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Using Bisimulation Proof Techniques

for the Analysis of Distributed Algorithms 1,2

Damien Pous, ENS Lyon ∗,3

Université de Lyon, LIP, UCBL, INRIA, CNRS, France.

Abstract

We illustrate the use of recently developped proof techniques for weak bisimula-
tion by analysing a generic framework for the definition of distributed abstract ma-
chines based on a message-passing implementation. We first define this framework,
and then focus on the algorithm which is used to route messages asynchronously to
their destination.

A first version of this algorithm can be analysed using the standard bisimulation
up to expansion proof technique. We show that in a second, optimised version,
rather complex behaviours appear, for which more sophisticated techniques, relying
on termination arguments, are necessary to establish behavioural equivalence.

Key words: weak bisimilarity, up-to techniques, process algebras, distributed
abstract machines, forwarders.

Introduction

Recently, many calculi encompassing distribution and mobility have been stud-
ied and implemented. Examples include Join [10,11,9], Distributed Pi [16],
Nomadic Pict [35], Kells [2], Ambients [5,12,25], Klaim [24], Seals [6]. The
algorithms underlying such implementations are generally quite involved and
error-prone, so that adequate techniques and methodologies are required in
order to prove their correctness, or to reason about possible optimisations.
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In [31], a distributed abstract machine is defined, to implement the Safe Am-
bient Calculus [21]: the PAN. The main ingredients in the definition of this
machine are locations – where local processes are executed – and forwarders,
that transmit messages between locations. In [17], we defined an optimised
version of this machine where useless forwarders can be garbage collected,
and fewer messages are transmitted along the network. We proved that the
resulting abstract machine is weak barbed bisimilar to the original one. How-
ever due to the lack of adequate up-to techniques or compositionality results,
this proof is tedious, and cannot easily be used as a basis for further studies.

Motivated by these difficulties, we introduced new up-to techniques for weak
bisimulation [26]. Although these techniques improve on previously known
techniques, they are developed in a completely abstract setting and their ap-
plicability has not yet been evaluated beyond rather simple illustrative ex-
amples. In this article, we show how these techniques can be used to develop
bisimulation proofs about nontrivial distributed algorithms, and how to do so
in a modular way.

A Framework for Distributed Implementations

The first contribution of this work is the definition of a framework to define
and reason about distributed implementations of process algebras with mo-
bility. While some parts [27] of this framework form the basis of the PAN
abstract machine [31], we got rid of all hypotheses that were related to the
implementation of an Ambient-based calculus, so that it should be suitable to
execute a wider range of calculi. Notice however that the aim of this article is
not to define the universal framework for distributed computations, but rather
to show how up-to proof techniques can be used in order to analyse algorithms
underlying such infrastructures.

We want to represent the execution of a collection of local processes, distributed
over a set of locations – thought of as asynchronous, independent entities. Each
local process may:

• evolve by itself, independently from local processes running at distant sites;
• send arbitrary messages to the local processes hosted in other locations;
• receive such messages;
• spawn new local processes, inside new locations;
• migrate to another location, and redirect further messages to that location.

We abstract over the structure of local processes by representing them as
the states of an arbitrary labelled transition system (LTS), whose labels cor-
respond to the above primitive interactions. These local processes, together
with the set of messages they exchange, form the input of our framework. We
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Fig. 1. Sending messages: reference, simple and optimised models.

do not make any assumption on the behaviour of local processes, or about the
content of messages. Notably, messages may contain locations or processes, so
that π-calculus-like name mobility or higher-order messages are allowed.

We then define another family of LTSs, called models, whose labels represent
reactions to the previous primitives. Before defining concrete models, we show
how to compose any model (an LTS), with the LTS formed by local processes.
Intuitively, the composite LTS that we obtain executes the local processes con-
currently and reacts to the actions they request: sending a message, spawning
a location, etc. . . This approach allows us to separate completely the study of
local processes from the study of the models: weak bisimilarity, like other stan-
dard behavioural equivalences, is preserved by this construction (Prop. 2.4).

We then focus on several instantiations within the above mentioned family
of models. At first, we define a specification, by providing a reference model
that describes the expected behaviour of the network using a rather coarse
grained semantics. This specification makes use of forwarders in order to route
messages for local processes that migrated from some location to another. A
transition of this reference model is depicted on Fig. 1; on the left, there is a
net with three locations (k, k′ and k′′): k and k′ are forwarders, whose role is
to redirect messages to k′ and k′′ respectively, and k′′ is a real location, in the
sense that it is intended to host a local process. The emission of a message in
the reference model is atomic: a message m sent to k actually reaches the real
location k′′ by a single transition (the topmost one in the figure).

While the reference model is well-suited to reason about the whole system,
it cannot directly be implemented in a distributed way: several locations are
involved in order to decide that a single action shall occur (e.g., k, k′ and k′′

in the figure). We refine this specification into an implementation by defining
a simple model, where internal – local – actions are used to mimic atomic
actions of the reference model: messages are routed along forwarders in an
asynchronous way. This behaviour corresponds to the dotted sequence of tran-
sitions in Fig. 1: the message is delivered to k, and then routed asynchronously
until it reaches k′′.

The main drawback of this simple implementation is the persistence of for-
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warder chains, that slow down the communications between local processes. To
address this inefficiency, we introduce an optimisation, inspired from Tarjan’s
union-find algorithm [34]. This optimisation exploits a forwarder relocation
mechanism, that contracts forwarder chains. It is expressed as a third op-
timised model, that refines the simple one. This corresponds to the dashed
sequence of silent transitions in Fig. 1: in the final net, the chain of forwarders
from k to k′′ has been contracted. As hinted on this figure, proving that this
optimisation is correct will require us to show that the two nets on the right
are behaviourally equivalent (weakly bisimilar): the meaning of a net should
be independent from the structure of its forwarder trees.

Using “Up-to” Techniques to Validate an Optimisation

The proof of correctness for the optimisation is the main contribution of this
work: it allows us to illustrate the use of recent proof techniques [26] to reason
about a rather complex, but quite natural, system. We will need the formal
setting in order to describe this proof in a useful way; in this introductory
section, we just recall the rationale behind “up-to” techniques, and outline
those that will be used in the sequel.

The behavioural equivalence we shall consider is weak bisimilarity (≈) [23].
Informally, this is the largest symmetric relation R between the states of an
LTS, such that for any label α, the property depicted by the left diagram
below holds.

p

α
��

R q

α̂
��
�
�
�

�
�
�

p′ R ∃q′

p

α
��

R q

α̂
��
�
�
�

�
�
�

p′ f(R) ∃q′

Hence, in order to show that two states are weakly bisimilar, the usual method
is to start with the singleton relation that contains those two states, and
then try to enlarge this relation (called the candidate), until it satisfies the
left diagram above. Notice in particular that due to this diagram, all states
accessible from the initial ones will have to be added to the relation at some
point. The idea of “up-to” techniques is to alleviate this process by allowing us
to check the diagram on the right, where f is a map over binary relations that
extends its arguments, so that this diagram is actually easier to satisfy. The
correctness of the technique should then ensure that any symmetric relation
satisfying this diagram is actually contained in weak bisimilarity. As a side
effect, the diagram being easier to satisfy, we need to add fewer pairs to the
initial relation, so that we can often work with much smaller candidates.

An intuitive technique is “up to weak bisimilarity”, it corresponds to the case
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where f is the map R 7→≈ R ≈ , that allows one to rewrite the states p′ and
q′ using known facts about weak bisimilarity. It is however well known that
this technique is not correct [30]: weak bisimilarity being an equivalence that
abstracts over silent transitions, when used as an up-to technique, it allows us
to “cheat” by cancelling silent transitions. We obtain a valid technique either
by restricting its use to visible challenges (those where α 6= τ), or by consider-
ing expansion (%) [1], a preorder strictly contained in weak bisimilarity that
yields a correct technique for weak bisimilarity: the map R 7→% R - [30].
Those two techniques allow one to give more modular proofs: we can first
show some preliminary expansion or weak bisimilarity results, and then use
these in order to obtain a weak bisimulation result. We will actually use these
techniques in order to obtain the equivalence of the three models, after having
proved some properties of these models.

Another technique, “up to transitivity”, seems to be part of the folklore, al-
though less frequently used than the previous ones; it plays a crucial role in
our analyses of the simple and optimised models. This up-to technique cor-
responds to the reflexive transitive closure map (R 7→ R?); it allows one to
decompose a global relation into a much smaller one. For example, both in the
simple and in the optimised model, we will have to show that silent transitions
(
τ−→) are contained in weak bisimilarity. Unfortunately, in both cases, whenever

we try to complete the relation
τ−→ in order to satisfy the left diagram above,

we end up adding (at least) its reflexive transitive closure. Being a large rela-
tion, checking the diagram directly for this closure is not tractable: while two
states related by

τ−→ differ only slightly, which allows us to reason syntactically
about their differences, this is no longer the case when they are related by

τ−→?
.

In a sense “up to transitivity” allows one to localise the candidate relation: in
the previous example, it makes it possible to work with the local relation

τ−→
rather than the global relation

τ−→?
.

However, “up to transitivity” is not correct for weak bisimilarity (essentially
for the same reasons as for “up to weak bisimilarity” – in fact, “up to tran-
sitivity” encompasses “up to weak bisimilarity”). There are (at least) three
workarounds here: (1) we can restrict the use of the technique to visible chal-
lenges – this will not help in our case; (2) we can move to the expansion
preorder, that supports this technique; this however requires that the weak
bisimulation result we want to prove is actually an expansion result – this will
be the case for the simple model but not for the optimised one: we will see that
the very “controlled” nature of expansion cannot take into account some mech-
anisms introduced by the optimisation; or (3) we can obtain the correctness
of “up to transitivity” in the weak case by checking an additional termina-
tion hypothesis – we will rely on this technique for the optimised model. While
techniques (1) and (2) are well-known and straightforward to prove, technique
(3) is recent [26] and its proof is much more involved.
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Outline. In Sect. 1, we introduce our notations and the standard notions
used in the sequel. We define the abstract framework in Sect. 2; Sections 3
and 4 are respectively devoted to the definition of the simple and optimised
models, and in each case, to the corresponding correctness proof. We give an
overview of the correctness proof, discuss related work, and give directions for
future work in Sect. 5.

