive,
(Sﬂjkl — Ejmnp ,Timnpkl . ﬁajmnpqrst Zimnp Tqrstkl + Eklmn Tjimn
- 9 Ejmnp Emnpkl _ % 5ij mnpg Tmnqul + Ek‘lmn Tjimn 7
0Tr™ = = 380556 TP — 53Cusktpgrs B TP 0 - (3.27)

This formula can be used for evaluating, for instance, space-time derivatives or supersym-

metry variations of the T-tensor, where one must choose the appropriate expressions for
2,8 o VLY.

SUnlike in the original definition (3.2) the Vas are only proportional to an E7(7) group element, so that the
proportionality factor in ([3:25) is not intrinsically defined. Our choice for this factor is such that our results

remain as closely related as possible to the original expressions of [IJ.
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Armed with these results we can now proceed and derive the constraints on the T-tensor
induced by the embedding tensor constraints discussed in the previous section. First of all,
as a consequence of (2.I2)), the T-tensor is constrained to the 912 representation of E7(7),
which decomposes into a 36 and a 420 representation of SU(8). This shows that there must
be a proportionality relation between Tklm"ij and dy; [k Tj]lm"], as both sides can only contain
the 420 representation. Checking the consistency of this with ([3.27)), it follows that

Tklmnij _ _%5[Z[k Tj}lmn] ’

Tk — _%A%jkl _ %Alj[k s (3.28)

where A7kl = Ao Uk Ay 9k — (0 and A[lij] = 0, so that Tk = 0. Clearly A; and
Ag represent the 36 and 420 representations of SU(8), respectively. These results are not
new and were first given in [I], but we prefer to give a self-contained derivation here to
demonstrate how to cast the group-theoretical restrictions into the equations that one needs
for the Lagrangian. The SU(8) tensors A; and Ag appear in the Lagrangian in the masslike
terms and in the scalar potential that we will present in the next section. In fact, the
supersymmetry of the action to first order of the gauge coupling constant g, depends crucially
on ([328). Note that none of these results depend on the actual gauge group. The only
requirement is that the embedding tensor satisfies the constraints discussed in the previous
section.

We now turn to a discussion of the constraints that are quadratic in the T-tensor. These
constraints are sufficient for proving the supersymmetry of the action to second order in g.
In section 2 we presented two alternative expressions for the quadratic constraint. One is
([2:16]), which can be rewritten as an equation for the T-tensor after suitable multiplication
with V. The results, which coincide with the ones derived in [I} [7], take the form,

Thy T = TP Ty = 0

Tklij Tmnpqij + igmnpqrstu ,leij TTStuij =0 )
Tirst™ TjTStvw - %55 Trsta™ Tmtuvw =0

0

9 <[m vw nplrs 1 smnp vw rprstu _
vw T Zéi T'k]rs T d ow T E(S Lrstu = T vw =

VW Mmnpr nn
T [ J tJk

Tijkr . (3.29)

where in the last identity the antisymmetrization does not include the indices v, w. Substi-

tuting the results of (3.28]), these equations reduce to,
Aoy Aoy ™0 — AR Ag™ i — 4A2(klm‘AT)i — 4450, Ay,
— 200" A AT 4 268 Ay AT =0,

A2ijk[m A2knpq] + Aljk‘sfmA2knpq] - Alj[mA2inpq}

+ ﬁ Emmparstu ( Azjikr At A{k 5; Agy St — Ailr Azjstu) = 0,
9 Ay™ iy Ao ™ — Agd i Aoi*™ — 87 Ao pim AnyM™ = 0,
Ag" i Age ™™ — 9 Agl™ (i5 Ay P — 95,1m Ay gj AgyyPn
—98;; 1™ Ag¥ s AP + ST Ag¥ s At = 0, (3.30)
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where the antisymmetrizations in the last equation apply to the index triples [ijk] and [mnp].
Note that the representation content of these four constraint equations is 945 + 945 + 63,
3584 + 378 + 378 + 70, 63 and 2352, respectively.

As we intend to demonstrate in the following, consistent gaugings are characterized by
embedding tensors that satisfy two constraints ([2.12]) and (2.16]), one linear and one quadratic

in this tensor. These two constraints lead to corresponding constraints on the T-tensor,

namely (28] and (B3.30]).

4 The Lagrangian and transformation rules

In principle the Lagrangian and transformation rules are known from [1], but we have to
convert to the unconventional definition of the coset representative. Furthermore we have to
make contact with the formalism of [16] to incorporate possible magnetic charges. The reader
who wishes to avoid the complications associated with the magnetic charges, can simply
assume that an appropriate electric/magnetic duality transformation has been performed so
that there are only electric charges (implying that ©** = 0). But as we have indicated
previously, there is a variety of reasons why it is advantageous to remain in a more general

electric/magnetic duality frame.

4.1 Coset geometry

The first issue that we have to address is related to the coset representative of E;(7)/SU(8). In
particular we have to write the composite SU(8) gauge fields Q,, and the tensor P,, appearing
in the kinetic term for the scalar fields in terms of the Vj;%. This proceeds in the standard
way. We assume the presence of 56 gauge fields A“M which couple to the charges Xjs as in
235). The covariant derivative,

DV = 0, Vn" — Qi V™ — g A" Xpa™Y VN, (4.1)
is covariant with respect to SU(8), with corresponding connection
Quift = 5[i[k Q,”']” ; (4.2)

with Quij = —Qw-i and Qmi = 0. Furthermore it is covariant under the optional gauge trans-
formations with generators Xy, and connections A,*. The SU(8) connection is, however,

not an independent field and determined by the condition,
OMN Y DYV =0, (4.3)

which yields
Quij = %i(VA ik 8uvAjk - VAik aMVAjk) B gANM Qum ij ’ (4'4)

where Q)7 is defined by (B.17).

