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Abstract. Valiant introduced some 25 years ago an algebraic model of computation
along with the complexity classes VP and VNP, which can be viewed as analogues of the
classical classes P and NP. They are defined using non-uniform sequences of arithmetic
circuits and provides a framework to study the complexity for sequences of polynomials.
Prominent examples of difficult (that is, VNP-complete) problems in this model includes
the permanent and hamiltonian polynomials.

While the permanent and hamiltonian polynomials in general are difficult to evaluate,
there have been research on which special cases of these polynomials admits efficient
evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded
rank, both the permanent and the hamiltonian polynomials can be evaluated in poly-
nomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for
matrices of bounded treewidth several difficult problems (including evaluating the per-
manent and hamiltonian polynomials) can be solved efficiently. An earlier result of this
flavour is Kasteleyn’s theorem which states that the sum of weights of perfect matchings
of a planar graph can be computed in polynomial time, and thus is in VP also. For general
graphs this problem is VNP-complete.
In this paper we investigate the expressive power of the above results. We show that
the permanent and hamiltonian polynomials for matrices of bounded treewidth both are
equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be
equivalent to the sum of weights of perfect matchings of planar graphs.

1 Introduction

Our focus in this paper is on easy special cases of otherwise difficult to evaluate polynomials,
and their connection to various classes of arithmetic circuits. In particular we consider the
permanent and hamiltonian polynomials for matrices of bounded treewidth, and sum of weights
of perfect matchings for planar graphs. It is a widely believed conjecture that the permanent
is hard to evaluate. Indeed, in Valiant’s framework [16, 17] the permanent is complete for the
class VNP. This is an algebraic analogue of his ♯P-completeness result for the permanent [15].
For a book-length treatment of Valiant’s algebraic complexity theory one may consult [4]. The
same results (♯P-completeness in the boolean framework, and VNP-completeness in the algebraic
framework) also apply to the hamiltonian polynomial. The sum of weights of perfect matchings
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in an (undirected) graph G is yet another example of a presumably hard to compute polynomial
since it reduces to the permanent when G is bipartite. However, all three polynomials are known
to be easy to evaluate in special cases. In particular, the permanent and hamiltonian polynomials
can be evaluated in a polynomial number of arithmetic operations for matrices of bounded
treewidth [6]. An earlier result of this flavour is Kasteleyn’s theorem [8] which states that the
sum of weights of perfect matchings of a planar graph can be computed in a polynomial number
of arithmetic operations. One can try to turn these three efficient algorithms into general-purpose
evaluation algorithms by means of reductions (this is the approach followed by Valiant in [18],
where he exhibits polynomial time algorithms for several problems which previously only had
exponential time algorithms, by means of holographic reductions to perfect matchings of planar
graphs). For instance, in order to evaluate a polynomial P one can try to construct a matrix of
bounded treewidth A such that:

(i) The entries of A are variables of P , or constants.
(ii) The permanent of A is equal to P .

The same approach can be tried for the hamiltonian and the sum of weights of perfect matchings
in a planar graph. The goal of this paper is to assess the power of these polynomial evaluation
methods. It turns out that the three methods are all universal - that is, every polynomial can
be expressed as the sum of weights of perfect matchings in a planar graph, and as a permanent
and hamiltonian of matrices of bounded treewidth. From a complexity-theoretic point of view,
these methods are no longer equivalent. Our main findings are that:

– The permanents and hamiltonians of matrices of polynomial size and bounded treewidth
have the same expressive power, namely, the power of polynomial size arithmetic formulas.
This is established in Theorem 1.

– The sum of weights of perfect matchings in polynomial size planar graphs has at least
the same power as the above two representations, and in fact it is more powerful under a
widely believed conjecture. Indeed, this representation has the same power as polynomial size
(weakly) skew arithmetic circuits. This is established in Theorem 7. We recall that (weakly)
skew arithmetic circuits capture the complexity of computing the determinant [14]. It is
widely believed that the determinant cannot be expressed by polynomial size arithmetic
formulas.