1 Preliminary Definitions

We assume in this section a set L of labels (or actions); this set will be instan-
tiated in different ways in the following sections. Since we will work with weak
equivalences, we require that L contains a distinguished silent (or internal)
action, denoted by τ .

Definition 1.1 (Labelled Transition System, Processes). We call L-transition
system (L-TS) any pair 〈P , ↪−→〉 where P is an arbitrary set of states, and
↪−→ ⊆ P × L× P is a set of labelled transitions. P is called the domain of the
L-TS.
An L-process is a rooted L-TS: a pair 〈P, 〈P , ↪−→〉〉 where 〈P , ↪−→〉 is a L-TS,
and the root, P , is a distinguished state of the domain, P .

We write P ↪
α−→ P ′ when 〈P, α, P ′〉 ∈ ↪−→. We shall often denote an L-TS 〈P , ↪−→〉

by the set ↪−→ of its labelled transitions, when the domain is irrelevant or clear
from ↪−→. Accordingly, an L-process 〈P, 〈P , ↪−→〉〉 will be denoted by 〈P, ↪−→〉, or
P , when the L-TS is clear from the context.

Until the end of this section we define several notions that actually depend on
L. We do not make this dependency explicit in order to alleviate notations.

We let p, q, r range over L-processes and we let R,S, E range over binary
relations between L-processes (simply called relations in the sequel). When
a relation relates L-processes sharing a unique L-TS, it will be identified
with the corresponding binary relation between the states of that L-TS. Let
R, S be two relations; we write p R q when 〈p, q〉 ∈ R; we denote re-
spectively by R+, R=, R? the transitive, reflexive, transitive and reflexive
closures of R; the relational composition of R and S, written RS, is de-
fined by RS , {〈p, r〉 | p R q and q S r for some q}; the converse of R is
R−1 , {〈p, q〉 | q R p}; R is symmetric if R = R−1; we say that R con-
tains S (alternatively, that S is contained in R), written S ⊆ R, if p S q
implies p R q. Finally we denote by I the reflexive relation.

Definition 1.2 (Transition Relations). Any action α ∈ L induces a relation,
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denoted by
α−→ :

α−→ ,
{
〈〈P, ↪−→〉, 〈P ′, ↪−→〉〉 | for any L-TS ↪−→ and states P, P ′ s.t. P ↪

α−→, P ′
}
.

Its converse is written using a reversed arrow:
α←− = (

α−→)−1, and similarly for
other forms of arrows, like the following weak transition relations :

α̂−→ ,


τ−→=

if α = τ
α−→ otherwise

α
=⇒ , τ−→? α−→ τ−→? α̂

=⇒ , τ−→? α̂−→ τ−→?

We can remark the following properties:
τ̂

=⇒ =
τ−→?

,
τ

=⇒ =
τ−→+

and
α̂
=⇒ =

α
=⇒

when α 6= τ (note in particular the difference between
τ̂

=⇒ and
τ

=⇒).

Definition 1.3 (Simulation, Bisimulation, Bisimilarity). A relation R is a
simulation if for any label α ∈ L and L-processes p, q, p′, we have:

p R q and p
α−→ p′ entail q

α̂
=⇒ q′ and p′ R q′ for some q′.

A bisimulation is a symmetric simulation. Bisimilarity, denoted by ≈, is the
union of all bisimulations.

Proposition 1.4. Bisimilarity is an equivalence relation, it is the greatest
bisimulation.

By defining bisimilarity as a relation between rooted L-TS (L-processes) rather
than between the states of a given L-TS, we gain the ability to relate processes
which are associated to different transitions systems. This will be useful in
order to compare the different versions of our framework. We also define ex-
pansion (%), the standard behavioural preorder [1] that leads to the correct
“bisimulation up to expansion” technique [30].

Definition 1.5 ((Pre)-Expansion). A pre-expansion relation is a relation R
such that for any α ∈ L, whenever p R q we have:

if p
α−→ p′ then q

α̂−→ q′ and p′ R q′ for some q′.

An expansion relation is a pre-expansion relation R such that R−1 is a simu-
lation. Expansion, denoted by %, is the union of all expansion relations.

Proposition 1.6. Expansion is a preorder contained in bisimilarity, it is the
greatest expansion relation.

We have that R is a simulation iff ∀α ∈ L, α←− R ⊆ R α̂⇐= ; accordingly, R is

a pre-expansion iff ∀α ∈ L, α←− R ⊆ R α̂←− . This kind of concise definitions
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will be used in sequel to state various up-to techniques involving such kind of
“challenges” or “games”.

We shall use the notation x̃ to denote finite multisets of various kind of ele-
ments. The empty multiset is denoted by ∅ and we denote by x; x̃ (resp. ỹ; x̃)
the addition of an element x (resp. a multiset ỹ) to a multiset x̃.

Definition 1.7 (Termination). A relation R terminates if there is no infinite
sequence (pi)i∈N such that ∀i, pi R pi+1.

2 A Framework for Distributed Computation

2.1 Interface of the Framework

We let h, k range over a given setH of locations. We assume a set of elementary
messages, and we let m,n range over finite multisets of elementary messages,
that we simply call messages ; their set is denoted byM. We let α range over
a given set L of labels (containing the distinguished element τ). We let P,Q
range over a given set P of local processes.

We define the set Lp of process labels with the following syntax:

δ ::= α (local action)

| h〈m〉 (message emission)

| (m) (message reception)

| . h (migration)

| νh[P ] (location creation)

We assume an Lp-TS with domain P : 〈P , ↪−→〉. This is the only Lp-TS we shall
consider, so that a local process P ∈ P will implicitly represent the Lp-process
〈P, ↪−→〉.

The process labels correspond to the primitives we alluded to in the intro-
duction: α corresponds to a standalone transition of a local process, h〈m〉 to
the emission of message m to location h, (m) to the reception of message m,
. h to the migration to some location h, and νh[P ] to the spawning of a new
location h, with local process P .

A distributed process is a finite mapping from H to P , that we write as follows:
h1 : P1, . . . , hn : Pn . In this situation, we say that the local process Pi is
hosted at hi. The set of distributed processes, ranged over with D, is denoted
by DP . In order to represent the execution of distributed processes, we define
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[Loc◦]
P ↪

α−→ P ′

U ◦D,h : P α7→u U ◦D,h : P ′
[Int◦]

U
τ−→u U

′

U ◦D τ7→u U
′ ◦D

[Snd◦]
U

k〈m〉−−−→u U
′ P ↪

k〈m〉−−−→ P ′

U ◦D,h : P τ7→u U
′ ◦D,h : P ′

[Rcv◦]
U

h(m)−−−→u U
′ P ↪

(m)−−→ P ′

U ◦D,h : P τ7→u U
′ ◦D,h : P ′

[New◦]
U

νk−→u U
′ P ↪

νk[Q]−−−→ P ′

U ◦D,h : P τ7→u U
′ ◦D,h : P ′, k : Q

[Mig◦]
U

h.k−−→u U
′ P ↪

.k−→ P ′

U ◦D,h : P τ7→u U
′ ◦D, ∅

Fig. 2. Transitions for the composite L-TS.

an abstract notion of net and we show how to compose such a net with a
distributed process.

Definition 2.1 (Models, Nets). A model is an Ln-TS, where Ln is the set of
net labels defined below; we call nets the states of a given model.

µ ::= τ (internal action)

| h〈m〉 (message emission)

| h(m) (message reception)

| h . k (migration)

| νh (location creation)

Net labels closely correspond to process labels: they are actually associated
pairwise in order to define the following composite LTS, that describes the
execution of a distributed process, inside a given model:

Definition 2.2 (Composition of Nets and Distributed Processes). We asso-
ciate to any model 〈U ,−→u〉 the L-TS 〈U × DP , 7→u〉 where 7→u is defined by
the inference rules given in Fig. 2 (states of the domain are denoted by U ◦D).

By rule [Loc◦], a local process may evolve on its own; accordingly the net may
achieve some internal transitions by rule [Int◦]. A local process hosted at h
can send a message to k via rule [Snd◦], and receive messages by rule [Rcv◦].
Rule [New◦] allows a local process hosted at h to spawn a process Q at new
location k. Finally, by rule [Mig◦], a local process hosted at h may migrate
to some location k; in that case, the continuation of the local process (P ′) is
lost – we shall comment on this point below.

Remark that since the communication is achieved by unification (rule [Rcvs]
requires that the network and the local process agree on the same message
m), we actually impose an “early” semantics [32] to local processes. Adapting
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this rule to the case where local processes have a “late” semantics is possible;
however this would require us to ask for a notion of substitution over local
processes. Also notice that while we exchange multisets of elementary messages
(this facilitates our notations in the sequel), the early semantics allows a local
process to decide to receive only single elementary messages.

Remark 2.3 (On the migration mechanism). The rule for migration [Mig◦]
deserves some explanations: since we are dealing with a migration primitive,
we would expect the continuation to be sent to k, for future execution. In
order to model directly something like this however, we would have to assume
a “merge” operation over processes, to be able to integrate the continuation
with the process already hosted at k (this is actually what we did in the
conference version of this article [27]).
We claim that the current setting is more general, in the sense that the previous
behaviour can be recovered by working at the level of local processes. For
example, h could send the continuation to k as a special message (reg(P ′))
just before migrating; in this case, the process hosted at k has to cooperate,
by actually executing the code it receives via such messages. This is illustrated
by the hypothetical transitions below, to be read as “assuming the transitions
on the left, the composite L-TS will perform the transitions on the right”.

