Jean-Luc Beuchat

Takanori Miyoshi

Jean-Michel Muller

Eiji Okamoto

HORNER'S RULE-BASED MULTIPLICATION OVER F P AND F P N : A SURVEY 1 Horner's Rule-Based Multiplication over F p and F p n : A Survey

Keywords: Modular multiplication, Horner's rule, carrysave, high-radix carry-save, borrow-save, finite field, FPGA

This paper aims at surveying multipliers based on Horner's rule for finite field arithmetic. We present a generic architecture based on five processing elements and introduce a classification of several algorithms based on our model. We provide the readers with a detailed description of each scheme which should allow them to write a VHDL description or a VHDL code generator.

I. INTRODUCTION

This paper proposes a survey of Horner's rule-based multipliers over F p and GF(p m), where p is a prime number. Multiplication over F p is a crucial operation in cryptosystems such as RSA or XTR. Multiplication over GF(p m) is a fundamental calculation in elliptic curve cryptography, pairingbased cryptography, and implementation of error-correcting codes.

In the following, the modulus F is either an n-bit (prime) integer whose most significant bit is set to one (i.e. 2 n-1 +1 ≤ F ≤ 2 n -1) or a monic degree-n irreducible polynomial over F p . Three families of algorithms allow one to compute the product AB modulo F , where A and B are either elements of Z/F Z or F p n . In parallel-serial schemes, a single digit or coefficient of the multiplier A is processed at each step. This leads to small operands performing a multiplication in n clock cycles. Parallel multipliers compute the product AB (2n-bit integer or degree-(2n -2) polynomial) and carry out a final modular reduction. They achieve a higher throughput at the price of a larger circuit area. Song and Parhi introduced array multipliers as a trade-off between computation time and circuit area [START_REF] Song | Low energy digit-serial/parallel finite field multipliers[END_REF]. Their idea consists in processing D digits or coefficients of the multiplier at each step. The parameter D is sometimes referred to as digit size and parallel-serial schemes can be considered as a special case with D = 1. In such architectures, the multiplier A can be processed starting with the least significant element (LSE) or the most significant element (MSE). This survey is devoted to MSE operators and we refer the reader to [START_REF] Erdem | Polynomial basis multiplication over GF(2 m)[END_REF], [START_REF] Guajardo | Efficient hardware implementation of finite fields with applications to cryptography[END_REF], [START_REF] Kumar | Optimum digit serial GF(2 m) multipliers for curve-based cryptography[END_REF] for details about parallel modular multipliers and LSE operators, which are often based on the celebrated Montgomery algorithm [START_REF] Montgomery | Modular multiplication without trial division[END_REF]. Note that Kaihara and Takagi introduced a novel representation of J.-L. Beuchat, T. Miyoshi, and E. Okamoto are with the University of Tsukuba, Tsukuba, Japan. J.-M. Muller is with the CNRS, laboratoire LIP, projet Arénaire, Lyon, France.

residues modulo F which allows the splitting of the multiplier A [START_REF] Kaihara | Bipartite modular multiplication[END_REF]: its upper and lower parts are processed independently using an MSE scheme and an LSE implementation of the Montgomery algorithm respectively. Such an approach could potentially divide the computation time of array multipliers by two.

After a brief description of the five number systems considered in this survey (Section II), we outline the architecture of a modular multiplier based on Horner's rule (Section III). We then introduce a classification of several MSE schemes according to our model, and provide the reader with all the details needed for writing a VHDL description or designing a VHDL code generator (Sections IV, V, and VI). We conclude this survey by a comparison of the most promising algorithms on a typical field-programmable gate array (FPGA) architecture (Section VII).

II. NUMBER SYSTEMS

This section describes the number systems involved in the algorithms we survey in this paper. We also outline addition algorithms and describe how to compute a number or polynomial à congruent to A modulo F . A carry-ripple adder (CRA), whose basic building blocks are the full-adder (FA) and the half-adder (HA) cells, returns the (n + 1)-bit sum R = A + B (Figure 1). Since a CRA consists of a linearly connected array of FAs, its delay grows linearly with n, thus making this architecture inadvisable for an ASIC implementation of high-speed applications. Modern FPGAs being mainly designed for digital signal processing applications involving rather small operands (16 up to 32 bits), manufacturers chose to embed dedicated carry logic allowing the implementation of fast CRAs for such operand sizes. The design of modular multipliers taking advantage of such resources is therefore of interest. An application would for instance be the FPGA implementation of the Montgomery modular multiplication algorithm in a residue number system [START_REF] Bajard | A RNS Montgomery modular multiplication algorithm[END_REF].

2) Modular Reduction: Modulo F reduction can be implemented by means of comparisons and subtractions. It is sometimes easier to compute an (n + 1)-bit number à congruent to an (n + q)-bit number A modulo F . Let us define A k:j = k i=j a i 2 i-j , where k ≥ j. Using this notation, A is equal to A n+q-1:n 2 n + A n-1:0 . If q is small enough, we can store in a table all values of (A n+q-1:n 2 n) mod F and compute à by means of a single CRA: à = (A n+q-1:n 2 n) mod F +A n-1:0 .

Note that some algorithms studied in this survey also involve negative integers. We encode such numbers using the two's complement system. An n-bit number

A ∈ {-2 n-1 , . . . , 2 n-1 -1} is represented by A = -a n-1 2 n-1 + n-2 i=0 a i 2 i .
B. Carry-Save Numbers 1) Addition of Carry-Save Numbers: Figure 1b describes a carry-save adder (CSA). This operator computes in constant time the sum of three n-bit operands by means of n FAs. It returns two n-bit numbers R (s) and R (c) containing the sum and output carry bits of the FAs respectively. We have:

R = 2R (c) + R (s) = r (s) 0 + n-1 i=1 r (s) i + r (c) i-1 2 i + r (c) n-1 2 n = n i=0 r i 2 i , where r 0 = r (s) 0 , r n = r (c) n-1 , and r i = r (s) i + r (c) i-1 , 1 ≤ i ≤ n -1.
Each digit r i belonging to {0, 1, 2}, we obtain a radix-2 redundant number system. Unfortunately, comparison and modular reduction require a carry propagation and we would lose all benefits from this number system by introducing such operations in modular multiplication algorithms.