Our three methods therefore capture (presumably proper) subsets of the class VP of easy to
compute polynomial families. By contrast, if we drop the bounded treewidth or planarity as-
sumptions, the class VNP is captured in all three cases.

Various notions of graph “width” have been defined in the litterature besides treewidth
(there is for instance pathwidth, cliquewidth, rankwidth...). They should be worth studying
from the point of view of their expressive power. Also, Barvinok [1] has shown that if the
underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can
be evaluated in a polynomial number of arithmetic operations. A proper study of the expressive
power of permanents and hamiltonians of bounded rank along the same line as in this paper
remains to be done.
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2 Definitions

2.1 Arithmetic circuits

Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices have indegree 0
or 2, where those with indegree 0 are referred to as inputs. A single vertex must have outdegree
0, and is referred to as output. Each vertex of indegree 2 must be labeled by either + or ×, thus
representing computation. Vertices are commonly referred to as gates and edges as arrows.

By interpreting the input gates either as constants or variables it is easy to prove by induction
that each arithmetic circuit naturally represents a polynomial.

In this paper various subclasses of arithmetic circuits will be considered: For weakly skew
circuits we have the restriction that for every multiplication gate, at least one of the incoming
arrows is from a subcircuit whose only connection to the rest of the circuit is through this
incoming arrow. For skew circuits we have the restriction that for every multiplication gate, at
least one of incoming arrows is from an input gate. For formulas all gates (except output) have
outdegree 1. Thus, reuse of partial results is not allowed.

For a detailed description of various subclasses of arithmetic circuits, along with examples,
we refer to [13].

Definition 2. The size of a circuit is the total number of gates in the circuit. The depth of a
circuit is the length of the longest path from an input gate to the output gate.

A family (fn) belongs to the complexity class VP if fn can be computed by a circuit Cn of
size polynomial in n, and if moreover the degree of fn is bounded by a polynomial function of n.

2.2 Treewidth

Treewidth for undirected graphs is most commonly defined as follows:

Definition 3. Let G = 〈V, E〉 be a graph. A k-tree-decomposition of G is:

(i) A tree T = 〈VT , ET 〉.
(ii) For each t ∈ VT a subset Xt ⊆ V of size at most k + 1.
(iii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iv) For each vertex v ∈ V the set {t ∈ VT |v ∈ XT } forms a (connected) subtree of T .

The treewidth of G is then the smallest k such that there exists a k-tree-decomposition for G.

There is an equivalent definition of treewidth in terms of certain graph grammars called HR
algebras [5]:

Definition 4. A graph G has a k-tree-decomposition iff there exist a set of source labels of
cardinality k+1 such that G can be constructed using a finite number of the following operations:

(i) vera, loopa, edgeab (basic constructs: create a single vertex with label a, a single vertex with
label a and a looping edge, two vertices labeled a and b connected by an edge)

(ii) rena↔b(G) (rename all labels a as labels b and rename all labels b as labels a)
(iii) forga(G) (forget all labels a)
(iv) G1 // G2 (composition of graphs: any two vertices with the same label are identified as a

single vertex)
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Example 1. Cycles are known to have treewidth 2. Here we show that they have treewidth at
most 2 by constructing G, a cycle of length l ≥ 3, using {a, b, c} as the set of source labels.
First we construct G1 by the operation edgeab. For 1 < i < l we construct Gi by operations
forgc(renb↔c(Gi−1 // edgebc). Finally G is then constructed by the operation Gl−1 // edgeab.

The treewidth of a directed graph is defined as the treewidth of the underlying undirected
graph. The treewidth of an (n×n) matrix M = (mi,j) is defined as the treewidth of the directed
graph GM = 〈VM , EM , w〉 where VM = {1, . . . , n}, (i, j) ∈ EM iff mi,j 6= 0, and w(i, j) = mi,j .
Notice that GM can have loops. Loops do not affect the treewidth of GM but are important for
the characterization of the permanent and hamiltonian polynomials.

2.3 Permanent and hamiltonian polynomials

In this paper we take a graph theoretic approach to deal with permanent and hamiltonian
polynomials. The reason for this being that a natural way to define the treewidth of a matrix,
is by the treewidth of the underlying graph, see also e.g. [11].