P ↪
k〈reg(P ′)〉−−−−−−→ P1 ↪

.k−→ P2

Q ↪
(reg(X))−−−−−→ Q | X (∀X)

U1
k〈reg(P ′)〉−−−−−−→ U2

k(reg(P ′))−−−−−−→ U3
h.k−−→ U4

U1 ◦ h : P, k : Q
τ7→ U2 ◦ h : P1, k : Q
τ7→ U3 ◦ h : P1, k : (Q | P ′)
τ7→ U4 ◦ k : (Q | P ′)

(notice that we can then refine this scenario into a more secure one, where k
would only accept to run cryptographically certified code for example: we are
free to implement any protocol at the level of local processes). Also notice that
the simpler case of a migration to a new location can be achieved directly, by
spawning the current state (P ) into a new location, and then migrating to
that location:

P ↪
νk[P ]−−−→ P1 ↪

.k−→ P2

U1
νk−→ U2

h.k−−→ U3

U1 ◦ h : P
τ7→ U2 ◦ h : P1, k : P
τ7→ U3 ◦ k : P

Finally, remark that migration is subjective in our model: local processes decide
to migrate by themselves. Objective migration mechanisms (like the passiva-
tion available in the Kell-calculus [2]) may be simulated by using messages
to trigger migrations: this is how the open primitive of Mobile Ambients was
implemented in the initially specialised version of this framework [17].

The main advantage of this approach, where local processes are strongly sep-
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arated from the network, is that we can study these two entities separately,
as expressed by the following proposition:

Proposition 2.4. Let 〈U,−→u〉 and 〈V,−→v〉 be two nets, let P,Q be two local
processes and let D be a distributed process.

• If 〈U,−→u〉 ≈ 〈V,−→v〉 then 〈U ◦D, 7→u〉 ≈ 〈V ◦D, 7→v〉.
• If P ≈ Q then 〈U ◦D, h : P, 7→u〉 ≈ 〈U ◦D, h : Q, 7→u〉.

Proof. We first show that for any states U,U ′, local processes P, P ′, distributed
process D, and location h, we have:

• U τ−→?

u U
′ entails U ◦D τ7→?

u U
′ ◦D , and

• P ↪
τ−→?

P ′ entails U ◦D, h : P
τ7→?

u U ◦D, h : P ′ .

It follows easily that the two relations below are bisimulations:

R1 , {〈U ◦D, V ◦D〉 | ∀U, V, s.t. 〈U,−→u〉 ≈ 〈V,−→v〉} ,
R2 , {〈U ◦D, h : P, U ◦D, h : Q〉 | ∀U, P,Q, s.t. P ≈ Q}∪ I . �

We can moreover show that Prop. 2.4 also holds for stronger behavioural
preorders or equivalences like expansion (%) or strong bisimilarity [23].

2.2 Specification of the Expected Behaviour

While the abstract view we have introduced allows us to define several exe-
cution models, it does not specify their expected behaviour: only some of all
possible models, each corresponding to a possible behaviour, are of interest.
In order to fix the expected behaviour we define a “reference model”: a model
will be “valid” if its states are bisimilar to those of this reference model.

The syntax of nets is given in Fig. 3. At first we only consider reference nets :
the two other extensions of this syntax will be studied later on. We implicitly
reason modulo associativity and commutativity of the parallel composition (|)
which admits 0 as a neutral element. Therefore, a reference net is basically a
finite multiset where each element is either

• a real location h[m] containing a messagem (recall that a message is actually
a collection of elementary messages) – in the composite L-TS (Def. 2.2), a
local process will be running at such locations;
• or a forwarder h . k that will redirect any message from h to k.

Intuitively, locations are independent entities that host some “agents” which

11



reference nets simple nets optimised nets

U ::= 0

| U | U
| h[m]

| h . k

U ::= 0

| U | U
| h[m]

| h . k
| h〈m〉

U ::= 0 (empty net)

| U | U (parallel composition)

| h[m] (real location)

| h . k (forwarder)

| h〈m〉
k̃

(pending message)

| h7k (blocked forwarder)

| h〈.k〉 (relocation message)

Fig. 3. Syntax of reference, simple and optimised nets.

have to be uniquely identified. This is what we express using the following
well-formedness property:

Definition 2.5 (Defined location, well-formedness). A location h ∈ H is
defined by a reference net U if there exist m,V, k such that U = h[m] | V or
U = h . k | V . We denote by d(U) the set of locations defined by U .
A reference net is well-formed if it defines every location at most once (i.e.,
if each location appears at most once as a real location, or as the source of a
forwarder), and if for each of its forwarders, h . k, the location k is defined.

Well-formed nets could thus be defined as finite mappings, associating agents
to the elements of a finite subset of H. We prefer our explicitly concurrent
syntax, which we find both easier to manipulate and more intuitive.

Recall that locations express only the logical distribution of processes. Hence,
the well-formedness condition does not rule out the case where several loca-
tions are thought of as residing physically on the same device. Also, unlike
in [31,17], real locations (i.e., those hosting local processes in the composite
LTS) are not required to be distributed along a tree structure, and there is
no constraint on the communication topology. Moreover, since messages may
contain locations, π-calculus-like mobility of links is provided by the model.

The definition of well-formedness does not prevent the existence of forwarder
cycles (we shall explain why below); a generic well-formed net is represented
in Fig. 4: it contains two real locations (h and h′) to which are pointing two
forwarder trees (the his and h′1), and a cycle of forwarders (k1, k2), to which
points another forwarder tree (k3, k4). Using the terminology defined below,
the locations his admit h as destination, and the kjs are lost. In the sequel,
we denote by Πi∈I Ui the parallel composition of a collection of nets (Ui)i∈I .

Definition 2.6 (Destination, lost location). Let U be a well-formed net. The
destination of a location h in U is the location k if there exist l,m, V and
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h

h1

h3 h4

h2

h′

h′1 k2k3

k4

k1m n
h3 . h1 | h4 . h1 | h1 . h | h2 . h | h[m]

| h′1 . h′ | h′[n]

| k4 . k2 | k3 . k1 | k2 . k1 | k1 . k2

Fig. 4. A generic well-formed net.

[Rcv]
h[m;n] | U h(m)−−−→r h[n] | U

[Snd]
h[n] | U h〈m〉−−−→r h[m;n] | U

[Kil]
U

h〈m〉−−−→r U
h ∈ l(U) [Fwd]

h . k | U k〈m〉−−−→r U
′

h . k | U h〈m〉−−−→r U
′

[New]
U

νh−→r h[∅] | U
h 6∈ d(U) [Mig]

h . k | U k〈m〉−−−→r U
′

h[m] | U h.k−−→r U
′

Fig. 5. Transitions of reference nets.

(hi)i≤l with h = h0, k = hl such that:

U = V | Πi<l hi . hi+1 | hl[m] ;

it is undefined otherwise. A lost location is a defined location whose destination
is undefined; we denote by l(U) the set of lost locations of U .

Destination are uniquely determined in well-formed nets; intuitively, a location
is lost if it belongs to a cycle of forwarders, or points to such a cycle. We can
now define the dynamics of our specification; we describe it below:

Definition 2.7 (Reference Model). The reference model is 〈Ur,−→r〉, where
Ur is the set of well-formed reference nets, and −→r is defined by the inference
rules of Fig. 5.

The following lemma validates this definition, and allows us to consider only
well-formed nets in the sequel.

Lemma 2.8. Well-formed nets are preserved by −→r , i.e., if U
µ−→r U

′ and
U is well-formed, then U ′ is well-formed. Hence, 〈Ur,−→r〉 is a model.

We briefly describe the transitions of reference nets (Fig. 5): when a real
location contains some message m, the latter can be received by the local
process hosted at that location (rule [Rcv], recall that messages m and n are
multiset of elementary messages). When a message is sent to a real location,
it is added to the other elementary messages of that location (rule [Snd]);
by rule [Kil], any message sent on a lost location just disappears; when a
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message is sent to a location hosting a forwarder h . k, it is redirected to k by
rule [Fwd]. Rule [New] allows one to add a new real location, provided that
it is not yet defined. Finally a real location h[m] may migrate to some location
k by rule [Mig]; in that case, the real location is replaced by a forwarder h.k,
and the message m is routed to k (m contains the elementary messages that
reached h, but that the local process hosted at h has not yet consumed).

The following lemma gives a more precise intuition of simple nets’ behaviour:

Lemma 2.9. Let U be a reference net, and let m be an arbitrary message.

(1) If U = h . k | V , then either h and k are lost, or they have the same
destination.

(2) U = k[n] | V and the destination of h in U is k iff U
h〈m〉−−−→r k[m;n] | V .

(3) The location h is lost in U iff U
h〈m〉−−−→r U .

This reference model is rather high-level: it does not use internal transitions,
and the routing of messages through forwarders is achieved in one atomic step,
by successive applications of rule [Fwd]. We can moreover remark that the

transitions are deterministic: if U
µ−→r U1 and U

µ−→r U2, then U1 = U2. As
hinted in the introduction, this makes it easier to reason about the properties
of this model, but makes a direct distributed implementation hardly feasible.