2) Modular Reduction: Let A be an n-bit two's complement number whose carry-save representation is given by A = A (s) +2A (c) . Koc ¸and Hung introduced a sign estimation technique which enables computing a number congruent to A modulo F by inspecting a few most significant bits of A (s) and A (c) [START_REF] Koc | Multi-operand modulo addition using carry save adders[END_REF], [START_REF]Carry-save adders for computing the product AB modulo N[END_REF], [START_REF]A fast algorithm for modular reduction[END_REF]. They define the truncation function Θ(A) as the operation which replaces the least significant τ bit of A with zeroes. The parameter τ control the cost and the quality of the estimation. Let k be the two's complement sum of Θ(A (s)) + Θ(2A (c)). The sign estimation function ES(A (s) , A (c)) is then defined as follows [START_REF]A fast algorithm for modular reduction[END_REF]:

ES(A (s) , A (c)) =      (+) if k ≥ 0, (-) if k < -2 τ , (±) otherwise.
Koc ¸and Hung proved that, if ES(A (s) , A (c)) = (+) or (-), then X ≥ 0 or X < 0, respectively [START_REF]A fast algorithm for modular reduction[END_REF]. If ES(A (s) , A (c)) = (±), then -2 τ ≤ A < 2 τ . One can therefore add -F , 0, or F to A according to the result of the sign estimation to compute a number à congruent to A modulo F .

3) Modular Reduction when the Modulus is a Constant: Assume now that the n-bit modulus F is known at design time and consider a carry-save number A such that A (s) and A (c) are n s -and n c -bit integers respectively (n s and n c are usually greater than or equal to n). Let α ≤ n. Since

A = A (s) div 2 α + (2A (c)) div 2 α • 2 α + A (s) mod 2 α + (2A (c)) mod 2 α = A (s) ns-1:α + A (c) nc-1:α-1 • 2 α + A (s) α-1:0 + 2A (c) α-2:0 ,
we compute a number à congruent to A by means of a CSA and a table addressed by max(n

s + 1 -α, n c + 2 -α) bits. Let k = (A (s) ns-1:α + A (c)
nc-1:α-1) • 2 α . We have:

A ≡ k mod F + A (s) α-1:0 + 2A (c) α-2:0 (mod F). (1)
We easily compute an upper bound for Ã. Since k mod F ≤ F -1, we have:

à ≤ F -1 + 2 α -1 + 2(2 α-1 -1) = F + 2 α+1 -4. (2)

C. High-Radix Carry-Save Numbers

Carry-save adders do not always take advantage of the dedicated carry logic available in modern FPGAs [START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF]. To overcome this problem, modular multiplication can be performed in a high-radix carry-save number system, where a sum bit of the carry-save representation is replaced by a sum word. A q-digit high-radix carry-save number A is denoted by

A = (a q-1 , . . . , a 0) = a (c) q-1 , a (s) q-1 , . . . , a (c) 0 , a (s) 0
, where the jth digit a j consists of an n j -bit sum word a (s) j and a carry bit a (c) j such that a j = a (s)

j + a (c) j 2 nj . Let us define A (s) = a (s) 0 + a (s) 1 2 n0 + . . . + a (s)
q-1 2 n0+...+nq-2 and

A (c) = a (c) 0 2 n0 + a (c) 1 2 n0+n1 + . . . + a (c)
q-1 2 n0+...+nq-1 . With this notation, a number A is equal to A (s) +A (c) . This number system has nice properties to deal with large numbers on FPGAs:

• Its redundancy allows one to perform addition in constant time (the critical path of a high-radix carry-save adder only depends on max 0≤j≤q-1 n j).

• The addition of a sum word a (s) j , a carry bit a (c) j-1 , and an n j -bit unsigned binary number is performed by means of a CRA. Unfortunately, MSE first algorithms involve left-shift operations which modify the representation of an operand. Figure 2 describes a 4-digit high-radix carry-save number A = 2260 with n 0 = n 1 = 3, n 2 = 4, and n 3 = 3. By shifting A, we obtain B = 2A, whose least significant sum word is now a 4-bit number.

D. Borrow-Save Numbers 1) Addition of Borrow-Save Numbers

: A radix-r signed- digit representation of a number A ∈ Z is given by A = n i=0 a i r i . The digits a i belong to D r = {-ρ, -ρ + 1, . . . , ρ - r 3 r 4 r (c) 3 r (s) 0 r (s) 1 r (s) 2 r (s) 3 r (c) 2 r (c) 1 r (c) 0 r 1 r 2 a 3 a 2 a 1 a 0 b 0 b 1 b 2 b 3 b 0 b 1 b 2 b 3 a 3 c 3 a 2 c 2 a 1 c 1 a 0 c 0 r 0 r 1 r 2 r 3

Full-adder

n 3 = 3 n 2 = 4 n 1 = 3 b (s) 3 b (s) 2 b (s) 1 b (s) 0 n 0 = 4
Sum words 1, ρ}, where ρ ≤ r -1 and 2ρ + 1 ≥ r. The second condition guarantees that every number has a representation (2ρ+1 = r). When 2ρ + 1 > r, the number system becomes redundant and allows one to perform addition in constant time under certain conditions [START_REF] Avizienis | Signed-digit number representations for fast parallel arithmetic[END_REF].

n 3 = 3 n 2 = 4 n 1 = 3 n 0 = 3 a (s) 3 a (s) 2 a (s) 1 a (s) 0 a (c) 2 a (c) 0 a (c) 1 b (c) 2 b (c) 0 b (c) 1 (
In this survey, we will consider only radix-2 signed-digits. Thus, we take advantage of the borrow-save notation introduced by Bajard et al. [START_REF] Bajard | Some operators for on-line radix-2 computations[END_REF]: each digit a i is encoded by a positive bit a + i and a negative bit a - i such that a i = a + i -a - i . A modified FA cell, called PPM cell, allows one to compute two bits r + i+1 and r - i such that 2r + i+1 -r - i = a + i + b + i -a - i . Note that the same cell is also able to return r - i+1 and

r + i such that 2r - i+1 -r + i = a - i + b - i -a + i .
In this case, it is usually referred to as MMP cell. The addition of two borrow-save numbers can be performed in constant time using the operator described by Figure 3a [START_REF] Bajard | Some operators for on-line radix-2 computations[END_REF].