Definition 5. A cycle cover of a directed graph is a subset of the edges, such that these edges
form disjoint, directed cycles (loops are allowed). Furthermore, each vertex in the graph must be
in one (and only one) of these cycles. The weight of a cycle cover is the product of weights of
all participating edges.

Definition 6. The permanent of an (n × n) matrix M = (mi,j) is the sum of weights of all
cycle covers of GM .

The permanent of M can also be defined by the formula

per(M) =
∑

σ∈Sn

n∏

i=1

mi,σ(i).

The equivalence with Definition 6 is clear since any permutation can be written down as a
product of disjoint cycles, and this decomposition is unique.

There is a natural way of representing polynomials by permanents. Indeed, if the entries of
M are variables or constants from some field K, f = per(M) is a polynomial with coefficients in
K (in Valiant’s terminology, f is a projection of the permanent polynomial). In the next section
we study the power of this representation in the case where M has bounded treewidth.

The hamiltonian polynomial ham(M) is defined similarly, except that we only sum over cycle
covers consisting of a single cycle (hence the name).

3 Matrices of bounded treewidth

In this section we work with directed graphs. All paths and cycles are assumed to be directed,
even if this word is omitted.

In [6] it is shown that the permanent and hamiltonian polynomials are in VP for matrices
of bounded treewidth. Here we show that both the permanent and hamiltonian polynomials for
matrices of bounded treewidth are equivalent to arithmetic formulas. This is an improvement on
the result of [6] since the set of polynomial families representable by polynomial size arithmetic
formulas is a (probably strict) subset of VP.
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Theorem 1. Let (fn) be a family of polynomials with coefficients in a field K. The three fol-
lowing properties are equivalent:

– (fn) can be represented by a family of polynomial size arithmetic formulas.
– There exists a family (Mn) of polynomial size, bounded treewidth matrices such that the

entries of Mn are constants from K or variables of fn, and fn = per(Mn).
– There exists a family (Mn) of polynomial size, bounded treewidth matrices such that the

entries of Mn are constants from K or variables of fn, and fn = ham(Mn).

Remark 1. By the VNP-completeness of the hamiltonian, if we drop the bounded treewidth
assumption on Mn we capture exactly the VNP families instead of the families represented by
polynomial size arithmetic formulas. The same property holds true for the permanent if the
characteristic of K is different from 2.

Theorem 1 follows immediately from Theorems 2, 3, 5 and 6.

Theorem 2. Every arithmetic formula can be expressed as the permanent of a matrix of tree-
width at most 2 and size at most (n + 1)× (n + 1) where n is the size of the formula. All entries
in the matrix are either 0, 1, or variables of the formula.

Proof. The first step is to construct a directed graph that is a special case of a series-parallel
(SP) graph, in which there is a connection between weights of directed paths and the value
computed by the formula. The overall idea behind the construction is quite standard, see e.g.
[13]. SP graphs in general can between any two adjacent vertices have multiple directed edges.
But we construct an SP graph in which there is at most one directed edge from any vertex u to
any vertex v. This property will be needed in the second step, in which a connection between
cycle covers and the permanent of a given matrix will be established.

SP graphs have distinguished source and sink vertices, denoted by s and t. By SW (G) we
denote the sum of weights of all directed paths from s to t, where the weight of a path is the
product of weights of participating edges.

Let ϕ be a formula of size e. For the first step of the proof we will by induction over e
construct a weighted, directed SP graph G such that val(ϕ) = SW (G). For the base case ϕ = w
we construct vertices s and t and connect them by a directed edge from s to t with weight w.

Assume ϕ = ϕ1 +ϕ2 and let Gi be the graph associated with ϕi by the induction hypothesis.
Introduce one new vertex s and let G be the union of the three graphs 〈{s}〉, G1 and G2

in which we identify t1 with t2 and denote it t, add an edge of weight 1 from s to s1, and
add an edge of weight 1 from s to s2. By induction hypothesis the resulting graph G satisfies
SW (G) = 1·SW (G1)+1·SW (G2) = val(ϕ1)+val(ϕ2). Between any two vertices u and v there is
at most one directed edge from u to v. We introduced one new vertex, but since t1 was identified
with t2 the number of vertices used equals |V1|+ |V2| ≤ size(ϕ1)+1+size(ϕ2)+1 = size(ϕ)+1.