Notice that messages can only be sent on defined locations, and that, as a
consequence, only migrations to defined locations are accepted. This allows
us to keep a simple rule for spawning new locations (rule [New]): we do
not need to introduce a scope restriction operator to the syntax, that would
require us to reason modulo alpha-renaming of bound locations. On the other
hand, messages may be sent to lost locations, and migrations may introduce

forwarder cycles (for example, we have h[m]
h.h−−→r h . h). Although these

cases can be considered as erroneous requests of local processes, they cannot
easily be detected or prevented in a distributed and asynchronous way (at
least at our abstract level, where local processes are seen as “black boxes”).
Therefore, by specifying a semantics for those situations, and then proving
that the simple and optimised models comply with this semantics, we leave
the choice of preventing or supporting such cycles to the designer of local
processes (in the conference version of this article [27], we did not handle
those cases, so that we had to assume that local processes did not create such
cycles along their execution).
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[Rcvs]
h[m;n] | U h(m)−−−→s h[n] | U

[Snds]
U

h〈m〉−−−→s h〈m〉 | U
h ∈ d(U)

[Fwds]
h〈m〉 | h . k | U τ−→s h . k | k〈m〉 | U

[Dsts]
h〈m〉 | h[n] | U τ−→s h[m;n] | U

[News]
U

νh−→s h[∅] | U
h 6∈ d(U)

[Migs]
h[m] | U h.k−−→s h . k | k〈m〉 | U ′

k ∈ h, d(U)

Fig. 6. Transitions of simple nets.

3 A Simple Implementation

We now define another model, called simple, which is more tractable from an
implementation point of view. We validate this model by proving that simple
nets are bisimilar to reference nets.

3.1 Simple Nets

We consider simple nets, whose syntax – which is given in Fig. 3 – extends that
of reference nets by adding pending messages. They will be used to track the
intermediate steps corresponding to the routing of pending messages trough
forwarders. We extend the notions of defined location, destination and lost
location (Defs. 2.5 and 2.6) to simple nets by ignoring pending messages.
Well-formedness is extended as follows:

Definition 3.1 (Well-formedness for Simple Nets, Lost Messages). A simple
net is well-formed if it defines each location at most once, and if for each of its
forwarder h.k or pending message k〈m〉, the location k is defined. A pending
message h〈m〉 is lost in a simple net if h is lost in that net.

We can now define the corresponding dynamics:

Definition 3.2 (Simple Model). The simple model is 〈Us,−→s〉, where Us is
the set of well-formed simple nets, and −→s is defined in Fig. 6.

Lemma 3.3. Well-formedness of simple nets is preserved by −→s ; hence,
〈Us,−→s〉 is a model.

Rules [Rcvs] and [News] are unchanged, rule [Snds] is simplified: we just
add the message to the net, as a pending message. The two silent transition
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[Migs]

h′ . k m;n

[Dsts]

τ 2〈m〉〈n〉
τ

[Fwds]

τ

[Fwds]

3

〈m〉
〈n〉

k′

k k

k′

h′

h

n

h

h′

〈n〉〈m〉

〈m〉

h〈m〉 | h . h′ | h[n] | k . k′ | k′[∅]
h′.k−−→s h〈m〉 | h . h′ | h′ . k | k〈n〉 | k . k′ | k′[∅] [Migs]

τ−→s h . h′ | h′〈m〉 | h′ . k | k〈n〉 | k . k′ | k′[∅] [Fwds]
τ−→

3

s h . h′ | h′ . k | k . k′ | k′〈m〉 | k′〈n〉 | k′[∅] [Fwds]
τ−→

2

s h . h′ | h′ . k | k . k′ | k′[m;n] [Dsts]

Fig. 7. Migration and routing of messages in simple nets.

rules are concerned with the routing of messages: rule [Fwds] defines the
behaviour of forwarders: they transmit messages; rule [Dsts] performs the
actual reception of a message at a real location. Notice that rule [Migs],
which may seem different from [Mig], is actually the same, due to the new

definition of
h〈m〉−−−→s. Finally, there is no rule corresponding to rule [Kil]: in

simple nets, lost messages persist as garbage.

A sequence of transitions is depicted in Fig. 7, where squares and triangles
respectively represent real locations and forwarders; location h′ migrates to
k and the initial message h′〈m〉 is routed to its final destination (k′), as well
as the message k〈n〉 that resulted from the migration (for the sake of clarity,
the three forwarders pointing to k′ in the picture are not mentioned in the
corresponding formal transitions).

We can remark that the rules defining the simple model have no premise, that
each of these rules affects only one location, and that the need for detecting
lost locations disappeared along with rule [Kil]. Moreover, the side-conditions
of rules [Snd] and [Mig] are easy to enforce: since defined locations cannot
disappear, it suffices to check that local processes do not “invent” locations.
Those remarks make this model well-suited for a distributed implementation:
the programs running at each location can be executed asynchronously.

3.2 Correctness of the Simple Implementation

The main differences between the reference model and the simple one are the
use of silent transitions to route pending messages, and the fact that lost
messages remain in simple nets, even if they cannot be detected.

The correctness proof goes as follows: we first prove that lost messages can be
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removed from simple nets without affecting the overall behaviour. This makes
it possible to reason about an equivalent model, called clean, where nets do not
contain lost messages. As far as the simple model is concerned, going through
this clean model is not strictly necessary: we include this step because it will
be helpful for the correctness proof of the optimised model. We then show
that silent transitions of the clean model are contained in weak bisimilarity
(this property is commonly called τ -inertness [23]). This allows us to prove
the equivalence between the reference and the clean model, by reasoning “up
to silent transitions”.

This model being simple enough, we are able to use up-to techniques based
on the expansion preorder (%). We will see in the following section that this
is no longer possible in the optimised model: non standard techniques will be
required in order to give the correctness proof for the optimisation.

3.2.1 From simple nets to clean nets.

We start by proving that lost messages can safely be removed:

Lemma 3.4. Let h be a lost location of a simple net U . For any message m,
we have:

U | h〈m〉 % U .

Proof. We check thatR , {〈U | h〈m〉, U〉 | U ∈ Us, h ∈ l(U)} is an expansion

relation. We obviously have that U
µ−→s U

′ entails U | h〈m〉 µ−→s U
′ | h〈m〉,

and we check that h is still lost in U ′. For the other direction, the only non-
trivial case is when U = V | h . k, U | h〈m〉 τ−→s U | k〈m〉. In that case, by
Lemma 2.9(1), k is lost in V , so that U | k〈m〉 R U : the right-hand-side net
does not move. �

Definition 3.5 (Clean Nets). A net U is clean if it does not contain any lost
message. We denote by bUsc the set of clean simple nets, and we let bUc be
the clean net obtained from a simple net U by removing all lost messages.

Corollary 3.6. For any simple net U , we have U % bUc .

The set of clean nets is not preserved by −→s : lost messages may be added by
rule [Snds], and new forwarder cycles may be created by rule [Mig], so that
some “valid” messages may be lost after such transitions. Therefore, in order
to obtain a model whose domain is the set of clean nets, we have to remove
lost messages after each transition:

Definition 3.7 (Clean Model). The clean model is 〈bUsc,−→bsc〉, where −→bsc
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is defined by the following rule:

U
µ−→s U

′

U
µ−→bsc bU ′c

This model is not realistic from an implementation point of view: it has to
detect lost locations after each transition; however, we will only use it to rea-
son about the simple model, by showing that both systems are behaviourally
equivalent.

Cor. 3.6 states that any simple net U expands its cleaned form, seen as a state
of the simple model. To be able to reason only about clean nets, we actually
need to show that the result remains true when we consider the cleaned net as
a state of the clean model (Prop. 3.9 below). In order to obtain this result, we
will need the following standard up to technique [32]. The idea is that we can
use expansion to rewrite the left-hand-side process, when playing the games
required by an expansion relation:

Technique 3.8 (Expansion up to Expansion). Let R be a relation such that

for any α ∈ L,
α←− R ⊆ α̂←− %R , and R α−→ ⊆ α̂

=⇒ %R .
Then %R is an expansion relation, and R ⊆ % .

Proposition 3.9. For any simple net U , we have

〈U,−→s〉 % 〈bUc,−→bsc〉 .

Proof. Since for any simple net U , 〈U,−→s〉 % 〈bUc,−→s〉 , and bUc is a clean
net, it suffices to show that 〈U,−→s〉 % 〈U,−→bsc〉 for any clean net U .

We apply Technique 3.8 to the following relation:

R ,
{〈
〈U,−→s〉, 〈U,−→bsc〉

〉
| U ∈ bUsc

}
.

• If 〈U,−→s〉
µ−→ 〈U ′,−→s〉 , then 〈U,−→bsc〉

µ−→ 〈bU ′c,−→bsc〉 and we check that
〈U ′,−→s〉 % 〈bU ′c,−→s〉R〈bU ′c,−→bsc〉 .
• If 〈U,−→bsc〉

µ−→ 〈U ′,−→bsc〉 , then 〈U,−→s〉
µ−→ 〈V,−→s〉 with bV c = U ′ and we

check that 〈V,−→s〉 % 〈U ′,−→s〉R〈U ′,−→bsc〉 . �

3.2.2 From clean nets to reference nets

Now that we have a clean model where any pending message has a destination,
we can examine the routing of pending messages, i.e., the silent transitions.
We first show that these transitions are convergent:
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Lemma 3.10. The relation
τ−→bsc is terminating and confluent.

Proof. For any pending message h〈m〉 of a clean net U , define its weight as
the natural number l+ 1, where l is given by Def. 2.6 (since U is clean, h has
a destination in U); then let the size of U be the sum of the weights of all its
pending messages. This size strictly decreases along silent transitions,

τ−→bsc.

Thanks to the well-formedness condition,
τ−→bsc has no critical pair, so that it

is confluent. �

Notice on the contrary that
τ−→s does not terminate, due to the potential pres-

ence of pending messages in forwarder cycles. We denote by U↓ the normal form
w.r.t.

τ−→bsc of any clean net U . Remark that for any simple net U , U = bUc↓
if and only if U is actually a reference net.

We now have to prove that silent transitions do not change the behaviour
of the system, i.e., that silent transitions are contained in bisimilarity. We
actually show a stronger result: they are contained in expansion: this allows
us to use the following up-to technique, which is not valid for weak bisimilarity.
(Technique 3.11 below actually defines two up-to techniques, the second will
be used in Sect. 4.)