2) Modular Reduction: Assume that A is an (n + 2)digit borrow-save number such that -2F < A < 2F . Takagi and Yajima proposed a constant time algorithm which returns an (n + 1)-digit number à congruent to A modulo F (Figure 3b) [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF]. First, we add the three most significant digits of A and get a 4-bit two's complement number k = 4a n+1 + 2a n + a n-1 . Our hypotheses guarantee that -4 ≤ k ≤ 4 and

-2F < A < 0, if k < 0, -2 n-1 < A < 2 n-1 , if k = 0, and 0 < A < 2F , if k > 0.
Thus, it suffices to add F , 0, or -F to A according to k in order to get an (n+1)-digit number à such that -F < A < F . Since we assumed that the most significant bit of F is always set to one, we have

-F = -2 n-1 - n-2 i=0 f i 2 i = -2 n + 2 n-1 - n-2 i=0 f i 2 i = -2 n + n-2 i=0 (1 -f i)2 i + 1.
Consider now the (n+1)-digit borrow-save number U defined as follows:

U =                F = n-1 i=0 f i 2 i if k < 0, 0 if k = 0, -F -1 = -2 n + n-2 i=0 (1 -f i)2 i if k > 0,
and note that most significant digit u n is the only one which can take a negative value. The (n + 1)-digit sum à = A + U can therefore be computed by a single stage of PPM cells and glue logic (Figure 3b). Since U = -F -1 when k is greater than 0, a small table generates ã+ 0 according to the following rule:

ã+ 0 = 1 if k > 0, 0 otherwise.
Consider now the addition of a + n-1 , a - n-1 , and u n-1 by means of a PPM cell. It generates two bits v and ã-

n-1 such that 2v -ã- n-1 = a + n-1 -a - n-1 + u n-1 .
The most significant digit ãn is then defined as follows: Thus, ãn only depends on k. Instead of explicitly computing v, we build a table addressed by a n+1 , a n , and a n-1 (Table I).

ãn = 2a n+1 + a n + v -1 if k > 0, 2a n+1 + a n + v otherwise. F - + + + - - + + + - - + + + - - -+ -+ - -+ -+ - -+ -+ - -+ -+ - + + + - - + + + - - + + + - - + + + - - + + + - a - 0 a + 0 a - 1 a + 1 a - 2 a - 3 a - 4 a + 4 a + 3 a + 2 0 a + 0 a + 1 a + 2 a + 3 a - 0 a - 1 a - 2 a - 3 b + 3 b - 3 b + 2 b - 2 b + 1 b - 1 b + 0 b - 0 0 r + 0 r - 0 r + 1 r + 2 r + 3 r + 4 r - 4 r - 1 r - 2 r -
a n+1 an a n-1 ãn 0 0 0 0 0 0 1 0 0 1 -1 0 1 -1 -1 0 0 1 0 0 1 -1 0 0 0 1 1 1 1 0 -1 1 1 -1 1 1 1 0 0 1 a n+1 an a n-1 ãn 0 0 -1 0 0 -1 1 0 -1 1 1 0 0 -1 0 0 -1 1 0 0 0 -1 1 -1 -1 0 -1 -1 -1 1 1 -1 -1 0 0 -1

E. Elements of F p n

There are several ways to encode elements of an extension field. In this paper, we will only consider the well-known polynomial representation, which is for instance often faster than normal basis in pairing-based applications [START_REF] Grabher | Hardware acceleration of the Tate Pairing in characteristic three[END_REF]. Let F (x) = x m + f m-1 x m-1 + . . . + f 1 x + f 0 be an irreducible polynomial over F p , where p is a prime. Then, GF(p n) = GF(p)[x]/F (x), and an element a(x) ∈ GF(p n) can be represented by a degree-(m -1) polynomial with coefficients in

F p : a(x) = a m-1 x m-1 + . . . + a 1 x + a 0 .
Note that the irreducible polynomials used in cryptographic applications are commonly binomials or trinomials, thus making modulo F operations easy to implement. F = x 97 +x 12 +2 is for instance irreducible over GF [START_REF] Guajardo | Efficient hardware implementation of finite fields with applications to cryptography[END_REF]. Assume that A is a degree-97 polynomial. It suffices to remove a 97 •F = a 97 x 97 + a 97 x 12 + 2a 97 from A to get A mod F and this operation involves only two multiplications and two subtractions over GF(3), namely a 12 -1 • a 97 and a 0 -2 • a 97 . Elements of GF(3) are usually encoded with two bits and such a modular reduction is performed by means of two 4-input tables.

III. HORNER'S RULE FOR MODULAR MULTIPLICATION

Recall that the celebrated Horner's rule suggests to compute the product of two n-bit integers or degree-(n-1) polynomials A and B as follows:

AB = (. . . ((a n-1 B) 1 + a n-2 B) 1 + . . .) 1 + a 0 B,
where 1 denotes the left-shift operation (i.e. multiplication by two for integers and multiplication by x for polynomials). This scheme can be expressed recursively as follows:

R[i] = R[i + 1] 1 + a i B, (3)
where the loop index i goes from n -1 to 0, R[n] = 0, and R[0] = AB. By performing a modular addition at each step, one easily determines the product AB mod F [START_REF] Blakley | A computer algorithm for calculating the product ab modulo m[END_REF]. However, computing a number or polynomial

R[i] congruent to R[i + 1] 1 + a i B
R[i + 1] 1 ≡ R[i + 1] 1 -k 1 F (mod F) ≡ (R[i + 1] -k 2 F) 1 (mod F),
where k 1 and k 2 are integers or polynomials, we consider three families of algorithms. In left-shift schemes,

S[i] is equal to R[i + 1] 1 .
B ai aiB R[i] AB mod F S[i] R[i + 1] Register Modulo F Compute S[i] such that S[i] ≡ R[i + 1] 1 (mod F) Compute R[i] such that R[i] ≡ aiB + S[i] (mod

IV. FIRST ARCHITECTURE: LEFT-SHIFT OPERATION FOLLOWED BY A MODULAR REDUCTION A. Borrow-Save Algorithms

Let A and B be two (n+1)-digit borrow-save numbers with -F < A, B < F . Takagi and Yajima proposed an algorithm computing an (n+1)-digit number R[0] ∈ {-F +1, . . . , F -1} congruent to AB modulo F [14] (Figure 5). At each step, the Modshift block returns an (n + 1)-digit number S[i] ∈ {-F + 1, . . . , F -1} congruent to the (n + 2)-digit number 2R[i + 1] according to the scheme described in Section II-D. The Modsum block contains a borrow-save adder which computes the sum

T [i] ∈ {-2F + 1, . . . , 2F -1} of S[i]
and a partial product a i B. The same approach allows one to determine a number R[i] ∈ {-F + 1, . . . , F -1} congruent to T [i] modulo F . A nice property of this algorithm is that both inputs and output belong to {-F + 1, . . . , F -1}. The conversion from borrow-save to integer involves at most two additions:

R = AB mod F = R + [0] -R -[0] if R + [0] -R -[0] ≥ 0, R + [0] -R -[0] + F otherwise, where R + [0] = n-1 i=0 r + i [0]2 i and R -[0] = n-1 i=0 r - i [0]2 i .
The number of iterations can be reduced by considering a higher radix. Radix-4 modular multipliers based on signed-digits are for instance described in [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF], [START_REF] Takagi | A radix-4 modular multiplication hardware algorithm for modular exponentiation[END_REF].