Assume ϕ = ϕ1 ∗ ϕ2. We construct G by making the disjoint union of G1 and G2 in which
we identify t1 with s2, identify s1 as s in G and identify t2 as t in G. For every directed path
from s1 to t1 in G1 and for every directed path from s2 to t2 in G2 we can find a directed path
from s to t in G of weight equal to the product of the weights of the paths in G1 and G2, and
since all (s, t) paths in G are of this type we get SW (G) = SW (G1) · SW (G2). The number of
vertices used equals |V1| + |V2| − 1 ≤ size(ϕ1) + size(ϕ2) + 1 < size(ϕ) + 1.

For the second step of the proof we need to construct a graph G′ such that there is a relation
between cycle covers in G′ and directed paths from s to t in G. We construct G′ by adding an
edge of weight 1 from t back to s, and loops of weight 1 at all vertices different from s and t.
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Now, for every (s, t) path in G we can find a cycle in G′ visiting the corresponding nodes. For
nodes in G′ not in this cycle, we include them in a cycle cover by the loops of weight 1. Because
there is at most one directed edge from any vertex u to any vertex v in G′ we can find a matrix
M of size at most (n + 1) × (n + 1) such that GM = G′ and per(M) = val(ϕ).

The graph G′ can be constructed using an HR algebra with only 3 source labels, and thus
have treewidth at most 2. For the base case the operation edgeab is sufficient. For the simula-
tion of addition of formulas the following grammar operations provide the desired construction:
rena↔c(forga(edgeac // (loopa // G1)) // forga(edgeac // (loopa // G2))). For simulat-
ing multiplication of formulas we use the following grammar operations: forgc(renb↔c(G1) //
rena↔c(loopa // G2)). Finally, the last step in obtaining G′ is to make a composition with the
graph edgeab. ⊓⊔

Theorem 3. Every arithmetic formula of size n can be expressed as the hamiltonian of a matrix
of treewidth at most 6 and size at most (2n + 1)× (2n + 1). All entries in the matrix are either
0, 1, or variables of the formula.

Proof. The first step is to produce the graph G as shown in Theorem 2. The next step is to show
that the proof of universality for the hamiltonian polynomial in [12] can be done with treewidth
at most 6. Their construction for universality of the hamiltonian polynomial introduces |VG|−1
new vertices to G in order to produce G′, along with appropriate directed edges (all of weight
1). The proof is sketched in Figure 1.

Fig. 1. Universality of the hamiltonian polynomial

The additional vertices ti and edges permit to visit any subset of vertices of G with a directed
path of weight 1 from t to s using all ti’s. Hence, any path from s to t in G can be followed by
a path from t to s to obtain a hamiltonian cycle of same weight.

If one just need to show universality, then it is not important exactly which one of the vertices
ti that has an edge to a given vertex among si. But in order to show bounded treewidth one
carefully need to take into account which one of the vertices of ti that has an edge to a particular
si vertex. We show such a construction with bounded treewidth, by giving an HR algebra which
can express a graph similar to the one in Figure 1 using 7 source labels.
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Fig. 2. Series composition (simulating multiplication)

Series composition is done using the following operations (also see Figure 2):

forge(forgf (forgg(

rend↔f (renb↔e(G1)) //

renc↔g(rena↔e(G2)) //

edgeef // edgeeg // edgefg

)))

Labels a, b, c and d in Figures 2 and 3 plays the roles of s, t, t1 and tn respectively in Figure 1.
The above construction does not take into account, that G1 and/or G2 are graphs generated

from the base case. For base cases vertices c and d are replaced by a single vertex. However, it
is clear that the above construction can be modified to work for these simpler cases as well.