Technique 3.11 (Expansion up to Transitivity).

Let R be a relation such that for any α ∈ L,
α←− R ⊆ α̂←− R? .

If R−1 is a simulation or R is symmetric, then R ⊆ % .

Proof. The first hypothesis allows us to show that R? is a pre-expansion rela-
tion. IfR−1 is a simulation, then (R?)−1 = (R−1)? is a simulation. IfR is sym-
metric, then we have (R?)−1 = R? which is a pre-expansion relation, and hence
a simulation. Therefore, R? is an expansion relation, and R ⊆ R? ⊆ % . �

Lemma 3.12. The relation
τ−→bsc is contained in expansion.

Proof. We apply Technique 3.11 to R =
τ−→bsc ∪R′, where

R′ = {〈h〈m〉 | h〈n〉 | U, h〈m;n〉 | U〉 | U ∈ bUsc, h 6∈ l(U)}

The two cases where we need transitivity are the following visible and silent
left-to-right challenges:

• U = h〈m〉 | h[n] | U0
τ−→bsc h[m;n] | U0 = V by rule [Dsts], and
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U
h.k−−→bsc U ′ = h〈m〉 | h . k | k〈n〉 | U0 by rule [Migs]. We have:

V
h.k−−→bsc V ′ = h . k | k〈m;n〉 | U0 [Migs]

U ′ R h . k | k〈m〉 | k〈n〉 | U0 R V ′ ; [Fwds],(R′)

• U = h〈m〉 | h〈n〉 | h . k | U0 R′ h〈m;n〉 | h . k | U0 = V and
U

τ−→bsc U ′ = h〈m〉 | h . k | k〈n〉 | U0 by rule [Fwds]. In this case we have:

V
τ−→bsc V ′ = h . k | k〈m;n〉 | U0 [Fwds]

U ′ R h . k | k〈m〉 | k〈n〉 | U0 R V ′ . [Fwds],(R′)

�

Corollary 3.13. For any clean net U we have:

〈U,−→bsc〉 % 〈U↓,−→bsc〉 .

A phenomenon that appears in the proof of the previous lemma allows us to
justify the use of the “expansion up to transitivity” technique rather than the
more standard “expansion up to expansion” technique (Technique 3.8): if we
try to do a direct expansion proof, with

τ−→bsc as a candidate relation (this
is the most natural one), we get stuck in the first case detailed in the proof
above: we would like to reason up to the couples of R′. If we could prove that
R′ is contained in expansion by a preliminary lemma, then we could conclude
using the “expansion up to expansion” technique. However, when we try to
prove this preliminary lemma, starting with R′ itself as a candidate relation,
we get stuck in the second case detailed in the proof above: we would like to
reason up to

τ−→bsc. . . The only way to escape this circular dependency is to

prove jointly that both R′ and
τ−→bsc are contained in expansion, which requires

us to use the “expansion up to transitivity” technique.

We have shown that the routing of messages (i.e., silent transitions) does not
affect the behaviour of a net, which will make it possible to reason up to
those transitions. However, we still need to show that the routing algorithm
actually does something, and that this is what is expected. This is expressed
by the following lemma: given a reference net U , if the routing of a message
by the reference model leads to a net V , then the clean model can do so, by
performing some silent transitions. Conversely, if a pending message is added
to U so that we obtain a clean net V , the normalisation of V yields exactly
the same simple net as the one we obtain with the reference model.

Lemma 3.14. Let U be a reference net.

(1) If U
h〈m〉−−−→r V , then U

h〈m〉−−−→bsc
τ̂

=⇒bsc V .

20



(2) If U
h〈m〉−−−→bsc V , then U

h〈m〉−−−→r V↓.

Proof. In both cases, we distinguish whether h is lost in U or not.

(1) If h is lost in U , then by Lemma 2.9(3) U = V , and we have U
h〈m〉−−−→bsc

bh〈m〉 | Uc = bUc = U . Otherwise, h has some destination in U , so that

U = U ′ | Πi<l hi . hi+1 | hl[n] (with h = h0)

V = U ′ | Πi<l hi . hi+1 | hl[m;n], (Lemma 2.9(2))

and we check that U
h〈m〉−−−→bsc h〈m〉 | U

τ̂
=⇒bsc V , by an induction on l.

(2) If h is lost in U , then V = bh〈m〉 | Uc = U , and U
h〈m〉−−−→r U by

Lemma 2.9(3). Otherwise,

U = U ′ | Πi<l hi . hi+1 | hl[n] (with h = h0)

U
h〈m〉−−−→bsc V = h〈m〉 | U τ̂

=⇒bsc U ′ | Πi<l hi . hi+1 | hl[m;n] = V ′.

where U ′ and thus V ′ are necessarily reference nets. By Lemma 2.9(2),

U
h〈m〉−−−→r V

′, and since V ′ is a normal form of V , V↓ = V ′. �

We now have enough technical devices to give the correctness proof of the
implementation w.r.t. the specification. Thanks to the “expansion up to ex-
pansion” technique (Technique 3.8), we can work with a very simple candidate
relation: syntactical identity between reference nets, equipped with clean and
simple transitions on one side, and reference transitions on the other side:

Lemma 3.15. For any reference net U , we have:

〈U,−→bsc〉 % 〈U,−→r〉

Proof. We apply Technique 3.8 to the following relation:

R =
{〈
〈U,−→bsc〉, 〈U,−→r〉

〉
| U ∈ Ur

}
.

We consider the different challenges along a label µ:

• µ cannot be τ , since reference nets are in normal form;
• if µ = νh or µ = h(m), we have U

µ−→bsc V iff U
µ−→r V ;

• if µ = h〈m〉, we apply Lemma 3.14:

· if U
h〈m〉−−−→bsc V , then we have U

h〈m〉−−−→r V↓ and by Cor. 3.13, we obtain
〈V,−→bsc〉 % 〈V↓,−→bsc〉 R 〈V↓,−→r〉 (V↓ is a reference net);

· if U
h〈m〉−−−→r V , then we have U

ĥ〈m〉
==⇒bsc V and 〈V,−→bsc〉 R 〈V,−→r〉 .

• The case µ = h . k relies on the previous one, and is very similar. �
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Theorem 3.16. For any simple net U , we have:

〈U,−→s〉 % 〈bUc↓,−→r〉 .

Proof. By Prop. 3.9, Cor. 3.13 and Lemma 3.15, we have:

〈U,−→s〉 % 〈bUc,−→bsc〉 % 〈bUc↓,−→bsc〉 % 〈bUc↓,−→r〉

(recall that bUc↓ is a reference net). �

4 Validating an Optimisation

The forwarder chains that are generated along the evolution of a net are the
source of inefficiencies. In Fig. 7 for example, any message sent to h will have to
go trough three locations before reaching its final destination. In this section,
we define an optimised model, that contracts such forwarder chains, and we
prove the correctness of this optimisation by showing that simple nets are
bisimilar to optimised nets.

4.1 Optimised Nets

The syntax of optimised nets is given in Fig. 3; it extends the syntax of simple
nets by

• annotating pending messages with a list of locations: h〈m〉
k̃

;
• introducing blocked forwarders : h7 ;
• adding a second kind of messages: relocation messages h〈.k〉 .

Intuitively, the list that decorates a pending message contains the set of for-
warder locations the message did pass through. Messages emitted by the un-
derlying local processes will have an empty list, which will allow us to omit
their annotation. Relocation messages are received only by blocked forwarders.
Their effect is to redirect such forwarders to a destination closer to the location
they indirectly point to.

We extend the notions of defined location and well-formedness to optimised
nets, and then define the optimised model:

Definition 4.1 (Defined Locations, Well-formedness for Optimised Nets). A
location h is defined by an optimised net U if there exist m,V, k such that
U = h[m] | V , U = h . k | V or U = h7 | V . We denote by d(U) the set of
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[Rcvo]
h[m;n] | U h(m)−−−→o h[n] | U

[Sndo]
U

h〈m〉−−−→o h〈m〉∅ | U
h ∈ d(U)

[Newo]
U

νh−→o h[∅] | U
h 6∈ d(U)

[Migo]
h[m] | U h.k−−→o h . k | k〈m〉 | U ′

k ∈ h, d(U)

[Fwdo]
h〈m〉

k̃
| h . k | U τ−→o h7 | k〈m〉

h;̃k
| U

[Dsto]
h〈m〉

k̃
| h[n] | U τ−→o h[m;n] | k̃〈.h〉 | U

[Updo]
h〈.k〉 | h7 | U τ−→o h . k | U

Fig. 8. Transitions of optimised nets.

locations defined by U .
An optimised net U is well-formed if:

(1) any location h ∈ H appears at most once as a real location (h[m]), as the
source of a forwarder (h.k) in U , or as the source of a blocked forwarder
(h7); and for any forwarder h . k, pending message k〈m〉, or relocation
message h〈.k〉, the location k is defined.

(2) for any blocked forwarder h7, h appears exactly once in the annotation
of a pending message (k〈m〉

h̃
, with h ∈ h̃), or as the destination of a

relocation message (h〈.k〉);
(3) any location registered in a pending message or appearing as the target

of a relocation message hosts a blocked forwarder.

Definition 4.2 (Optimised Model). The optimised model is 〈O,−→o〉, where
O is the set of well-formed optimised nets, and −→o is defined in Fig. 8.

Proposition 4.3. Any simple well-formed net in the sense of Def. 2.5 is well-
formed in the sense of Def. 4.1. Well-formed optimised nets are preserved by
−→o , so that 〈O,−→o〉 is a model.

This allows us to consider only well-formed nets in the sequel.