B. Carry-Save Algorithm

Jeong and Burleson described a carry-save implementation of the algorithm by Takagi and Yajima [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF] in the case where the modulus F is known at design time [START_REF] Jeong | VLSI array algorithms and architectures for RSA modular multiplication[END_REF] (Figure 6). The intermediate result Kim and Sobelman proposed an architecture based on four fast adders (e.g. carry-select adders or parallel-prefix adders) to perform this final modular reduction and to convert the result from carry-save to integer [START_REF] Kim | Digit-serial modular multiplication using skew-tolerant domino CMOS[END_REF] (Figure 7). They first compute an

R[i] is represented by two n-bit unsigned integers R (s) [i] and R (c) [i].
(n + 1)-bit integer U such that U = R (s) [0] + 2R (c) n-2:0 .
Then, a second adder and a table addressed by r

(c) n-1 [0] and u n return an (n + 1)-bit integer V = U n-1:0 + ((r (c) n-1 [0] + u n) • 2 n) mod F . Since V ≤ 2 n + F -2 < 3F
, it suffices to compute in parallel V -2F and V -F , and to select the result.

-F

V n:0 ((R (c) n-1 [0] + u n) • 2 n) mod F 2R (c) n-2:0 [0] U n-1:0 R (s) [0] r (c) n-1 [0]

C. Multiplication over F p n

Shu et al. designed an array multiplier processing D coefficients of the operand A at each clock cycle [START_REF] Shu | FPGA accelerated Tate pairing based cryptosystem over binary fields[END_REF] (Figure 8a). The intermediate result R[i] is a degree-(n -1) polynomial, thus avoiding the need for a final modular reduction. At each step, the Modshift block returns a degree-(n -1) polynomial 5. Architecture of the iteration stage proposed by Takagi and Yajima [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF] for n = 6. sign estimation technique outlined in Section II-B [START_REF]A fast algorithm for modular reduction[END_REF]. They chose the parameter τ = n -1 to control the quality of the estimation and introduced a slightly different function defined as follows:

S[i] equal to x D R[i + 1] mod F . A (D + 1)-operand adder computes the sum of S[i] and D partial products reduced PPG B a i F V = ϕ(F, k) k = 4t 7 + 2t 4 + t 5 k = 4r 6 [i + 1]+ 2r 5 [i + 1] + r 4 [i + 1] U = ϕ(F, k) + - + - + - + - + - + r + 6 [i + 1] + - + - + r - 4 [i + 1] + - + - + r + 4 [i + 1] s 0 [i] s 6 [i] s 5 [i] s 4 [i] s 3 [i] s 2 [i] s 1 [i] t + 5 t - 5 t + 7 t - 7 t + 6 t - 6 r + 0 [i] r + 1 [i] r + 2 [i] r + 3 [i] r + 4 [i] r + 5 [i] r + 6 [i] r - 6 [i] + - + - + r - 5 [i] + - + - + r - 4 [i] + - + - + r - 3 [i] + - + - + r - 2 [i] + - + - + r - 1 [i] r - 0 [i] + - + - + Modsum + - + - + Modshift + - + - + r + 0 [i + 1] + - + - + r - 0 [i + 1] + - + - + r + 1 [i + 1] + - + - + r - 1 [i + 1] + - + - + r + 2 [i + 1] - + - + - r - 2 [i + 1] - + - + - r - 3 [i + 1] - + - + - r + 3 [i + 1] - + - + - r - 5 [i + 1] - + - + - r + 5 [i + 1] - + - + - r - 6 [i + 1] - + - + Fig.
r (c) 4 [i] r (s) 0 [i + 1] r (c) 0 [i + 1] r (c) 1 [i + 1] r (s) 2 [i + 1] r (c) 2 [i + 1] r (s) 3 [i + 1] r (s) 1 [i + 1] Modsum r (c) 5 [i] r (s) 5 [i] r (s) 4 [i] r (c) 3 [i] r (s) 3 [i] r (s) 0 [i] r (c) 0 [i] r (s) 1 [i] r (c) 1 [i] r (s) 2 [i] r (c) 2 [i] s (s) 5 [i] s (s) 4 [i] s (s) 3 [i] s (s) 2 [i] s (c) 1 [i] s (c) 2 [i] s (c) 3 [i] s (c) 4 [i] s (c) 5 [i] s (s) 1 [i] s (s) 0 [i] Modshift a i B r (s) 5 [i + 1] r (c) 5 [i + 1] r (c) 4 [i + 1] r (s) 4 [i + 1] r (c) 3 [i + 1]
ES'(R (s) [i + 1], R (c) [i + 1]) =      (+) if k ≥ 2 n , (-) if k < -2 n+1 , (±) otherwise, (4)
where R (s) [i + 1] and R (c) [i + 1] are (n + 4)and (n + 3)bit two's complement numbers respectively. The two's complement number k is therefore computed as follows:

k = R (s) n+3:n-1 [i + 1] + R (c) n+2:n-2 [i + 1]
. Koc ¸and Hung established that all intermediate results of their algorithm belong to {-6F, -6F + 1, . . . , 7F -1, 7F }. Thus the computation of k does not generate an output carry and k is a 5-bit two's complement number. At each step, the Modsum block computes R[i] such that

R (s) [i]+2R (c) [i] =                    2R (s) [i + 1] + 4R (c) [i + 1] + a i B -8F if ES'(k) = (+), 2R (s) [i + 1] + 4R (c) [i + 1] + a i B + 8F if ES'(k) = (-), 2R (s) [i + 1] + 4R (c) [i + 1] + a i B otherwise.
After n clock cycles, we get R[0] = AB + 8αF , with α ∈ Z. Koc ¸and Hung suggested to perform three additional iterations with a -1 = a -2 = a -3 = 0 in order to obtain R[-3] = 8AB + 8βF ∈ {-6F, . . . , 7F }, with β ∈ Z. Since R[-3] is a multiple of eight, a right-shift operation returns a number R congruent to AB modulo F , where -F < R < F . After the conversion to two's complement, the Modred module has to perform at most one addition. Figure 9 describes the iteration stage. We propose here an improved architecture which is based on the following observation: r We can therefore compute these bits while performing the sign estimation (recall that the same idea was exploited for the design of the borrow-save operator introduced by Takagi and Yajima [START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF] (Section IV-A)). The first step consists in computing the sum T [i] of a partial product a i B and 2R[i+1].