Fig. 3. Parallel composition (simulating addition)

For parallel composition an additional vertex was introduced. It can be done using the
following operations (also see Figure 3):

forge(forgf (forgg(

rena↔e(renc↔g(

forga(forgc(edgeag // edgecg // rend↔f (edgeae // edgeac // G1))) //

forga(forgc(edgeaf // edgecf // edgeae // edgeac // G2))

))

)))
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The final step in the construction, after all series and parallel composition have been done,
is to connect vertices a and c and connect vertices b and d. ⊓⊔

The decision version of the hamiltonian cycle problem for graphs of bounded cliquewidth is
shown to be polynomial time solvable in [7]. Though bounded treewidth implies bounded clique-
width we are mainly interested in studying the evaluation version. Evaluation of the hamiltonian
and permanent polynomials was shown in [6] to be in VP for matrices of bounded treewidth.
They give efficients algorithms for a much broader class of problems, but the proof we give here
is more direct and gives a more precise characterization.

By Definition 6, computing the permanent of a matrix M amounts to computing the sum of
the weights of all cycle covers of GM . In our algorithm we need to consider partial covers, which
are generalizations of cycle covers.

Definition 7. A partial cover of a directed graph is a union of paths and cycles such that every
vertex of the graph belongs to at most one path (and to none of the cycles), or to at most one
cycle (and to none of the paths).

The weight of a partial cover is the product of the weights of all participating edges. More
generally, for any set S of edges the weight w(S) of S is defined as the product of the weights of
the elements of S.

In contrast to cycle covers, for a partial cover there is no requirement that all vertices be covered.
The following theorem from [2] is a standard tool in the design of parallel algorithms for

graphs of bounded treewidth (see also [3] and [9]).

Theorem 4. Let G = 〈V, E〉 be a graph of treewidth k with n vertices. Then there exists a
tree-decomposition 〈T, (Xt)t∈VT

〉 of G of width 3k + 2 such that T = 〈VT , ET 〉 is a binary tree
of depth at most 2⌈log 5

4

(2n)⌉.

We also need the following standard lemma:

Lemma 1. Let ϕ be a circuit of depth d. Then there exists a formula of depth d and size O(2d)
representing the same polynomial.

Proof. We construct the formula from the circuit by duplicating entire subcircuits whenever we
reuse a gate. The formula constructed in this way also has height d. In the produced formula
the number of gates having distance j to the root is at most twice the number of gates having
distance j − 1 to the root, so the formula has at most

∑d

i=0 2i = 2 · 2d − 1 gates. ⊓⊔

Theorem 5. The permanent of a n × n matrix M of bounded treewidth k can be expressed as
a formula of size O(nO(1)).

Proof. We show how to construct a circuit of depth O(log(n)), which can then be expressed as
a formula of size O(nO(1)) using Lemma 1. Consider the graph G = GM and apply Theorem 4
to obtain a balanced, binary tree-decomposition T of bounded width k′. For each node t of T ,
we denote by Tt the subtree of T rooted at t, and we denote by X(Tt) the set of vertices of G
which belong to Xu for at least one of the nodes u of Tt. We denote by Gt the subgraph of G
induced by the subset of vertices X(Tt).

Consider a partial cover C of Gt. Any given edge (u, v) ∈ X2
t is either used or unused by

C. Likewise, any given vertex of Xt has indegree 0 or 1 in C, and outdegree 0 or 1. We denote
by λt = It(C) the list of all these data for every edge (u, v) ∈ X2

t and every element of Xt. By
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abuse of language, we will say that an edge in X2
t is used by λt if it is used by one partial cover

satisfying It(C) = λt (or equivalently, by all partial cover satisfying It(C) = λt).
We will compute for each possible list λt a weight wλt

, defined as the sum of the weights of
all partial covers C of Gt satisfying the following three properties:

(i) the two endpoints of all paths of C belong to Xt;
(ii) all uncovered vertices belong to Xt;
(iii) It(C) = λt.