We describe the rules below; in comparison to the simple model, “visible”
rules [Rcv], [Snd], [Mig] and [New] are left substantially unchanged (ex-
cept for the empty list decorating pending messages in rule [Sndo]), the two
“silent” rules [Fwds] and [Dsts] are updated and the rule [Updo] is new.
In rule [Dsto], we use h̃〈.k〉 to denote Π

h∈h̃ h〈.k〉. In the sequel, we shall
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h1〈n〉 | h1〈m〉 | h1 . h2 | h2 . h3 | h3 . h | h[∅] | k . h2
τ−→boc h1〈n〉 | h17 | h2〈m〉h1 | h2 . h3 | h3 . h | h[∅] | k . h2 [Fwdo]

τ−→
2

boc h1〈n〉 | h17 | h27 | h37 | h〈m〉h1,h2,h3 | h[∅] | k . h2 [Fwdo]
τ−→boc h1〈n〉 | h17 | h27 | h37 | h1〈.h〉 | h2〈.h〉 | h3〈.h〉 | h[m] | k . h2 [Dsto]

τ−→
3

boc h1〈n〉 | h1 . h | h2 . h | h3 . h | h[m] | k . h2 [Updo]
τ−→boc h17 | h〈n〉h1 | h2 . h | h3 . h | h[m] | k . h2 [Fwdo]

Fig. 9. Optimised Forwarder Behaviour

furthermore use h̃ . k and h̃7 to respectively denote Π
h∈h̃ h . k and Π

h∈h̃ h7.

When a forwarder transmits a message (rule [Fwdo]), it registers its location
and enters a blocked state so that it will temporarily block further potential
messages. Upon reception at the final location, a relocation message is broad-
casted to the locations registered in the message (rule [Dsto]). The blocked
forwarders located at these locations will then update their destination ac-
cordingly (rule [Updo]). This behaviour is illustrated in Fig. 9, where grey
triangles correspond to blocked forwarders. Notice that forwarders have to
block until they receive the relocation message: otherwise, a timestamps mech-
anism would be required, so that a forwarder can cleverly choose between two
possibly distinct relocation messages.

Remark 4.4 (Further possible optimisations). We could go beyond the op-
timisation presented here: for example, pending messages waiting behind a
blocked forwarder could be packed together so that they can be sent at once,
when the blocked forwarder gets relocated:

[Pcko]
h〈m〉

h̃
| h〈n〉

k̃
| h7 | U τ−→o h〈m;n〉

h̃;̃k
| h7 | U

We could also decompose rule [Dsto], in order to make the broadcast of the
relocation message explicit and asynchronous:

[Dsto]
h〈m〉

k;̃k
| h[n] | U τ−→o h〈m〉k̃ | h[n] | k〈.h〉 | U

[Dst’o]
h〈m〉∅ | h[n] | U τ−→o h[m;n] | U

However, rather than finding the best implementation of the specification, the
aim of this article is to give a methodology for the analysis of such distributed
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systems. Therefore, we prefer sticking to our rather simple optimisation, so
that hopefully our methodology will not get lost into technical details.

4.2 Correctness of the Optimised Model

We now prove the correctness of the optimisation. Like previously, we first
show that we can remove lost messages from optimised nets, and work in a
“clean and optimised” model (Sect. 4.2.1). The most delicate part of the proof
consists in proving that silent transitions are contained in weak bisimilarity
(Sect. 4.2.2), which finally allows us to relate simple nets and optimised nets,
by reasoning modulo silent transitions (Sect. 4.2.3).

4.2.1 Handling forwarder cycles

We start by adapting the notion of destination to optimised nets, in order to
take blocked forwarders into account:

Definition 4.5 (Destination in Optimised). A location h admits k as desti-
nation in an optimised net U if there exist l,m, V and (hi)i≤l with h = h0,
k = hl and such that U = Πi<n Fi | hl[m] | V , where for all i < l, Fi is either:

• a forwarder: hi . hi+1, or
• a blocked forwarder, together with a relocation message: hi7 | hi〈.hi+1〉, or
• a blocked forwarder whose location is registered in a message blocking some

other forwarders: hi7 | k̃7 | hi+1〈n〉hi ;̃k
.

The notions of lost messages and clean nets are extended accordingly; we have
the following properties:

Lemma 4.6. (1) Destinations are uniquely determined in any well-formed
optimised net.

(2) In each of the following nets, h is lost if and only if k is lost:

(a) h . k | U , (b) h7 | h〈.k〉 | U , (c) h〈m〉
k,̃k
| U .

Due to blocked forwarders, we can no longer directly remove lost messages.
We introduce to this end the following relation:

Definition 4.7. We call cleaning relation the following relation over O:

E ,
{〈
U | h̃7 | h〈m〉

h̃
, U | h̃ . h

〉 ∣∣∣ h ∈ l(U | h̃7 | h〈m〉
h̃
)
}
.
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Notice that V is well-formed whenever U E V and U is well-formed, and that
E preserves destinations and lost locations. Although it would be sufficient to
show that E is contained in weak bisimilarity, we show that it is contained in
expansion, which makes it possible to use the “expansion up to transitivity”
technique (Technique 3.11) 4 :

Lemma 4.8. The cleaning relation is contained in expansion.

Proof. Let E ′ be the symmetric closure of the following relation:{〈
U, U0 | Πh∈h̃h . kh

〉 ∣∣∣ U = U0 | h̃7 | h〈m〉
h̃

and h, (kh)h∈h̃ ∈ l(U)
}

E is clearly contained in E ′; and E ′ preserves well-formed nets, destinations
and lost locations. We show that E ′ is a candidate to Technique 3.11. Since
E ′ is symmetric, it suffices to show that this is a “pre-expansion up to transi-
tivity”. The well-formedness condition allows us to rule out a lot of cases, the
remaining interesting cases are the following:

• U = U0 | h̃7 | h〈m〉
h̃
| h . k E ′ V = U0 | Π

h∈h̃h . kh | h . k and

U
τ−→o U ′ = U0 | (h; h̃)7 | k〈m〉

h;̃h
by rule [Fwdo]. We just check that

U ′ E ′ V : the right-hand-side process does not move.

• U = U0 | k̃7 | k〈n〉
k̃
| (k; h̃)7 | h〈m〉

k;̃h

E ′ V = U0 | k̃7 | k〈n〉
k̃
| k . k′ | Π

h∈h̃h . kh

and V
τ−→o V

′ = U0 | (k; k̃)7 | k′〈n〉
k;̃k
| Π

h∈h̃h . kh by rule [Fwdo]. In this

case, we have V E ′2 V ′:

V E U0 | (k; k̃) . k′ | Π
h∈h̃h . kh E ′ V ′ .

Hence the left-hand-side process (U) does not move, and we apply E ′ three
times in order to relate U and V ′: U E ′ V E ′2 V ′. �

The cleaning relation is confluent and terminating; we denote by bUc the nor-
mal form of an optimised net U w.r.t. E (on simple nets, this function coincides
with that defined in Sect. 3.2.1). Like previously, we use this “cleaning func-
tion” to define a model over clean optimised nets (whose set will be denoted
by bOc), which is equivalent to the initial optimised one:

Definition 4.9 (Clean and Optimised Model). The clean optimised model is

4 More precisely, we show that E is contained in bi-expansion [8], the even stronger
behavioural equivalence obtained by considering pre-expansion games on both sides:
we need to reason up-to transitivity in both directions, and expansion supports this
technique only in the left-to-right part of the game.
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Fig. 10. Unblocking a forwarder in order to route a given message.

〈bOc,−→boc〉, where −→boc is defined by the following rule:

U
µ−→o U

′

U
µ−→boc bU ′c

Proposition 4.10. For any optimised net U , we have:

〈U,−→o〉 % 〈bUc,−→boc〉 .

Proof. Identical to the proof of Prop. 3.9, using Lemma 4.8. �

4.2.2 Validating the Routing Algorithm

In order to reason modulo silent transitions, we need to show that they are
contained in weak bisimilarity. Unlike in section 3.2.2 however, we cannot rely
on expansion-based up-to techniques to prove it: optimised silent transitions
are not contained in expansion. This comes from the race conditions intro-
duced by the blocking behaviour of forwarders: for example, in Figs. 9 and 10,
the message n has to wait for the arrival of m. The very “controlled” nature of
expansion – the right-hand-side process has to be as fast as the left-hand-side
process, at each step – cannot take into account the fact that n is closer to its
destination at the end.

We will actually use the following technique, from [26], that relies on a termi-
nation argument in order to allow the “up to transitivity” technique:

Technique 4.11 (Simulation up to Transitivity, Constrained).

Let R be a relation such that ∀α ∈ L,
α←− R ⊆ R? α̂⇐= .

If R+ τ
=⇒ terminates, then R? is a simulation.

Since we work with clean nets, any pending message has a destination; we first
prove a lemma that allows us to route these messages to their destination.
While this was almost trivial in the simple model (Lemma 3.14(1)), here, as
depicted on Fig. 10, in order to route a given message m to its destination,
we first have to route any message that blocks some forwarder between the
message and its destination. As a side effect, this involves some reconfiguration
of the forwarders tree.

27



Lemma 4.12. Let U = V | h0〈m0〉h̃ be a (clean) optimised net. By Def. 4.5,
U = V ′ | h0〈m0〉h̃ | Πi<lFi | hn[n], and we have:

U
τ

=⇒boc V ′ | h̃〈.hl〉 | Πi<lhi . hl | hl[m0;m;n] | k̃ . hl

where n and k̃ are the messages and forwarder locations collected in Πi<lFi.