22



In addition we define an SU(8) tensor P, ;jx; which is invariant under the optional gauge
group Gy,
Puijir = QN Vo DVt = iVai; DV — VY DuVam) (4.5)

where the gauge fields contribute through the covariant derivative, leading to —g AMM Pt ijki-
Compatibility with the Lie algebra of E;(7) implies that P, is a selfdual SU(8) tensor,

zpuijkl _ 2_14€ijklm7wq Ppumnpg - (4.6)
Furthermore we note the useful identity,
DYV =P Yy (4.7)

Applying a second derivative to ([£3]) ([L7T) leads to integrability conditions known as the

Cartan-Maurer equations,

FM (Q)ZJ = _% P[ujklm Pu]iklm - g}—uuM QMz'j )
D[upu]ijkl = _%g f/wM ,PMijkl ) (48)

where Qp 7 and Py7* are defined by @317,
F(Q),uyij = a,u Quij -0y Q,uij + Q[,uzk Qu}kj ) (49)

is the SU(8) field strength, and F,,™ was already defined in (ZZ48]). These Cartan-Maurer
equations are important for deriving the supersymmetry of the action. The order-g terms
violate the supersymmetry of the original ungauged Lagrangian as they induce new supersym-
metry variations of the gravitino kinetic terms and the Noether term, which are proportional
to the field strengths fNVM and also to the T-tensor.

4.2 The ungauged Lagrangian

In this subsection we briefly introduce the ungauged Lagrangian of N = 8 supergravity in the
notation of this paper. Up to terms proportional to the field equations of the gauge fields, this
Lagrangian is invariant under an Er(7) subgroup of the Sp(56,R) electric/magnetic duality
group. The most crucial part of the Lagrangian concerns the 28 electric vector fields A“A
(their magnetic duals A, are absent as we already discussed in subsection 2.2), which are
only invariant under a subgroup of E7(7). The field equations for these vector fields and the
Bianchi identities for their field strengths constitute 56 equations, given in (2.32]), which are
subject to electric/magnetic duality transformations. Only the vector field strengths F; WM
and the scalar fields contained in Vj;% are subject to the E7(7) transformations.

The generic gauge field Lagrangian, parametrized as in [16], was given in (2.36]) and con-
tains moment couplings of the field strength F, WA with an operator O, which is quadratic
in the fermions. Here we will discuss the explict form of O,z and of Nas.. We start from
the 56 field strengths G“,,M , introduced in susbsection 2.2} which transform under the Er 7

transformations, which are embedded in the Sp(56, R) electric/magnetic duality group. From
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these field strengths and Vj/” and its complex conjugate, we can construct E7(7) invariant
tensors. Specifically, consider the 56 E;(7) invariant tensors, V' G;’VM and Vs ijG:[VM , and
their anti-selfdual counterparts that follow by hermitean conjugation. The fermionic bilinears

Ouwa are proportional to the following SU(8) covariant expression [24) 25] (18],
O, = W20 Py, ] — S0, X T — T V2 Y X (4.10)

which is selfdual and transforming in the 28 representation of SU(8). Its complex conjugate
is anti-selfdual and transforms in the 28 representation. The fact that that only a single
tensor of fermionic bilinears appears in the relation between the field strengths F, WA and the
dual field strengths G, implies that this relation must coincide with the following Er (7
invariant equation

Vi GEM = 301 (4.11)

The independent combination, Vs ijG:[VM , defines an SU(8) covariant tensor,

+
F/wij

which will appear in the supersymmetry transformations of the fermions. In this way both
the E7(7) invariance and the SU(8) covariance of the supersymmetry transformations will be

ensured. Using (3.4]), we derive the following equation,

G M =M VNI ED 4+ VN0 (4.13)
Furthermore, comparison of (A1) to ([2:37) leads to a determination of My and O:V A
V¥ Nys = WY,
Aii _ y
VoL, = HOLY. (4.14)

These equations hold in any electric/magnetic duality frame and the reader may verify that
([2:38)) is indeed consistent with (3.7]). Furthermore we note the relation,

(N = N)THAE =i pA VR (4.15)

Observe that the imaginary part of the matrix N7 is negative so that the kinetic term in
([236]) carries the correct sign. The sign in (£I5]) depends crucially on the sign adopted in
B4). We also note the following relation

FLAOM = —1F O 4208 O VA, V=i (4.16)

Most of the transformation rules and the Lagrangian can be deduced from [1]. As the

reader may verify, they are consistent with E7(7) and SU(8) covariance. The transformation

6 We follow the argumentation presented in [I]. The proportionality factor on the right-hand side of the

equation follows from supersymmetry.