Note that the number of weights to be computed at each node of T is bounded by a constant
(which depends on k′). When t is the root of T we can easily compute the permanent of M
from the weights wλt

: it is equal to the sums of the wλt
over all λt which assign indegree 1

and outdegree 1 to all vertices of Xt. Also, when t is a leaf of T we can compute the weights
in a constant number of arithmetic operations since Gt has at most k′ vertices in this case. It
therefore remains to explain how to compute the weights wλt

when t is not a leaf.
Our algorithm for this proceeds in a bottom-up manner: we will compute the weights for t

from the weights already computed for its left child (denoted l) and its right child (denoted r).
The idea is that we can obtain a partial cover of Gt by taking the union of a partial cover of Gl

and of a partial cover of Gr, and adding some additional edges. Conversely, a partial cover of Gt

induces a partial cover of Gl and a partial cover of Gr. In order to avoid counting many times
the same partial cover, we must define the considered partial covers of Gl and Gr to ensure that
the partial cover of Gt induces a unique partial cover of Gl and a unique partial cover of Gr.
We will say that (λl, λr) is compatible with λt if and only if the following holds:

- no edge in X2
t is used in λl or λr;

- for every vertex x ∈ Xt at most one of λt, λl, λr assigns indegree 1 to x;
- for every vertex x ∈ Xt at most one of λt, λl, λr assigns outdegree 1 to x;
- every vertex x ∈ Xl\Xt has indegree 1 and outdegree 1 in λl;
- every vertex x ∈ Xr\Xt has indegree 1 and outdegree 1 in λr .

We now have to prove two things. If there is a partial cover C of Gt which satisfies the properties
(i) and (ii) such that It(C) = λt then it induces a partial cover Cl of Gl and a partial cover Cr

of Gr such that Cl and Cr satisfy (i) and (ii), Il(C) = λl, Ir(C) = λr, and (λl, λr) is compatible
with λt. Conversely, if (λl, λr) is compatible with λt, and Cl and Cr are partial covers of Gl and
Gr satisfying (i), (ii), Il(C) = λl, and Ir(C) = λr, then there exists a unique partial cover C of
Gt containing Cl and Cr such that It(C) = λt.

Consider a partial cover C of Gt which satisfies the properties (i) and (ii) defined above. We
can assign to C a unique triple (Cl, Cr, S) defined as follows. First, we define S as the set of
edges of C ∩ X2

t . Then we define Cl as the set of edges of C which have their two endpoints
in X(Tl), and at least one of them outside of Xt. Finally, we define Cr as the set of edges of
C which have their two endpoints in X(Tr), and at least one of them outside of Xt. Note that
w(C) = w(Cl)w(Cr)w(S) since (Cl, Cr, S) forms a partition of the edges of C. Moreover, Cl is a
partial cover of Gl and properties (i) and (ii) are satisfied: the endpoints of the paths of Cl and
the uncovered vertices of X(Tl) all belong to Xl ∩ Xt. Likewise, Cr is a partial cover of X(Tr)
and properties (i) and (ii) are satisfied. If Il(C) = λl and Ir(C) = λr, it is clear that (λl, λr) is
compatible with λt. Any other partition of C in three parts with one partial cover of Gl, one
partial cover of Gr, and a subset of edges in X2

t would have an edge of X2
t used by Cl or Cr.

Hence (λl, λr) would not be compatible with λt.
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Suppose now (λl, λr) is compatible with λt, and Cl and Cr are partial covers of Gl and Gr

satisfying (i), (ii), Il(C) = λl, and Ir(C) = λr. We define Sλt
as the set of edges of X2

t which
are used by λt. It is clear that Sλt

, Cl and Cr are disjoint. Consider C = Sλt
∪ Cl ∪ Cr . Since

(λl, λr) is compatible with λt, C is a partial cover satisfying (i) and (ii). It is also clear that C
is the only partial cover containing Cl and Cr such that It(C) = λt.

These considerations lead to the formula

w(λt) =
∑

(λl,λr)

w(λl)w(λr)w(Sλt
).

The sum runs over all pairs (λl, λr) that are compatible with λt. The weight w(λt) can therefore
be computed in a constant number of arithmetic operations.

Since the height of T is O(log(n)) the above algorithm can be executed on a circuit of height
O(log(n)) as well. ⊓⊔

Theorem 6. The hamiltonian of a n× n matrix M of bounded treewidth k can be expressed as
a formula of size O(nO(1)).