Note that r (c) 0 [i + 1] is always equal to zero. Thus, the adder consists of a 5-bit CRA and an (n -1)-input CSA (n -3 FAs and 2 HAs):

T (s) n+4:n [i] = R (s) n+3:n-1 [i + 1] + R (c) n+2:n-2 [i + 1] = k, T (s) n-1:1 [i] + 2T (c) n-1:1 [i] = R (s) n-2:0 [i + 1] + 2R (c) n-3:0 [i + 1] + a i B n-1:1 , t (s) 0 [i] = a i b 0 .
The sign estimation defined by Equation (4) is then computed as follows:

ES'(R (s) [i + 1],R (c) [i + 1]) =      (+) if k4 (k 3 + k 2 + k 1) = 1, (-) if k 4 (k3 + k2 + k1 k0) = 1, (±) otherwise.
These logic equations can be computed using Karnaugh maps. Let us define where es + = k4 (k 3 + k 2 + k 1) = 1 and es -= k 4 (k3 + k2 + k1 k0). If the sign estimation block returns (+) (i.e. es + = 1), we have to subtract 8F from T [i]. Recall that the most significant bit of F is always set to one. Therefore, -8F -1 is encoded by an (n + 4)-bit two's complement number (10 fm-2 fm-3 . . . f1 f0

n -1 bits 111) 2 . We suggest to represent -8F as follows (Figure 9):

-8F = (10 fm-2 fm-3 . . . f1 f0

n -1 bits 000) 2 +2 2 es + +2(es + +es +).

Finally, Table III summarizes the logic equations defining r

(c) n+2 [i], r (s) n+3 [i], and
r (s) n+2 [i].
2) Second Case: the Modulus is a Constant: If the modulus is known at design time, an architecture introduced by Kim and Sobelman [START_REF] Kim | Digit-serial modular multiplication using skew-tolerant domino CMOS[END_REF] allows one to replace the sign estimation unit with a table addressed by four bits (Figure 10). The authors suggest to compute a first carry-save number

T [i] such that T (s) n-1:0 [i]+2T (c) n-1:0 [i] = a i B+2R (s) n-2:0 [i+1]+4R (c) n-3:0 [i+1]. F a i B 5-bit CRA es + ES'(T [i]) PPG r (s) 3 [i + 1] r (c) 2 [i + 1] HA r (s) 2 [i + 1] FA r (c) 1 [i + 1] FA r (s) 1 [i + 1] FA r (s) 0 [i + 1] FA R (c) 8:4 [i + 1] FA R (s) 9:5 [i + 1] FA t (s) 6 [i] FA t (s) 7 [i] FA t (s) 0 [i] FA t (c) 1 [i] t (s) 2 [i] k = T (s) 10:6 [i] Modsum t (s) 1 [i] r (s) 1 [i] r (s) 0 [i] r (c) 1 [i] r (s) 2 [i] r (s) 3 [i] r (s) 4 [i] r (s) 5 [i] r (s) 6 [i] r (s) 7 [i] r (s) 8 [i] r (s) 9 [i] HA r (c) 2 [i] r (c) 3 [i] r (c) 4 [i] r (c) 5 [i] r (c) 6 [i] r (c) 7 [i] r (c) 8 [i] r (s) 4 [i + 1] r (c) 3 [i + 1]
HA Fig. 9. Architecture of the iteration stage proposed by Koc ¸and Hung [START_REF]A fast algorithm for modular reduction[END_REF] for n = 6.

TABLE III

ITERATION STAGE PROPOSED BY KOC ¸AND HUNG [START_REF]A fast algorithm for modular reduction[END_REF]: COMPUTATION OF r

(c) n+2 [i], r (s) n+3 [i], AND r (s) n+2 [i]. es + es - r (c) n+2 r (s) n+3 r (s) n+2 1 0 0 t(s) n+3 t (s) n+2 0 1 t(s) n+3 + t(s) n+2 t(s) n+3 t(s) n+2 t(s) n+2 0 0 0 t (s) n+3 t (s) n+2
Thus,

2R[i + 1] + a i B = T (s) n-1:0 [i] + 2T (c) n-1:0 [i] + R (s) n-1 [i + 1]+ R (c) n-1:n-2 [i + 1] • 2 n = T (s) n-1:0 [i] + 2T (c) n-2:0 [i] + R (s) n-1 [i + 1] + R (c) n-1:n-2 [i + 1]+ t (c) n-1 [i] • 2 n Let k = R (s) n-1 [i + 1] + R (c) n-1:n-2 [i + 1] + T (c) n-1 [i].
We easily check that 0 ≤ k ≤ 5. In order to compute a carry-save number

R[i] congruent to 2R[i+1]+a i B modulo F , it suffices to store the six possible values of U [i] = (k • 2 n) mod F in a table and to add this unsigned integer to T (s) n-1:0 [i] + 2T (c) n-2:0 [i]
by means of a second CSA. Note that the least significant bit of T (c) [i] is always equal to zero and that R[i] ≤ 2 n+1 + F -5. This operator seems more attractive than the one by Jeong and Burleson [START_REF] Jeong | VLSI array algorithms and architectures for RSA modular multiplication[END_REF]: at the price of a slightly more complex table, the iteration stage requires two CSAs instead of three. The final modular reduction remains unfortunately expensive and can be computed with the Modred block illustrated on Figure 7.

Amanor et al. showed that, if both B and F are constants known at design time, the iteration stage consists of a table and a single CSA [START_REF] Amanor | Efficient hardware architectures for modular multiplication on FPGAs[END_REF] (Figure 11). Since the original algorithm requires an even more complex final modulo F reduction, we describe here a slightly modified version which allows one to perform this operation with the Modred block depicted by

B. Radix-2 Algorithms

Beuchat and Muller proposed two non-redundant radix-2 versions of Kim and Sobelman's recurrence in [START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF]. These algorithms are designed for the modular multiplication of operands up to 32 bits on FPGAs embedding dedicated carry logic. The first scheme carries out (AB+C) mod F according to the following iteration:

S[i] = 2R[i + 1], T [i] = S[i] + c i + a i B, R[i] = ϕ(T [i] div 2 n) + T [i] mod 2 n , (5)
where ϕ(k) = (2 n • k) mod F (Figure 12). The main problem consists in finding the maximal values of R[i] and T [i], on which depends the size of the table implementing the ϕ(k) function. Contrary to algorithms in redundant number systems, for which one can only compute a rough estimate by now, the nonlinear recurrence relation defined by Equation (5) has been solved. This result allows one to establish several nice properties of the algorithm. Assume that A ∈ N, B ∈ {0, . . . , F -1}, and C ∈ N. Then T [i] is an (n+2)-bit number, ∀F ∈ {2 n-1 + 1, . . . , 2 n -1}, and the table is addressed by only two bits [START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF]. Furthermore, ϕ(k) is defined recursively on N * as follows:

r (c) 4 [i] r (c) 5 [i] r (s) 5 [i] r (s) 4 [i] r (c) 3 [i] r (s) 3 [i] r (s) 0 [i] r (c) 0 [i] r (s) 1 [i] r (c) 1 [i] r (s) 2 [i] r (c) 2 [i] a i B s (s) 1 [i] = r (s) 0 [i + 1] s (s) 2 [i] = r (s) 1 [i + 1] s (s) 3 [i] = r (s) 2 [i + 1] s (s) 4 [i] = r (s) 3 [i + 1] s (s) 6 [i] = r (s) 5 [i + 1] s (c) 1 [i] = r (c) 0 [i + 1] s (c) 2 [i] = r (c) 1 [i + 1] s (c) 3 [i] = r (c) 2 [i + 1] s (c) 4 [i] = r (c) 3 [i + 1] s (s) 5 [i] = r (s) 4 [i + 1] s (c) 5 [i] = r (c) 4 [i + 1] s (c) 6 [i] = r (c) 5 [i + 1] s (c) 0 [i] = 0 s (s) 0 [i] = 0 ROM Modsum Modshift t (c) 5 [i] t (c) 4 [i] t (c) 3 [i] t (c) 2 [i] t (c) 1 [i] T (s) 2 [i] t (s) 1 [i] t (s) 0 [i]
[i] r (s) 5 [i] r (c) 1 [i] r (c) 2 [i] r (c) 3 [i] r (c) 4 [i] ((R (c) 5:4 [i + 1] + r (s) 5 [i + 1])2 n + a i B) mod F R (c) 5:4 [i + 1] a i r (c) 4 [i + 1] r (s) 0 [i + 1] r (s) 1 [i + 1] r (s) 2 [i + 1] r (s) 4 [i + 1] r (c) 5 [i] r (s) 4
[i + 1] r (c) 2 [i + 1] r (c) 3 [i + 1] r (s) 0 [i] r (s) 1 [i] r (s) 2 [i] r (s) 3 [i] (s) 3 [i + 1] r (c) 1
ϕ(k) = ϕ(k -1) -2F + 2 n if ϕ(k -1) -2F + 2 n ≥ 0, ϕ(k -1) -F + 2 n otherwise, (6)
with ϕ(0) = 0. Note that two CRAs, an array of n AND gates, and three registers implement the above equation (Figure 12). Thus, the critical path is the same as the one of the circuit implementing the iteration stage. Note that, at the price of an additional clock cycle, one can build the table on-thefly without impacting on the computation time (Figure 12). The algorithm returns a number R[0] congruent to (AB + C) modulo F and a final modular reduction is required. The architecture of the circuit responsible for this operation depends 12). And yet, this first radix-2 algorithm has a drawback in the sense that R[0] is not a valid input. Since both right-to-left and left-to-right modular exponentiation algorithms involve the computation of (R[0] 2) mod F , a modulo F reduction is required at the end of each multiplication. A straightforward modification of the algorithm solves this issue: it suffices to compute R

on F : if 2 n-1 + 1 ≤ F ≤ 2 n-1 + 2 n-2 -1, one shows that R[0] < 3F ; if 2 n-1 + 2 n-2 ≤ F ≤ 2 n -1, then R[0] < 2F (Figure
[i] = ψ(T [i] div 2 n-1) + T [i] mod 2 n-1 , where ψ(k) = (2 n-1 • k) mod F . Let B max = 2 n+2 +11-4•(n mod 2) 3 .
Assume that A ∈ N, B ∈ {0, . . . , Y max }, and C ∈ N. Then, one can establish the following properties [START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF]:

Modred Ld3 Ld2 Ld1 Clr ×2 0 0 ϕ(3) 0 0 ϕ(2) ϕ(1) Clk P [r -1] P [r -2]
Preprocessing step

P [r -i]
T [i]n+1:n 2F -2 n F Control unit ϕ(T [i]n+1:n) n Start T [i] CRA CRA modF (AB + C) mod F B ai ci n n + 2 Modsum R[i + 1] n + 1 S[i] Modshift 2 n-1 + 2 n-2 ≤ F ≤ 2 n -1 n n + 1 2 n -F significant Most bit n R[0] R[0] 2 n-1 + 1 ≤ F ≤ 2 n-1 + 2 n-2 -1
Fig. 12. Architecture of the first iteration stage proposed by Beuchat and Muller [START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF].

• T [i] is an (n + 2)-bit number, ∀F ∈ {2 n-1 + 1, . . . , 2 n -1}, and the ψ table is addressed by three bits. Furthermore, one can also build the table on-the-fly at the price of an extra clock cycle (Figure 13). Further optimizations are possible when the modulus F is known at design time. Figure 14a describes the implementation of the ϕ function on Xilinx FPGAs. In this example, the operator is able to perform multiplication-addition modulo F 1 or F 2 according to a Select signal. Thus, each bit of ϕ is computed by means of a 3-input table addressed by T n+1 [i],

T n [i], and Select. Such tables are embedded in the LUTs of the CRA returning R[i]. The ψ function is implemented the same way (Figure 14b). However, since it depends on three bits, the operator handles a single modulus F .

VI. THIRD ARCHITECTURE: MODULAR REDUCTION FOLLOWED BY A LEFT-SHIFT OPERATION

The third family of algorithms aims at simplifying the final modular reduction at the price of an additional iteration. This elegant approach was introduced by Peeters et al. [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] and can be applied to both prime fields and extension fields. Let us consider multiplication over F p to illustrate how such architectures work out the product AB mod F . The Modshift block computes a number U

A. Carry-Save Algorithm

The first carry-save modular multiplier featuring such a Modshift block was probably proposed by Bunimov and Schimmler [START_REF] Bunimov | Area and time efficient modular multiplication of large integers[END_REF]. However, this algorithm requires an (n + 2)bit integer R (s) [i] and an (n + 1)-bit integer R (c) [i] to encode the intermediate result R [i]. Since the authors do not perform an additional iteration, the final modular reduction proves to be more complex than the one of the carry-save modular multipliers studied in Section V. Peeters et al. designed a carrysave architecture which returns either R[-1] = AB mod F or R[-1] = (AB mod F) + F [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF]. The carry-save intermediate result R[i] consists of an (n + 1)-bit word R (s) [i] and an nbit word R (c) [i], whose least significant bit is always equal to zero (i.e. R (c) [i] ≤ 2 n -2). Therefore, we have