24



rules can be written as follows,

0’ = 2Due' + V2 EL T AP e + XY NGk Yo

1 n a. ijk 1 _3 klmn
+§\/§w,uk'7 X J Ya€i — 576 € J quklm’Y Xnpg YpYab€j »

X = 2V PN e 4§ E et — /2 e T g €
Seu = @y + e U,
sAM = —1QMNyyii <€k Vi X + 2V2E %J’) + he.. (4.17)

Here and henceforth the caret indicates that the corresponding quantity is covariantized with

respect to supersymmetry. For completeness we record the expressions for 73 Wk and FF

pvij
below,
ﬁuijkl = P ikl \/5 (QEE Xjkl] + ﬁ gidklmnpg TZJMm anq) s
F;j;/ ij F:;, ij + %&pkfyp’YuVXijk - %\/il/jpi{’}’;wa ’Ypa}l/Jgj . (4.18)

The supercovariantized field strenghts CA?WM then follow from (4I3]) by substituting the
second expression on the right-hand side,

G+ M _ QMN [V i F/j;/ ij ng \/5 VN ijgijklmnpq )Zklm'ﬁanpq . (4'19)

The derivatives D,, are covariant with respect to Lorentz transformations and SU(8). For

instance, we note,

Dye' = Oy’ — tw,” b yapet + 4 1Q,¢ . (4.20)

The spin connection field w““b is consistent with the expression one would obtain in first-order

formalism, and corresponds to the following value for the torsion tensor,
Dueua - Dueua = 1/;[ ’ a% li 12 E/w Xijk’Yinjk . (4'21)

Note that we wrote down transformation rules for both electric and magnetic gauge fields
AMM . However, the (ungauged) Lagrangian that we are about to introduce below does not
depend on the magnetic gauge fields A, . In view of what will happen when a gauging is
introduced, we will resolve this by assuming that the Lagrangian is simply invariant under
an additional local gauge symmetry which acts exclusively on the magnetic gauge fields
according to 6A,a = Z,a, where the =,5 are independent space-time dependent functions.
At this stage this may sound somewhat trivial, but the relevance of this approach will become
clear shortly when switching on general gaugings.

The above transformations (4.I7) close under commutation. In particular the commutator
of two consecutive supersymmetry transformations d(e;) and d(e2) leads to the following

bosonic symmetry variations,
[6(e1), 6(e2)] = ¥ Dy + OL(€*) + Gusy (€3) + dsu(s) (A'5) + Sgauge (M) + 0snine(B) . (4.22)
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The first term indicates a general coordinate transformation, with parameter £ given by
¢ = 2(&" e + e2iver’) (4.23)
whose covariantized form is generated on the matter fields by a supercovariant derivative.
The supersymmetry transformation parameter es is equal to
esi = —V2 (&’ ™) xiji - (4.24)
The gauge transformation on the abelian gauge fields is expressed in terms of the parameter,
AM = —4iV2OMN (VN Egie1 — Vivij &'er?) (4.25)

which contributes to both electric and magnetic gauge fields. For these fields the general co-
ordinate transformation appears in the form —&¥ GWM . For the electric gauge field the GWA
represents the standard field strength and this term can be written as the linear combination
of a general coordinate transformation accompanied by a field-dependent gauge transforma-
tion. For the magnetic gauge fields one can take the same point of view, assuming that G5
is actually the curl of A, which is a priori possible because the equations of motion (c.f.
(232)) imply that G,,a is subject to a Bianchi identity. However, one does not have to
take this point of view, as the shift transformation in (4.22]), which acts exclusively on the
magnetic gauge fields, can always accomodate any terms that arise in the supersymmetry
commutator on A .

We refrain from quoting any results for the parameters of the Lorentz and the SU(8)
transformations, as they will not play an important role in what follows. In subsection [4.4]
we return to the same supersymmetry commutator in the presence of electric and magnetic
charges and work out some of the results in more detail.

The full Lagrangian for the ungauged theory can be written as follows,
L = —%eR - %Ewpo (‘1w Dptoi — T/;uii_)p%wai)
= Yie{Nas B A P Ny B A P
— e (A D Xk — XTFD it xage) — e [P
— £V2e {;zijm”yw,,l (PIM 4 Pk 4 h.c.}
+eF O + eFh O — Vi Vi 08, 08 + 0, 05|
+ Ly, (4.26)
where £, contains the following SU(8) invariant terms quartic in the fermion fields,
Ly = —gedu It
+ %e[&kaWVPXijk (\/ﬁqzulwvj + %TZJMWVXM) + h-C-]
+ 255 | Sigptmnpa XA (0,7 + V2B + e
ikl

+ a5 eX YNkt Ximn VX — a5 (X k)2 (4.27)
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The terms of higher order in the fermions were taken from [I], where their correctness was
established in the presence of the SO(8) gauging. However, in the corresponding calculations
only the generic properties of the T-tensor were used, which do not depend on the choice of
the gauge group. Hence these four-fermion terms must be universal. Observe that the above
Lagrangian applies to any electric/magnetic duality frame because we can simply redefine
the fields Vy;% by an Sp(56, R) matrix.

4.3 Introducing electric and magnetic charges

Charges X s that couple to the gauge fields AuM are introduced in the standard way by
extending covariant derivatives according to (2.5]). In principle we include both electric and
magnetic charges and therefore we need both electric gauge fields AMA and magnetic gauge
fields A, n. The fact that the latter did not appear so far in the Lagrangian (4.26) will not
immediately pose a problem, but a gauging usually induces a breaking of supersymmetry.
Most of the covariant derivatives do not lead to new terms when establishing supersymmme-
try, but there are variations involving the commutator of the covariant derivatives that, in
the presence of the gauging, lead to the (nonabelian) field strengths fNVM defined in (2.48).
These terms, which are proportional to the gauge coupling constant g, are easy to identify,
as they originate exclusively from the fermion kinetic terms. They are induced the Cartan-
Maurer equations (48] whose right-hand sides exhibit the extra terms proportional to the

gauge coupling constant g. Collecting these terms leads to the following new variations,
0L = —e g Hu™ |2Quii? (@7 1bp; — E 1 Y,
+ V2 Posijrr €7 Xy eq| + hic. (4.28)

where Q)7 and Purijrr were defined in ([BI7) and the replacement of .7-"WM by HWM is

based on (B.18).