Proof. The proof is very similar to that of Theorem 5. The only difference is that we only
consider partial cycle covers consisting exclusively of paths, and at the root of T the partial
cycle covers of the two children must be combined into a hamiltonian cycle. ⊓⊔

4 Perfect matchings of planar graphs

In this section we work with undirected graphs.

Definition 8. A perfect matching of a graph G = 〈V, E〉 is a subset E′ of E such that every
vertex in V is incident to exactly one edge in E′. The weight of a perfect matching E′ is the
product of weights of all edges in E′. By SPM(G) we denote the sum of weights of all perfect
matchings of G.

In 1967 Kasteleyn showed in [8] that SPM(G) can be computed efficiently if G is planar.
His observations was that for planar graphs SPM(G) could be expressed as a special kind of
Pfaffian. For general non-planar graphs computing SPM(G) is VNP-complete (or ♯P-complete
in the boolean model of computation). This follows from the fact that for a bipartite graph
G = (U, V, E), SPM(G) is equal to the permanent of its “bipartite adjacency matrix” M (if
|U | = |V | = n, M is a n × n matrix and mij is equal to the weight of the edge between ui

and vj).

Theorem 7. Let (fn) be a family of polynomials with coefficients in a field K. The three fol-
lowing properties are equivalent:

– (fn) can be computed by a family of polynomial size weakly skew circuits.
– (fn) can be computed by a family of polynomial size skew circuits.
– There exists a family (Gn) of polynomial size planar graphs with edges weighted by constants

from K or variables of fn such that fn = SPM(Gn).

The equivalence of (i) and (ii) is etablished in [13] and [14]. In [13] the complexity class VDET is
defined as the class of polynomial families computed by polynomial size (weakly) skew circuits,
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Fig. 4. Planar crossover widget for skew circuits

and it is shown that the determinant is VDET-complete. We have therefore shown that com-
puting SPM(G) for a planar graph G is equivalent to computing the determinant. Previously it
was known that SPM(G) could be reduced to computing Pfaffians [8]. The equivalence of (iii)
with (i) and (ii) follows immediately from Theorem 8 and Theorem 9.

Theorem 8. The output of every skew circuit of size n can be expressed as SPM(G) where G
is a weighted, planar, bipartite graph with O(n2) vertices. The weight of each edge of G is equal
to 1, to -1, or to an input variable of the circuit.

Proof. Let ϕ be a skew circuit; that is, for each multiplication gate at least one of the inputs
is an input gate of ϕ (w.l.o.g. we assume it is exactly one). Furthermore, by making at most a
linear amount of duplication we can assume all input gates have outdegree 1. Thus, every input
gate of ϕ is either input to exactly one addition gate or input to exactly one multiplication gate
(ignoring the trivial special case where ϕ only consist of a single gate), and throughout the proof
we will distinguish between these two types of input gates.

Consider a drawing of ϕ in which all input gates which are input to an addition gate, are
placed on a straight line, and all other gates are drawn on the same side of that line. Assume
all arrows in the circuit are drawn as straight lines. This implies at most a quadratic number
of places where two arrows cross each other in the plane. By using the planar crossover widget
from Figure 4 we replace these crossings by planar subgraphs, introducing at most a quadratic
amount of extra gates.

For each multiplication gate we have that exactly one of the input gates is an input gate of
ϕ, so these input gates can be placed arbitrarily close the the multiplication gate in which they
are used. Thus we obtain a planar skew circuit ϕ′ computing the same value as ϕ.

Consider a topological ordering of the gates in ϕ′ in which input gates that are input to
multiplication gates have numbers less than 1, and input gates that are input to addition gates
have the numbers 1 through i (where i is the number of input gates that are input to addition
gates). Let m be the number of the output gate in this topological ordering of ϕ′. Steps 1 through

11



Fig. 5. Initialization for input gates which are input to addition gates

i in the construction of G are shown in Figure 5. Edge weight xi denote the input at the gate
with topological number i in ϕ′.

Fig. 6. I) Non-output addition II) Non-output multiplication III) Output add. IV) Output mult.