Proof. We proceed by induction over l: if l = 0 we simply apply rule [Dsto],
otherwise we reason by case analysis on the shape of F0:

• a simple forwarder: h0.h1: we transmit the message with rule [Fwdo], apply
the induction hypothesis (IH), and relocate the forwarder using rule [Updo]:

U
τ−→boc V ′ | h07 | h1〈m0〉h0 ,̃h

| Π0<i<lFi | hl[n] [Fwdo]
τ

=⇒boc V ′ | h07 | (h0, h̃)〈.hl〉 | Π0<i<lhi . hl | hl[m0;m;n] | k̃ . hl (IH)
τ−→boc V ′ | h̃ . hl | h0 . hl | Πi<lhi . hl | hl[m0;m;n] | k̃ . hl [Updo]

• a blocked forwarder with a relocation message: h07 | h0〈.h1〉: we relocate
the forwarder with rule [Updo] and fall back into the previous case.
• (h0; k̃1)7 | h1〈m1〉h0 ,̃k1

: we apply the induction hypothesis to the message
at h1, and transmit the initial message trough the relocated forwarder:

U = V ′ | h0〈m0〉h̃ | (h0; k̃1)7 | h1〈m1〉(h0 ;̃k1)
| Π0<i<lFi | hl[n]

τ
=⇒boc V ′ | h0〈m0〉h̃ | (h0; k̃1)7 | (h0; k̃1)〈.hl〉 | Π0<i<lhi . hl

| hl[m1;m;n] | k̃ . hl (IH)
τ

=⇒boc V ′ | h0〈m0〉h̃ | (h0; k̃1) . hl | Π0<i<lhi . hl | hl[m1;m;n] | k̃ . hl
[Updo]

τ−→3

boc V
′ | h̃〈.hl〉 | Πi<lhi . hl | hl[m0;m1;m;n] | (h0; k̃1; k̃) . hl

[Fwdo,Dsto,Updo]

�

Despite these modifications of forwarder trees, the routing of messages is con-
vergent. Notice that this is not true in the presence of pending messages whose
location is in a forwarder cycle: in that case, the way the cycle gets blocked
may depend on the order of the routing steps. We will prove termination below
(Lemma 4.17); we first show local confluence:

Lemma 4.13.
τ−→boc is locally confluent.
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Fig. 11. Commutation of visible and silent transitions, modulo the swapping relation.

Proof. By well-formedness, the only critical pair is the following:

U = V | h〈m〉
h̃
| h〈n〉

k̃
| h . k

U
τ−→boc V | h〈m〉h̃ | h7 | k〈n〉

h,̃k
= U1 [Fwdo]

U
τ−→boc V | h〈n〉k̃ | h7 | k〈m〉

h,̃h
= U2 [Fwdo]

By using Lemma 4.12 on U1, we can route the message n to some location k′:

U1
τ̂

=⇒boc V ′ | h〈m〉h̃ | h7 | (h, k̃)〈.k′〉 | k′[n;m′] (Lemma 4.12)
τ−→boc V ′ | h〈m〉h̃ | h . k

′ | k̃〈.k′〉 | k′[n;m′] [Updo]
τ−→3

boc V
′ | (k̃, h̃)〈.k′〉 | h . k′ | k′[m;n;m′] = U ′ [Fwdo,Dsto,Updo]

The same reasoning about U2 leads to U2
τ

=⇒boc U ′. �

Due to forwarders relocations,
τ−→boc does not commute with visible actions.

A counter-example is depicted on Fig. 4.2.2, where the relation S which is
required to close the diagram is defined below. This relation will allow us to
reorganise step by step the forwarder structure of a net: while in the case
of Fig. 4.2.2, a single application of this relation was sufficient to close the
diagram, several applications of this relation will be required in the general
case (Lemmas 4.15 and 4.16 below).

Definition 4.14. We denote by S the swapping relation, defined as the sym-
metric closure of the following relation over bOc:

{〈h . h′ | h′ . k | U, h . k | h′ . k | U〉} .

Notice that S preserves destinations and lost locations, and that S? relates
two nets if and only if one of them is obtained from the other by an arbitrary
rearrangement of its forwarder trees. Our goal is to prove that (S ∪ τ−→boc) is
a candidate relation for Technique 4.11. This will allow us to prove that both
S and

τ−→boc are contained in bisimilarity. The two following lemmas establish

progressively that (S ∪ τ−→boc) is a “simulation up to transitivity”.
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Lemma 4.15. If U
τ−→boc V and U

µ−→boc U ′, then U ′
τ̂

=⇒boc S?
τ̂⇐=boc

µ̂←−boc V .

Proof. The case µ = τ is given by the local confluence of
τ−→boc (Lemma 4.13);

otherwise, it holds that U ′
τ−→boc

µ←−boc V , except in the following case:

U = W | h〈m〉
h̃
| h[n]

τ−→boc W | h[m;n] | h̃〈.h〉 = V [Dsto]

U
h.k−−→boc W | h〈m〉h̃ | h . k | k〈n〉 = U ′ [Migo]

where we have

V
h.k−−→boc W | h . k | k〈m;n〉 | h̃〈.h〉 = V ′ . [Migo]

We reason by case analysis on the agent located at k:

• a localised process k[n′]: by routing to k the messages exhibited in U ′ and
V ′, we obtain:

U ′
τ

=⇒boc W ′ | (h, h̃) . k | k[m;n;n′]

V ′
τ

=⇒boc W ′ | h̃ . h | h . k | k[m;n;n′]

(the only message to route in V ′ is almost at its final destination, and the
relocation message has already been sent to the blocked forwarders located
at h̃, so that the latter gets relocated under h instead of k).

Finally, we relocate these forwarders with l applications of the swapping

relation, l being the length of h̃: U ′
τ̂

=⇒boc S l
τ̂⇐=boc V ′.

• A forwarder k . k′: like in the previous case, we first route the available
messages to their destination, say k′′:

U ′
τ

=⇒boc W ′ | (h, k, h̃) . k′′ | k′′[m;n;n′] ,

V ′
τ

=⇒boc W ′ | h̃ . h | h . k | k . k′′ | k′′[m;n;n′] .

Here we need an additional application of the swapping relation to relocate
h to k′′, before being able to relocate the forwarders at h̃:

U ′
τ̂

=⇒boc S l+1 τ̂⇐=boc V ′ .

• A blocked forwarder k7. We reason like in the previous case by first routing
the message that blocks this forwarder to its destination. �

Lemma 4.16. If U S V and U
µ−→boc U ′ then U ′

τ
=⇒boc S?

µ̂⇐=boc V .

Proof. It is immediate if µ 6= τ : we have U ′ S µ←−boc V . When µ = τ , the inter-

esting cases are those where the silent transition U
τ−→boc U ′ is the transmission

of a message trough one of the two forwarders being swapped:
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• U = W | h〈m〉
h̃
| h . h′ | h′ . k τ−→boc W | h7 | h′〈m〉

h,̃h
| h′ . k = U ′.

By routing the messages, we obtain:

U ′
τ

=⇒boc W ′ | h . k′ | h′ . k′ | k′[m;n] = U ′′ ,

V
τ

=⇒boc W ′ | h . k′ | h′ . k | k′[m;n] = V ′ .

If k = k′, we are done: U ′′ = V ′. Otherwise, there is a forwarder k.k′ in W ′,
and we need one application of the swapping relation in order to relocate
the forwarder located at h′ in V ′.
• U = h . h′ | h′〈m〉

h̃
| h′ . k τ−→boc h . h′ | h′7 | k〈m〉h′ ,̃h = U ′

By routing the messages, we obtain:

U ′
τ

=⇒boc W ′ | h . h′ | h′ . k′ | k′[m;n] = U ′′ ,

V
τ

=⇒boc W ′ | h . k | h′ . k′ | k′[m;n] = V ′ .

If k = k′, we are done: U ′′ = V ′. Otherwise, we have W ′ = W ′′ | k . k′, and
we need two applications of the swapping relation in order to relocate the
forwarder located at h in both nets:

U ′′ = W ′′ | h . h′ | k . k′ | h′ . k′ | k′[m;n]

S W ′′ | h . k′ | k . k′ | h′ . k′ | k′[m;n]

S W ′′ | h . k | k . k′ | h′ . k′ | k′[m;n] = V ′

This analysis also applies for the symmetric cases, where the silent transitions
are played by the net with “flat” forwarders. �

We now have to prove the termination property for Technique 4.11. Since
(S ∪ τ−→boc)+ τ

=⇒boc ⊆ (S? τ−→boc)+, the following lemma will suffice:

Lemma 4.17. S? τ−→boc terminates.

Proof. We call size of a net U the triple s(U) = 〈n, r, l〉, where n is the number
of pending messages, r the number of relocation messages, and l the number
of forwarders that are not blocked. These triples are ordered lexicographically.
We check that U S V implies s(U) = s(V ), and that this size strictly decreases
along silent transitions. �

Proposition 4.18. S and
τ−→boc are contained in weak bisimilarity.

Proof. By applying Technique 4.11 to (S ∪ τ−→boc), we obtain that (S ∪ τ−→boc)?

is a simulation. Moreover,
τ̂←−boc is also a simulation (as is always the case for

reversed silent transitions). By combining these two results we obtain that the

symmetric relation (S ∪ τ←→boc)? = ((S ∪ τ−→boc)? ∪
τ̂←−boc)? is a simulation, and

hence a bisimulation. We finally have (S ∪ τ−→boc) ⊆ (S ∪ τ←→boc)? ⊆ ≈ . �
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Notice that Technique 4.11 plays a crucial role in the proof of the above
proposition: it allows us to focus on the “local” relations S and

τ−→boc, which
relate nets that differ only slightly, so that we can reason about their small
syntactical differences. In contrast, if we had to prove the previous proposition
directly, we would have to show that (S∪ τ−→boc)? is a simulation; which is really
hard as this relation relates completely different nets. Moreover, the technique
avoids us to extend explicitly the swapping relation to situations where the
involved forwarders may be blocked: these cases are captured implicitly by
using silent transitions.