It is, in principle, well known how these variations can be cancelled [I]. Namely, one
introduces masslike terms and new supersymmetry variations for the fermions. These modi-
fications generate (among other terms) precisely the type of variations that may cancel (4.28]).

The masslike terms are written as follows,

. . L T
Lnasslike = €9 {%\/iAlij 'y + %Azi]kl V' xGe + AT Xk len}
+he., (4.29)

where

Agijk,lmn _ TL; 2€ijkpqr[lm A2n}pqr7 (430)

and the new fermion variations are equal to

5g¢ui = \/igAlij’Yuejy
SoXIF = 29 Ayik (4.31)

Here A; and As are the components of the T-tensor defined in (B:28]).
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Furthermore we replace the abelian field strengths in the Lagrangian (£.26]) by the field
strengths HWA, as described in subsection 2.3 and we include the topological and Chern-
Simons-like terms (2.58). In the supersymmetry variations of the fermions we replace F,,;;
accordingly by a tensor H,,,;; defined in analogy with (4.I2]),

HE . =Vij Q:[VM, (4.32)

MY ij

Likewise we note three more relations,

v GhM = 3087, (4.33)
GrM = QMNIVNIHE VNGO (4.34)
HLAOM = —iH), 0T 208 OF VA VI (4.35)

in direct analogy with (4.I1)), (£13)) and (4.16]), respectively.
These above modifications generate a number of terms similar to (£28)) originating from

the fermion variations proportional to H,,;; in (£29) and from the fermion variations (Z.31l)
in the terms H,WA(’)“” A in the original Lagrangian (4£.26]) (upon the replacement of the abelian
field strengths by the HWA). Dropping terms of higher order in the fermions, these variations
take the following form (here we also make use of (3.28))),

0L = e g, | STF EN i, — €9y,

+ V2 g™ ™R S ;zmtfy“”eu] +he.. (4.36)

Using the definition of the T-tensor (3.25]) one can show that (£36) and (4.28]) combine to

the expression,
oL = —eg [Hp,M -G, ]
x [%QM/ @V p; — GV Y,") + 2V2 P € X jmn | +hic., (4.37)

up to higher-order fermion terms. Here we made use of (£34]). For the electric components,
where M is replaced by A, this terms vanishes as one can read off from (2.53]). The magnetic
components can be cancelled by assigning a suitable supersymmetry variation to the tensor

fields. Making use of (2.64)) one can determine this variation directly,

@Aa 5B;u/a = i<%\/§’PAZ’jkl g[i Vv Xjkl] +4 QAji €; Vp T/Jy]j — h.C.>
—2X W Qpg AN 64,9 (4.38)

At this point we have obtained a fairly complete version of all the supersymmetry trans-
formations. In principle one can now continue and verify the cancellation of other variations
of the Lagrangian. The pattern of cancellations is very similar to the pattern exhibited in [IJ.
In the following subsection we first summarize the full supersymmetry transformations and
give the complete action. When comparing the results those those for the electric gaugings,

the transformation rules for the magnetic gauge fields and the tensor fields do not enter. To
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verify the completeness of these transformation rules we will therefore verify the closure of
the supersymmetry commutator for all the bosonic fields. This commutator will differ from
([#22), as there will be extra terms related to the gauge transformations and furthermore the

shift transformation dgp; is replaced by the tensor gauge transformations.

4.4 Gauged maximal supergravity

In this section we present the complete results for gauged supergravity. The supersymmetry

transformation rules turn out to take the following form,

' = 2D+ IV2H LT e + 1Y Xkt Ya Ve
‘|‘%\/57[),”{7&)(“]C Ya€5 — T%Ggijklmnpqiklm’yabanq YuVab€;j
—I—\/§g Alij Y €5
5Xijk _ _2\/5 ﬁijkl 'Y'uel + %ﬂ;y[ij,y;wek} o i 2€ijklmnpq>zlmnquT e
- 29 A21ijk El 3
5eua = gifyawm' + Ei’}’awui ’
5VMij = 2\/5 VMkl <€[ixjkl] + 2_146ijk:lmnpq Eanpq) s
64,M = —iQMNYNT (&, gk + 2V2E 1) + b
0Buva = %\/itaMPQMQ (VPijVQ p & Vv XM 2\/§ijkVQik €V wy]j + h.c.>
— 2to T Qpn AN 04N (4.39)

As was already noted before (see the text preceding (2.54])), we only need the variations

O 0Buva, which can conveniently be written as,

O dBua = i(%\/iPMijkz iy XM 440t E Vb — h-C-)
—2Xun"Qpq AN 04,9 . (4.40)
The above variations were determined by the substitution of H:m. ; for F :w-j into (£I7) and
by including the variations (4.31I)). For the tensor field B/, we based ourselves on (4.38]).
At this point we return to the commutator of two supersymmetry transformations, which
still takes the form (£22]), but now with the last ‘shift’ transformation on the magnetic gauge

fields replaced by a full tensor gauge transformation,
[6(e1), 8(€2)] = €Dy + 61.(*) + Sousy (€3) + Osu(s) (A7) + Sgange (AM) + Siensor (Epua) - (4.41)

As before, the first term represents a covariantized general coordinate transformation, where
one must now also include terms of order g induced by the gauging. The parameters €3 and