For each step i < m′ ≤ m an addition or multiplication gate are handled as shown in
Figure 6. White vertices indicate vertices that are already present in the graph, whereas black
vertices indicate new vertices that are introduced during that step. For multiplications the edge
weight w denote the value of the input gate of ϕ′, which is input to that multiplication gate.
Finally, the output gate of ϕ′ is handled in a special way.

Correctness can be shown by induction using the following observation. For each step 1 ≤
m′ < m in the construction of G the following properties will hold for the graph generated so
far: The labels ♯1, ♯2, . . . , ♯m′ have been assigned to m′ distinct vertices. For all 1 ≤ j ≤ m′ if
the vertex with label ♯j is removed (along with all adjacent edges), then SPM of the remaining
graph equals the value computed at gate with topological number j in ϕ′. It is clear that the
graph produced during the initialization (Figure 5) has this property. For the remaining vertices
in the topological ordering we either have to simulate an addition gate (♯c = ♯a + ♯b) or a
multiplication gate (♯c = ♯a ·w). For each new labeled vertex added in this way we can see that
it simulates the corresponding gate correctly, without affecting the simulation done by other
labeled vertices in the graph.
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Bipartiteness of G can be shown by putting the vertex labeled s as well as vertices labeled
♯i, 1 ≤ i ≤ m, on one side of the partition, and all other vertices on the other side of the
partition. ⊓⊔

Remark 2. The theorem can be proven for weakly skew circuits as well without the result from
[14] stating that weakly skew circuits are equivalent to skew circuits. Consider the graph G\{s, t}.
One can show that this graph has a single perfect matching of weight 1. For simulation of a
multiplication gate, instead of adding a single edge of weight w, one can add an entire subcircuit
constructed in the above manner.

Theorem 9. For any weighted, planar graph G with n vertices, SPM(G) can be expressed as
the output of a skew circuit of size O(nO(1)). Inputs to the skew circuit are either constants or
weights of the edges of G.

Proof. The result will be established by computation of Pfaffians and is shown by combining
results from [8] and [10].

Let H be a weighted graph and
−→
H an oriented version of H . Then the Pfaffian is defined as:

Pf(
−→
H ) =

∑

M

sgn(M) w(M),

where M ranges over all perfect matchings of
−→
H . The Pfaffian depends on how the edges of

−→
H

are oriented, since the sign of a perfect matching depends on this orientation (details on how
the sign depends on the orientation are not needed for this proof).

It is known from Kasteleyn’s work [8] that all planar graphs have a Pfaffian orientation of
the edges (and that such an orientation can be found in polynomial time). A Pfaffian orientation
is an orientation of the edges such that each term in the above sum has positive sign sgn(M).
So for planar graphs computing SPM(G) reduces to computing Pfaffians (which can be done
in polynomial time).

A Pfaffian orientation of G does not depend on the weights of the edges, it only depends
on the planar layout of G. In our reduction to a skew circuit we can therefore assume that a

Pfaffian orientation
−→
G is given along with G, thus the problem of computing SPM(G) by a

skew circuit is reduced to computing Pf(
−→
G) by a skew circuit.

From Theorem 12 in [10] we have that Pf(
−→
G) can be expressed as SW (G′) where G′ is a

weighted, acyclic, directed graph with distinguished source and sink vertices denoted s and t

(recall SW (G′) from Theorem 2). The size of G′ is polynomial in the size of
−→
G .

The last step is to reduce G′ to a polynomial size skew circuit representing the same poly-
nomial. Consider a topological ordering of the vertices of G′. The vertex s is replaced by an
input gate with value 1. For a vertex v of indegree 1, assume u is the vertex such that there is a
directed edge from u to v in G′, and assume the weight of this edge is w. We then replace v by a
multiplication gate, where one arrow leading to this gate comes from the subcircuit representing
u, and the other arrow leading to this gate comes from a new input gate with value w. Vertices
of indegree d > 1 are replaced by a series of d − 1 addition gates, adding weights of all paths
leading here, similar to what is done for vertices of indegree 1.

The circuit produced in this way clearly represent the same polynomial, and it is a skew
circuit because for every multiplication gate at least one of the arrows leading to that gate
comes from an input gate. ⊓⊔
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