R[i] = R (s) n:n-2 [i] + R (c) n-1:n-3 [i] • 2 n-2 + R (s) n-3:0 [i] + 2R (c) n-4:0 [i]. Let us define the four bit integer U [i] such that U [i] = R (s) n:n-2 [i] + R (c) n-1:n-3 [i].
The Modshift block computes an number

S[i] = 2 U [i + 1] • 2 n-2 mod F + 2R (s) n-3:0 [i + 1] + 4R (c) n-4:0 [i + 1], which is congruent to R[i + 1] modulo F . However, Peeters et al. do not compute S[i] explicitly. They suggest to evaluate (k • 2 n-2) mod F and 2R (s) n-3:0 [i + 1] + 4R (c) n-4:0 [i + 1] + a i B
in parallel in order to shorten the critical path (Figure 15). The modulus must be known at design time in order to build the table storing the 15 possible values of (U

[i+1]•2 n-2) mod F . Note that a i B ≤ F -1, (U [i + 1] • 2 n-2) mod F ≤ F -1, R (s) n-3:0 [i+1] ≤ 2 n-2 -1, and R (c) n-4:0 ≤ 2 n-3 -2.
The number R[0] is therefore smaller than or equal to 3F +2 n -13 and the Modred block would have to subtract up to 4F to get the final result. Let us perform an additional iteration with a -1 = 0. We obtain an even number R

[-1] ≤ 2F + 2 n -12 which is CRA CRA 2F -2 n F n Start 0 P [r -1] P [r -2] 0 0 0 0 0 0 0 ψ(3) ψ (2)
ψ(5) ψ(4) congruent to 2AB modulo F . Therefore, we have to reduce R[-1]/2 ≤ F + 2 n-1 -6 < 2M . This operation requires at most one subtraction.

ψ(3) ψ(2) ψ(5) ψ (4
LUT T [i]1 0 1 0 ϕ(.)F 1 Select T [i]n T [i]n+1 ϕ(.)F 2 ϕ(.) P [i]1 ϕ(.) LUT T [i]1 Select T [i]n+1 T [i]n 1 T [i]n+1 T [i]n T [i]n-

B. High-Radix Carry-Save Algorithm

Since carry-save addition does not take advantage of the dedicated carry-logic available in several FPGA families, Beuchat and Muller [START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF] proposed a high-radix carry-save implementation of the algorithm by Peeters et al. [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] previously described. Assume that R[i + 1] and S[i] are now high-radix carry-save numbers. By shifting R[i+1], we define a new internal representation for S[i]. It is therefore necessary to perform a conversion while computing a number R[i] congruent to S[i] + a i B modulo F . Beuchat and Muller showed that the amount of hardware required for this task depends on the encoding of R[i] and the modulus F [START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF]. They also proposed an algorithm which selects the optimal high-radix carry-save number system and generates the VHDL description of the modular multiplier. Such operators perform a multiplication in (n+1) clock cycles and return a high-radix carry save number R[-1] which is smaller than 2F . Thus, the final modulo F correction requires at most one subtraction.

C. Multiplication over F p n

The same approach allows one to design array multipliers over F p n . Song and Parhi suggested to compute at each step a degree- 8b). A degree-(n+D-1) polynomial S[i] allows one to accumulate these partial products:

(n + D -2) polynomial T [i] which is the sum of D partial products, i.e. T [i] = D-1 j=0 a Di+j x j B [1] (Figure
S[i] = T [i]+x D (S[i+1] mod F). After n/D iterations, S[0] is a degree-(n + D -

VII. CONCLUSION

In order to compare the algorithms described in this survey, we wrote a generic VHDL library as well as automatic code generators, and performed a series of experiments involving a Spartan-3 XC3S1500 FPGA. Whereas the description of operators whose modulus is an input is rather straightforward, the computation of the tables involved in the algorithms for which the modulus is a constant known at design time proves to be tricky in VHDL. Since the language does not allow one to easily deal with big numbers, a first solution consists in writing a VHDL package for arbitrary precision arithmetic. Note that this approach slows down the synthesis of the VHDL code. Consider for instance the computation of the ϕ(k) function involved in the radix-2 algorithm (see Equation [START_REF] Kaihara | Bipartite modular multiplication[END_REF] in Section V-B). Synthesis tools have to interpret the code of the recursive function ϕ(k) in order to compute the constants (k • 2 n) mod F . In some cases, it seems more advisable to write a program which automatically generates the VHDL description of the operator according to its modulus: the selection of a high-radix carry-save number system for the algorithm outlined in Section VI-B consists for instance in finding a shortest path in a directed acyclic graph [START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF].

Figure 16 describes a comparison between carry-save and radix-2 iteration stages when the modulus is a constant. Among carry-save algorithms, the one by Kim and Sobelman [START_REF] Kim | Digit-serial modular multiplication using skew-tolerant domino CMOS[END_REF] leads to the smallest iteration stage. However, recall that it involves a complex Modred block and the architecture introduced by Peeters et al. [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] proves to be the best choice. The operator introduced by Jeong and Burleson [START_REF] Jeong | VLSI array algorithms and architectures for RSA modular multiplication[END_REF] requires a larger area and is even slower than other carry-save implementations. Radix-2 algorithms take advantage of the dedicated carry logic and embed the ϕ(k) table in the LUTs of a CRA (Figure 13). This approach allows one to roughly divide by two the area on Xilinx devices at the price of a slightly lower clock frequency. Since these results do not include the Modred block, the delay of carry-save operators is underestimated. However, these results indicate that radix-2 algorithms are efficient for moduli up to 32 bits. For larger moduli, the highradix carry-save approach allows significant hardware savings without impacting on the computation time on Xilinx FPGAs (Figure 17). Note that borrow-save algorithms always lead to larger circuits on our target FPGA family. Experiment results indicate that the choice between the multipliers over GF(p m) studied in this paper depends on the irreducible polynomial F (see also [START_REF] Beuchat | Multiplication over F p m on FPGA: A survey[END_REF]). Size of the modulus Fig. 16. Comparison between carry-save and radix-2 algorithms for several operand sizes. For each experiment, we consider, from left to right, the algorithms by Jeong and Burleson [START_REF] Jeong | VLSI array algorithms and architectures for RSA modular multiplication[END_REF] (carry-save), Kim and Sobelman [START_REF] Kim | Digit-serial modular multiplication using skew-tolerant domino CMOS[END_REF] (carry-save), Peeters et al. [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] (carry-save), and Beuchat and Muller [START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF] (radix-2). [START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] and the high-radix carry-save scheme by Beuchat and Muller [START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF]. Ten 256-bit prime moduli were randomly generated for this experiment.