AM of the supersymmetry and gauge transformations appearing on the right-hand side, were
already given in (£24) and (£25]), respectively.
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Because the magnetic vector and the tensor gauge fields are new as compared to previous
treatments, we briefly consider the realization of (4.41]) on the vector and tensor gauge fields.
As a non-trivial consistency check on our reuslt, we include all higher-order fermion contri-
butions in the supersymmetry commutator acting on the vector fields. For the tensor gauge
field we include all bilinears in the fields x“*. In this way we also determine the parameter

of the tensor gauge transformation in (4.41]). On the vector gauge fields we derive,

[5(61)7 5(62)]AMM = _gy GMVM - %iQMNVNijTZJ,uk%/Xijk + %iQMNVNijTZJMk%/Xijk
+ D AM — gZMe =, 4 (es), (4.42)
where
OM® Epa = —4i Quii? (E2'ye1; + E2jyuer’) (4.43)

defines a contribution to the parameters of the tensor gauge transformations. These are not
the only terms, as we will see by evaluating the first term on the right-hand side of (4.42]).
We remind the reader that we are only interested in the algebra acting on the fields A“A and
@AO‘AMA, as was explained at the end of subsection 23l This enables us to replace @AO‘QAWA
by @AO‘?:[WA, by making use of the field equations (2.64]) of the tensor field. This result
applies also to the supercovariant extensions of the field strengths (this can be deduced from
the observation that field equations transform into field equations under a symmetry of the

action). Hence we must evaluate the expression,

_ gl/ ﬂ,uz/M _ gVaVA“M + aﬂgVAVM _ Du(éuAyM)
—igv QMN [VN” [?E[uk%]xijk + \@&m%g’] - h-C-]
—gZM ¢ [Buya — tan® Qpo AN AT (4.44)

Combining this expression with the fermionic bilinears in (4.42]) shows that the result decom-
poses into a space-time diffeomorphism with parameter £#, a nonabelian gauge transformation
with parameter —f“AMM , a supersymmetry transformation with parameter —%f”zbm-, and a
tensor gauge transformation with parameter £”(By,a — tan© Qpg AMNA,,P).

Subsequently we evaluate the supersymmetry commutator on the tensor fields © B,
ijk

Including all terms quadratic in x**, we derive the following result,

[6(e1),8(e2)] O *Buva = 203" DpEje + 2 Xun" G Qpg A9
+ %1\/5 <PMz'jkl E@f Vv Xk — h-C->
+ieeppe &7 [%PMUM priikl 4 OMm X*APx Gkl
—ZXMNPQPQ A[uN [5(61),5(62)]14,,}@ + e, (4.45)
where ¢*, AM, e3 and Z,, have already been given in ([@23), (£25), @24) and (£43),
respectively, and the dots represent additional terms linear and quadratic in 1[)“7;. To derive

this expression we used many of the results obtained previously. We draw attention to the

fact that we also need the torsion constraint (4.21]). Obviously the commutator closes with
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respect to these parameters in view of the fact that closure was already established on the
gauge fields ANM . Note also the second term proportional to A9, which is implied by the
last term shown in ([2.54]).

What remains is to investigate the closure relation for the terms proportional to the
parameter £# of the general coordinate transformations. For these terms it is important to
restrict ourselves to the commutator on @AO‘BWOC, as these are the only components of the
tensor field on which the supersymmetry algebra should be realized (we refer to the discussion
at the end of subsection 2.3]). We will first show that closure is indeed achieved provided the

following equation holds,
Lig M P H ) pr O + eg (%PAijkl pridkl 4 1o xi’“fy“xjkl> +.0 = 0. (4.46)

Here the unspecified terms are proportional to gravitino fields, which are suppressed through-
out this calculation. This equation is simply the field equation associated with the magnetic
vector fields (up to terms that vanish upon using the field equation for the tensor fields). The
first term was aready evaluated in (2.66]) and the second term originates from the minimal
coulings which enter through Py;“* and Qw-j . It is perhaps unexpected that the supersym-
metry algebra closes modulo a bosonic field equation that involves space-time derivatives,
but one has to bear in mind that these particular field equations are only of first order in

derivatives. Using the above equation we derive,
ieeppo &7 [%PAijkl prikl  Loh,s )Zikl’YpXjkl] =
Cl [5p6pBwa — 208" BV]pa]
+20% Dy, [€7(Byjp0 — tan® Qpg Ay N A,7)]
—2X MNP G N Qpg P AR
+2 XA NP Qpg AN [€90,4,)9 + 0,167 A% —26P(G —H),,0%) . (4.47)

This establishes that full closure is indeed realized. The first line represents the required
general coordinate transformation, the second and third term corresponds to the extra vector
and tensor gauge transformations, respectively, with the same parameters as found in (4.44]).
Finally, the last term cancels against the similar terms generated on A, by the commutator
in the last term of (£45]). Here it is important to realize that this commutator does not
fully close, in view of the fact that AMQ includes all the magnetic gauge fields, as there is no
contraction with ©g®. Nevertheless one is still left with a term proportional to (G — H),,pQ,
which can be absorbed into a transformation of type (2.67).

The full universal Lagrangian of maximal gauged supergravity in four space-time dimen-

sions reads as follows,
L = —1eR— 1" (4, ' Dypthoi — ' D prtbes)
—bie{ N M A HE - N N
- %e (Xijk’Y“DuXijk - Xijk(l_)u’Y“Xijk) - %6 ’Pﬁjklfz
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— HV2e {Xijm“'y”wuz (PR + PiIM + h.c.}

MR OFM e OFM — eV VI O, 08 + 07, 05|
+ligemrroho g, (2ap,4(, A+ 9Xana AMAN — 1g0,°B,, 5)

+ Ligem oo Xy AM AN (apA(,A +1 gXpQAApPAUQ)

+ Lgemeo Xyt A,M AN (a,,AJ A+l gXPQAApPAUQ>

+g 6{%\/514119' Y L’Y”Vwi + %Amjkl &L’Y”Xjkl + Aéjk’lmn Xijk Ximn + h.c.}

- 926 {2—141423‘“1422‘]‘1@1 - %A?Alij}

+ Ly, (4.48)

where £, was given in (£27]). Here we included the scalar potential which appears at order
g% and which takes the form already derived in [I]. We note that this potential can be written

in various ways,
POV) = ¢ {gilAui™? - 3147}
= =9 MMN {8 Prr M Prijrg + 9 Quri? QNjZ}
= i P { XX P MM MY Mps + T Xun QX pgV MM (4.49)
where we have used the real symmetric field-dependent 56 x 56 matrix My, defined by
Mun =V Vij + Vi Vn' (4.50)
Note that M is positive definite. Its inverse, MMN  can be written as
MMN — QMPONQ M b | (4.51)

by virtue of ([4]). This shows that det[M] = 1.

In the derivation of (£.49]) we made use of the following equations,
XunXpo " MME MY Mps = MMV <2 Pr "M Prijra — 3 Quri? QNji> ;
Xun®Xpo" MMP = MMN (2 Por M Piji + 3 Quii? QNji> )
MMNPD GIRp G = 4] Ay R)?,
MMNQ T Qb = —2|Ay"F|? — 2814, 2, (4.52)

which can be derived using various results and definitions presented in section Bl

5 Discussion and applications

In this paper we have presented the complete construction of all gaugings of four-dimensional

maximal supergravity. We have shown that gaugings can be completely characterized in
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terms of an embedding tensor, subject to a linear and a quadratic constraint, (2.12]) and
([29), respectively. A generic gauging can involve both electric and magnetic charges, together
with two-form tensor fields transforming in the 133 representation of E;(7). The addition of
magnetic vector fields and the two-rank tensor fields does not lead to additional degrees of
freedom owing to the presence of extra gauge invariances associated with these fields. We have
presented the full Lagrangian of the theory in (4.48]) and the supersymmetry transformations
in (4.39)).

In this last section we briefly demonstrate the group-theoretical approach of this paper
to construct actual gaugings of maximal supergravity in four dimensions. The starting point
is the construction of a solution to the constraints ([2.12]) and (29]) on the embedding tensor
Opr®. The former one is a linear constraint whose general solution is explicitly known as
the 912-dimensional image of a projector. The most straightforward strategy will thus be to
start from a particular solution to this constraint and impose on it the quadratic constraint.

Of course, when one wants to see if a specific subgroup of E7(7) can be gauged, it suffices to
simply verify whether the constraints are satisfied on the corresponding embedding tensor. In
other cases, when one wants to explore a variety of gaugings, it is often useful to first select a
subgroup Go C Er(7) in which the gauge group will be embedded eventually. This group may
be a manifest invariance of the ungauged Lagrangian in a suitable electric/magnetic duality
frame. When this is the case, the gauging will only involve electric gauge fields and there is
no need for introducing dual vector and tensor fields. Branching the 912 of E;(7) under Go
and scanning through the different irreducible components allows a systematic study of the
quadratic constraint (2.9) and thereby a full determination of the corresponding admissible
gaugings. In that case the closure of the gauge group is already guaranteed, owing to the
equivalent formulation (2.I6]) of the quadratic constraint, so that every solution to the linear
constraint (2I2)) will define a viable gauging.

A central result of this paper is that it is not necessary to restrict Gg to a group that can
be realized as an invariance of the ungauged Lagrangian that serves as a starting point for
the gauging. In that case, one must simply analyze both constraints and the gauging may
eventualy comprise both electric and magnetic charges. It is important to realize that the
scalar potential is insensitive to the issue of electric/magnetic frames, so that its stationary
point can be directly studied. Scanning through the different choices of Gy, it is straightfor-
ward to construct the various corresponding gaugings of the four-dimensional theory. In the
following we will illustrate the strategy by first reproducing the known gaugings, subsequently
sketching the construction of gaugings related to flux compactifications of ITA and IIB su-
pergravity and finally giving some other examples, including Scherk-Schwarz reductions from

higher dimensions.

5.1 Known gaugings

As first examples, let us briefly review the known gaugings embedded in the groups Gy =

SL(8,R) and Go = Eg) x SO(1,1), respectively. It is known that there are corresponding
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ungauged Lagrangians which have these groups as an invariance group. Hence we can restrict
ourselves to analyzing the linear constriant. With the group Gy = SL(8,R), the branching
of the E7(7) representations associated with the vector fields, the adjoint representation and

the embedding tensor, is as follows,

56 — 28+ 28,
133 — 63+70,
912 — 36+ 420+ 36" + 420, (5.1)

were the 28 representation in the first decomposition denotes the electric gauge fields. The
possible couplings between vector fields and E(7) symmetry generators induced by the various