A. Radix- 2 Integers 1)

 21 Addition of Radix-2 Integers: Let A and B be two n-bit unsigned integers such that A =

Fig. 1 .

 1 Fig. 1. Carry-ripple adder and carry-save adder.

Fig. 2 .

 2 Fig. 2. High-radix carry-save numbers.

5 UFig. 3 .

 53 Fig. 3. Arithmetic operations in the borrow-save number system.

Fig. 4 .

 4 Fig. 4. Modular multiplication based on Horner's rule.

Fig. 7 .

 7 Fig. 7. Architecture of the Modred block proposed by Kim and Sobelman [21].

FAFig. 6 .

 6 Fig.[START_REF] Kaihara | Bipartite modular multiplication[END_REF]. Architecture of the iteration stage proposed by Jeong and Burleson[START_REF] Jeong | VLSI array algorithms and architectures for RSA modular multiplication[END_REF] for n = 6.

1 degree n + 1 Fig. 8 .

 118 Fig. 8. Array multipliers over GF(p n) processing D = 2 coefficients of A at each clock cycle. (a) Architecture proposed by Shu et al. [24]. (b) Architecture introduced by Song and Parhi [1].

 (s) n+3 [i], r (c) n+2 [i], and r (s) n+2 [i] only depend on k.

Figure 7 . 1 .

 71 R(s) [i+1] and R(c) [i+1] are again two n-bit integers and the computation of a numberR[i] congruent to 2R[i + 1] + a i B is carried out according to Equation (1) with α = n -The table is addressed by a i and the 3-bit sum k = R (c) n-1:n-2 [i + 1] + r (s) n-2 [i + 1],and returns an n-bit integer (a i B + k2 n) mod F .

Fig. 10 .

 10 Fig.10. Architecture of the iteration stage proposed by Kim and Sobelman[START_REF] Kim | Digit-serial modular multiplication using skew-tolerant domino CMOS[END_REF] for n = 6.

Fig. 11 .

 11 Fig.11. Architecture of the iteration stage proposed by Amanor et al.[START_REF] Amanor | Efficient hardware architectures for modular multiplication on FPGAs[END_REF] for n = 6.

 • R[0] is smaller than 2F and at most one subtraction is required to compute AB mod F from R[0] . • R[0] is smaller than B max .Therefore modular exponentiation can be performed with R[0] instead of R.

 [i] congruent to R[i + 1] modulo F and returns an even number S[i] = 2U [i]. Recall that algorithms based on Horner's rule compute a number R[0] = AB + αF congruent to AB modulo F , where α ∈ N. Let us perform an additional iteration with a-1 = 0. We have R[-1] = S[-1] = 2(R[0] -βF) = 2(AB + (α -β)F). Since R[-1] is even, we can shift it to get R[-1]/2 = AB + (α -β)F , which is congruent to AB modulo F . Furthermore, the upper bound of R[-1] turns out to be smaller than the one of R[0].

Fig. 13 .

 13 Fig.[START_REF] Bajard | Some operators for on-line radix-2 computations[END_REF]. Architecture of the second iteration stage proposed by Beuchat and Muller[START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF].

1

 1

1 a) 1 Fig. 14 .

 1114 Fig.[START_REF] Takagi | Modular multiplication hardware algorithms with a redundant representation and their application to RSA cryptosystem[END_REF]. Optimizations of the algorithm proposed by Beuchat and Muller[START_REF] Beuchat | Modulo m multiplication-addition: Algorithms and FPGA implementation[END_REF] when the modulus is known at design time.

 1) polynomial congruent to AB modulo F . Song and Parhi included specific hardware to carry out a final modular correction. However, we achieve the same result by performing an additional iteration with a -1 = 0[START_REF] Beuchat | An algorithm for the η T pairing calculation in characteristic three and its hardware implementation[END_REF]. Since T [-1] is equal to zero, we obtain R[-1] = S[-1] = x D (AB mod F) and it suffices to rightshift this polynomial to get the result.

Fig. 15 .

 15 Fig.[START_REF] Grabher | Hardware acceleration of the Tate Pairing in characteristic three[END_REF]. Architecture of the iteration stage proposed by Peeters et al.[START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] for n = 6.

Fig. 17 .

 17 Fig. 17. Comparison between the carry-save algorithm proposed by Peeters et al.[START_REF] Peeters | XTR implementation on reconfigurable hardware[END_REF] and the high-radix carry-save scheme by Beuchat and Muller[START_REF] Beuchat | Automatic generation of modular multipliers for FPGA applications[END_REF]. Ten 256-bit prime moduli were randomly generated for this experiment.

TABLE I COMPUTATION

 I OF THE MOST SIGNIFICANT DIGIT OF Ã.

TABLE II CLASSIFICATION

 II OF MODULAR MULTIPLIERS BASED ON HORNER'S RULE ACCORDING TO THE ARCHITECTURE OF THE Modshift BLOCK.

		Left-shift and	Left-shift	Modular reduction
		modular reduction		left-shift
	Borrow-save	Takagi and Yajima [14]	
		Takagi [17]	
		Jeong and Burleson [18]	Koc ¸and Hung [9]	Bunimov and Schimmler [19]
	Carry-save		Koc ¸and Hung [10]	Peeters et al. [20]
			Kim and Sobelman [21]
			Amanor et al. [22]
	High-radix			Beuchat and Muller [11]
	carry-save		
	Radix 2		Beuchat and Muller[23]
	F p n	Shu et al. [24]		Song and Parhi [1]

 The Modshift block implements Equation (1) and returns a carry-save number S[i] congruent to 2R[i + 1], while the Modsum block requires two CSAs to determine a number R[i] congruent to S[i] + a i B. According to Equation (2), R[i] is smaller than or equal to F + 2 n+1 -4 and the Modred block has to remove up to 4F to R[0] in order to get AB mod F .

ACKNOWLEDGMENTS

The authors would like to thank Nicolas Brisebarre and Jérémie Detrey for their useful comments. The work described in this paper has been supported in part by the New Energy and Industrial Technology Development Organization (NEDO), Japan, and by the Swiss National Science Foundation through the Advanced Researchers program while Jean-Luc Beuchat was at École Normale Supérieure de Lyon (grant PA002-101386).