© components according to (ZI]) can be summarized in the table

\ 28 28’
63 | 36 420 36/ + 420/ (5.2)
70 | 420/ 420

where the left column represents the E;(7) generators, and the top row represents the vector
fields. The entries correspond to the conjugate representations of the respective components of
the embedding tensor belonging to the 912 representation. Restricting to gaugings embedded
into Go = SL(8,R), the upper left entry is relevant. However, the 420 would alsocouple to
the magnetic gauge fields and the remaining generators of E(7) so that the embedding tensor
is restricted to live in the 36’ (i.e. the conjugate of the 36 indicated in the table). Every
element in the 36’ defines a viable gauging. A closer analysis shows [7] that modulo SL(8, R)

conjugation the general form of © € 36 is given by

OM* =Oupp = 040pp,  Oap=diag{l,...,1,-1,...,—1,0,...,0}, (5.3)
P q r
with A, B =1,...,8, and reproduces the CSO(p, ¢,r) gaugings [2| 27], where p + g + r = 8.
There are 24 inequivalent gaugings of this type.
Choosing the group Go = Eg) x O(1,1), which is group that can be used to identify
gaugings that are related to compactifications from five dimensions, the branchings of the

three relevant representations are,

56 — 1_3+27_1+ 271+ 143,
133 — 27 54+ 19+ 78y + 2_7+2 R
912 — 78 _3+27_1+351_1+351,1 4271+ 78,3, (5.4)

The first decomposition again captures the split into electric and magnetic vector fields with
the graviphoton transforming in the 1_3 and the 27 gauge fields from the five-dimensional
theory in the 27_1 representation. The couplings between vector fields and E7(7) symmetry

generators induced by the various © components can be summarized in a table analogous
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to ([B.2),

1.3 27 1 274 1.3
27 5 78 3 351 1 +271 274
780 | 783 351 1 +27 7 351,71 +27.1 78,3 (5.5)
1o 27 4 274
27,5 | 271 351, +27. 78,3

The table shows that a gauging involving only electric vector fields can only live in the 783
representation. Vice versa, every such embedding tensor automatically satisfies the quadratic
constraint (2.I6]) and thus defines a viable gauging. These are the theories descending from

five dimensions by Scherk-Schwarz reduction [28] [3, [7].

5.2 Flux gaugings

Here we consider gaugings of N = 8 supergravity that can in principle be generated by
(generalized) toroidal flux compactifications of type-IIB and M-theory. The proper setting to
discuss these theories is a decomposition E;(7y group according to SL(2) x SL(6) and SL(7),
respectively. For the type-IIB theory this embedding is realized as

E77) — SL(6) x SL(3) — SL(6) x SL(2) x SO(1,1) . (5.6)

The S-duality group coincides with the SL(2) factor. Electric and magnetic charges transform

according to the 56 representation which branches as
56 — (6',1)_o+(6,2)_1 +(20,1)0 + (6',2)41 + (6,1)12 .

Here, the (6',1)_2 and (6,2)_1 representations descend from graviphotons and two-forms,
respectively, while the four-form generates gauge fields which, together with their magnetic
duals, constitute the (20,1)g. The couplings between vector fields and E;(7y symmetry gen-

erators is summarized in the following table [9],

(6',1) 2 (6,2)1 (20,1)0 (6',2)11 (6,1)+2
(1,2)_3 (6,1)_4 (20,2)_3 (6,3+1) (6,2)_1
(15,1)_ (6,1)_4 (20,2)_3 (6'+84",1)_ (6+84,2)_1 (70420, 1)0
(157,2)_4 (20,2)_3 (6'+84',1)_5 + (6/,3)_ (6+84,2)_1 (20,3+1) + (70/,1)  (6'+84',2) 1
(1,1)o (6',1)—2 (6,2)—1 (20,1)0 (6",2)41 (6,1)42
(35,1)0 | (6/+84',1)_ (6+84,2)_; (70+70'+20,1)o (6'4+84",2) 41 (6+84,1) 2
(1,3)0 (67,3)_2 (6,2)_1 (20,3)0 (6",2)41 (6,3)42
(15,2)11 | (6+84,2)_; (20,3+1)0 + (70, 1)o (6+84",2) 1 (6+84,1) 12 + (6,3) 42 (20,2) 13
(15",1)42 | (70'+20,1)0 (6'+84",2)4 (6+84,1) 12 (20,2) 13 (67,1) 44
(1,2)43 (6,2) 41 (6,3+1)42 (20,2) 43 (6',1)44

The entries of the table correspond to the various conjugate representations of the re-
spective components of the embedding tensor. Within the 912 all these components appear

with multiplicity 1 apart from the (6,2)_; and (6’,2);1 which appear with multiplicity 2.
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It follows from the table that an embedding tensor in the (6',1).4 defines a purely elec-
tric gauging which thus automatically satisfies the quadratic constraint. This corresponds
to the theory induced by a five-form flux. A three-form flux on the other hand induces a
component of the embedding tensor in the (20, 2),3 represention, which involves electric
and magnetic gauge fields in the (20,1)y. Consistency thus requires to further impose the
quadratic constraint (2.I6]) onto O, leading to [9]

witho,7=1,2, A, X =1,...,6. Here Opxr" denotes the components of the embedding tensor
corresponding to the (20, 2)3 representation.

Gaugings defined by ©-components with lower SO(1,1) grading will correspond to the
theories induced by geometric fluxes (twists), non-geometric compactifications, etc. It follows
from the table that the quadratic constraint (2.16]) leads to more and more consistency con-
ditions among these lower ©-components as they tend to stronger mix electric and magnetic
vector fields. It is, however, straightforward to work out these constraints by branching (2.16])
accordingly (recall also that the total representation content of this constraint is given by the
133 + 8645) of E7(7). Another representation in the above table which is relevant to string
compactifications is the (84,1)_,. It corresponds to the geometric flux 7axt which describes

a “twisted” six-torus. The quadratic constraint implies the following condition,

T[AZF TH]FA =0. (58)

One may wonder which components of the embedding tensor describe the non-geometric-
fluxes Q2> and R**T obtained from 7zx" by applying two subsequent T-dualities along the
directions ¥ and A, respectively [29, B0]. Using the flux/weight correspondence defined in

[31] we can identify these non-geometric fluxes with the following representations:
Qx™l e (84,2),, ;  RM™'e(20,3),. (5.9)

We notice that T-duality changes the SL(2,R) representation of the flux on which it acts.
We leave a detailed analysis for future work.
A similar analysis of M-theory fluxes has been performed in [32], see also [33], 34]. In this

case the relevant embedding of the torus GL(7) is according to
E7¢;y — SL(8) — SL(7) x SO(1,1) . (5.10)
Electric and magnetic charges transform according to the branching
56 > T 5 +21_;+21", +7.3. (5.11)

where the 7" ; and the 21_; descend from graviphotons and antisymmetric tensors, respec-

tively. The couplings between vector fields and Er(7) symmetry generators are given as [32],

36



T_4 1_- 35_5 (140/ + 7/)_3 (28 + 21)_1
35, 35_5 140, (21 + 224)_, (21 + 224") 44
48y | (140’ +7)_3 (21+28+224)_; (21'+28 +224'),; (1404 7):3
35,5 | (214224)_,  (21' +224'), 1403 35, 5
7. | (28 +21) (140 +7) 43 35/, 1.7

The table shows that an embedding tensor in the 1,7 and in the 35/, 5 representation define
electric gaugings that automatically satisfy the quadratic constraint. They describe the
theories obtained by switching on in eleven dimensions a seven-form g7 and a four-form flux
gasTA, respectively. The former theory has in fact already been considered in [35]. An
embedding tensor in the 140, 3 corresponds to the parameters TAnZ of a geometric flux and
is subject to the quadratic constraint (2.10)),

Taste® =0, (5.12)
with A, ¥ =1,...,7, corresponding to the Jacobi identity of the associated gauge algebra. If
g7, gasrA and the geometric flux Tax! are switched on together, the second order constraint

on the embedding tensor, as was shown in [32], yields the additional condition

Tias® groaja = 0, (5.13)

originally found in [33].

5.3 Gaugings of six-dimensional origin

In this subsection we demonstrate our method for gaugings that arise, in particular, from
a two-fold Scherk-Schwarz reduction from six space-time dimensions [4, [5]. The Scherk-
Schwarz reduction of maximal supergravity from D = 5 to D = 4 spacetime dimensions
was first constructed in [28] and recently this theory was obtained more directly in four
spacetime dimensions by gauging [3]. For a general treatment of Scherk—Schwarz reductions
in relation to gauged maximal supergravities, see [7], where the Scherk-Schwarz reduced
maximal supergravity from D = 6 to D = 5 was constructed as a gauging of five-dimensional
supergravity.

The proper choice for Gg is the maximal subgroup
E/n — SO(5,5) x SL(2,R) x O(1,1) , (5.14)

where SO(5,5) represents the non-linear symmetry group of maximal supergravity in six
dimensions and SL(2,R) x O(1,1) is the group corresponding to the reduction on a two-

torus. Electric and magnetic charges branch as

56 — (1,2) ,+ (16,1)_, +(10,2), + (16,1)41 + (1,2)42 , (5.15)
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where the (1,2) , and (16,1) ; correspond to graviphotons and six-dimensional vectors, re-
spectively, while the (10, 2), combines the electric vectors and their magnetic duals descend-
ing from the self-dual two-forms in six-dimensions. Their couplings to the Ez7) symmetry

generators are summarized in the table below,

(172)—2 (Evl)—l (1072)0 (1671)+1 (172)+2
(10,1)_, (16,1)_, (1+45,2)_, (16 4+ 144,1)_, (10,2),
(16,2)_, (16,1)_, (1445,2)_, (16,3+1)_,+(144,1)_, (10+120,2), (16,3+1),,
(173)0 (172)—2 (Ev 3)—1 (1072)0 (1673)+1 (172)+2
(171)0 (172)—2 (Evl)—l (1072)0 (1671)+1 (172)+2
(45,1), (45,2)_, (16 +144,1)_, (10 + 120, 2), (16 +144,1) (45,2)
(16, 2)7L1 (16,3 +1)_, (10 + 120, 2), (16,3 + 1)+1 + (144, 1)7L1 (1445, 2)Jr2 (1 71)Jr3
(10, 1)7L2 (10,2), (16 + 144, 1)7L1 (1445, 2)7L2 (16, 1)7L3

This shows that an embedding tensor in the (16, 1) 43 defines a consistent electric gauging
corresponding to the theory obtained by giving a T2 flux to the six-dimensional vector field
strength. A Scherk-Schwarz gauging is defined by an embedding tensor in the (45,2)9, i.e. a
tensor of type 8y mn with m,n =1,...,10, u = 1,2. This corresponds to identifying the two
gauge group generators Xy, = 0y, ymn t™" generating a subgroup of SO(5, 5)associated with the
dependence of the fields on the internal T2 according to the Scherk-Schwarz ansatz, which
couple to the two graviphotons. As this gauging a priori involves electric and magnetic vector

fields, the quadratic constraint (2.I6]) poses a nontrivial restriction,
€™ Gymp Owng =0, (5.16)

which implies [X,, X,] = 0. This is consistent as these generators must commute in the
multiple Scherk-Schwarz reduction. The complete gauge algebra in four dimensions takes the

form
[qu Xv] =0 5 [Xu7 XO'] X Hu,mn(rmn)aT X‘r 5
[Xua me] X eu,mn nnp Xpw 5 [Xoa XT] X Euveu’mn(rmnp)m_ va s (517)

with SO(5,5) I'-matrices I')%.. We intend to give a detailed analysis of this theory elsewhere.
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