Also remark that the situation is reminiscent of that which appeared in the
proof of Lemma 3.12 in the simple model: the proof has to handle jointly the
silent transitions and the swapping relation; we need to reason up to S for
silent transitions, and up to silent transitions for S.

4.2.3 Relating simple nets to optimised nets

Lemmas 4.13 and 4.17 ensure that
τ−→boc defines a unique normal form for any

clean optimised net U (termination of S? τ−→boc entails termination of
τ−→boc);

we denote by U↓o this normal form. Notice that U↓o is always a reference net:
it does not contain any blocked forwarder, relocation message, nor pending,
annotated messages.

The normalisation of a clean simple net by
τ−→bsc and

τ−→boc does not necessarily
lead to the same net: U↓ 6= U↓o. However, these nets differ only by some
rearrangement of their forwarder trees, they are related by S?:

Lemma 4.19. For any clean simple net U , we have: U↓ S? U↓o .

Proof. We proceed by well-founded induction on U , using the termination of
the relation

τ−→bsc:

• If U is a reference net, we have U↓ = U = U↓o.
• If U

τ−→bsc U ′, since U is clean and simple, we have

U = V | h0〈m〉 | Πi<l hi . hi+1 | hl[n]

U
τ−→bsc U ′

τ
=⇒bsc V | Πi<l hi . hi+1 | hl[m;n] = U1 [Fwds,Dsts]

U
τ

=⇒boc V | Πi<l hi . hl | hl[m;n] = U2 (Lemma 4.12)

We check that U1 S l U2, and we have U1
τ̂

=⇒boc U1↓o so that from Prop. 4.18,

U2
τ̂

=⇒boc U ′2 with U1↓o(S ∪
τ−→boc)?U ′2.

Furthermore, since S preserves normal forms, U1↓o S? U ′2, and U ′2 = U2↓o.
Finally, by induction, U1↓ S? U1↓o and U↓ = U1↓ S? U1↓o S? U2↓o = U↓o. �
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It follows that in the optimised model, any simple net is bisimilar to its normal
form w.r.t.

τ−→bsc (this correspond to Cor. 3.13 in the simple model):

Corollary 4.20. For any clean simple net U , we have:

〈U,−→boc〉 ≈ 〈U↓o,−→boc〉 ≈ 〈U↓,−→boc〉 .

Proof. By Lemma 4.19, U
τ̂

=⇒boc U↓o S? U↓; we conclude with Prop. 4.18. �

Since Corollary 4.20 does not give an expansion result, we cannot use the
standard bisimulation up to expansion technique to give the final proof of
correctness. Instead, we use the following restricted form of the “bisimulation
up to bisimilarity” technique (in its unrestricted form, this technique is not
correct [30]):

Technique 4.21 (Bisimulation up to Bisimilarity on Visible Actions).
Let R be a relation such that:

• τ←− R ⊆ R τ̂⇐= and R τ−→ ⊆ τ̂
=⇒ R ; and

• a←− R ⊆ ≈R≈ a⇐= and R a−→ ⊆ a
=⇒ ≈R≈ for any visible action a ∈ L \ {τ}.

Then ≈R≈ is a bisimulation, and R ⊆ ≈ .

Using this technique, we can consider only reference nets, that do not contain
any pending messages, and normalise them whenever they do a visible action
that brings some pending messages. Since reference nets do not give rise to
silent transitions, even when considered in the simple or optimised models, the
restriction of the previous technique to visible challenges is not problematic.

Lemma 4.22. For any reference net U , we have:

〈U,−→boc〉 ≈ 〈U,−→bsc〉 .

Proof. We apply Technique 4.21 to the following relation:

R ,
{〈
〈U,−→boc〉, 〈U,−→bsc〉

〉
| U ∈ Ur

}
.

For any reference net U , since U does not contain any pending message, we
have U

µ−→boc V iff U
µ−→bsc V . However, while V is a clean simple net, it is

not necessarily a reference net, so that we do not have 〈V,−→boc〉 R 〈V,−→bsc〉.
Nevertheless, V↓ is a reference net, and by Corollaries 4.20 and 3.13, we have:

〈V,−→boc〉 ≈ 〈V↓,−→boc〉 R 〈V↓,−→bsc〉 - 〈V,−→bsc〉 .
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We use bisimilarity to rewrite the left-hand-side process; this is allowed by
Technique 4.21: we are necessarily in a visible challenge. �

By gathering the previous results, we can finally prove the correctness of the
implementation w.r.t. the specification:

Theorem 4.23. For any optimised net U , we have:

〈U,−→o〉 ≈ 〈bUc↓o,−→r〉 .

Proof. bUc↓o is a reference net, therefore, we have:

〈U,−→o〉 % 〈bUc,−→boc〉 (Proposition 4.10)

≈ 〈bUc↓o,−→boc〉 (Corollary 4.20)

≈ 〈bUc↓o,−→bsc〉 (Lemma 4.22)

% 〈bUc↓o,−→r〉 . (Theorem 3.16)

�

5 Concluding Remarks

We conclude by giving an overview of the previous proof, discussing related
work, and giving directions for future work.

5.1 Structure of the proof

The main steps of the correctness proof are summed up below; we now compare
the up-to techniques that were used for each step mentioned in this picture.

simple optimised

% %

reference - clean, simple ≈ clean, optimised

While a direct expansion proof has been sufficient to remove lost messages from
simple nets, we had to use an “expansion up to transitivity” technique in order
to do so in the optimised model. In both cases, we used the “expansion up to
expansion” technique in order to deduce from this property of the simple and
optimised models that we could work in the clean models, where lost messages
are systematically removed after each transition.
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Then we had to show that silent transitions are contained in weak bisimilarity
in the two clean models. While we could use the “expansion up to transitiv-
ity” in the simple case (silent transitions of this model are actually contained
in expansion), we had to use a constrained form of “weak bisimulation up to
transitivity” in the optimised case (Technique 4.11, from [26], that requires
a termination hypothesis). Since optimised silent transitions involve some re-
arrangement of forwarder trees, we had to introduce the “swapping” relation
(S), and show that the latter is contained in weak bisimilarity. Thanks to the
up to transitivity technique, we were able to consider this local relation, rather
than its reflexive transitive closure (S?), which is more complex.

Finally, we gave an “expansion up to expansion” proof in order to relate the
simple clean model to the reference model, and we used the “bisimulation up
to weak bisimilarity” technique, restricted to visible challenges, in order to
relate optimised and clean nets to simple and clean ones.

In both cases, the various up-to techniques we used made it possible to reason
about local relations only.

5.2 Related work

We split this section into three parts: related work on distributed abstract
machines, other uses of forwarders, and other uses of up-to techniques.

5.2.1 Other distributed abstract machines or frameworks

As hinted in the introduction, several distributed implementations have been
defined recently, for various kinds of calculi featuring mobility. Among these
works, the closest to our framework is certainly the study of location inde-
pendence for Nomadic Pict, by Unyapoth and Sewell [35]: in a language with
mobility, we would like to be able to communicate with an agent without
having to track its movements. This is exactly what we provide here: if we
know that an agent is hosted at location h at some point, messages sent to
h will always reach that agent, independently from its migrations. The differ-
ences with [35] are the following: (1) they consider physical locations, while
we work at the slightly more abstract level of logical locations; as a side effect,
their unlocated labels – that closely correspond to our process labels – do not
include a label for location creation: this does not make sense for physical
sites; (2) they achieve location independence by a centralised forwarding algo-
rithm: a dedicated server is used to track down the movements of agents and
to forward location independent messages accordingly. While we presented
only asynchronous implementations here, we could define such a centralised,
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synchronous model in our setting, and prove its correctness. Conversely, their
centralised infrastructure could be replaced by one of our asynchronous mod-
els (following their idea that the choice of the adequate infrastructure should
be application-specific). Notice that Distributed Join [11] is also a calculus
that provides location independent communications.

The framework presented here comes from a distributed abstract machine for
Safe Ambients [31]. There are at least three other implementations of ambient
calculi: the Ambit machine of Cardelli [4], which is not distributed; the AtJ
machine of Fournet, Lévy and Schmitt [12], which is distributed and asyn-
chronous, and uses JoCaml[9] as a target language – we discuss this machine
below; and a machine from Phillips, Yoshida and Eisenbach [25], that im-
plements a variant of Boxed Ambients [3] (called Channel Ambient) where
the open primitive is replaced by additional communication capabilities. The
latter machine is distributed but synchronous: it uses locks to implement syn-
chronisation patterns. We refer to [31,17] for a more detailed comparison of
those distributed abstract machines for ambient calculi; notice that ambient
calculi do not provide directly location independent communications (commu-
nications are local); with Channel Ambients for example, such communication
patterns have to be recovered by defining a protocol in the language itself (cf.
the “ambient tracker” application [25]).

5.2.2 Using forwarders

Forwarders have been widely used in the literature: they play an important
role in low-level protocols like TCP/IP, or in the implementation of distributed
programming languages (e.g., “stub-scion pairs” [33] used for implementing
distributed references). Le Fessant used such a mechanism [20] in its imple-
mentation of Distributed Join [11] (JoCaml [9]); although strong similarities
with our work exist (contraction of forwarder chains for example), the mecha-
nisms involved are technically different: in order to achieve garbage collection,
Le Fessant’s forwarders are not “multiplexed”: only one forwarder can point
to another one, so that there are only chains of forwarders, not trees.

For their implementation of Mobile Ambients (AtJ [12]), Fournet, Lévy and
Schmitt rely on the migration primitives provided by the JoCaml language.
However, they still need forwarders in order to implement the open primitive.
This is also for this particular primitive that forwarders are used in the ab-
stract machine for Safe Ambients, by Sangiorgi and Valente (the PAN [31],
that initially motivated the analysis of the framework presented here). This
primitive being absent from the Channel Ambients calculus, the machine by
Phillips et al. [25] does not require such a mechanism. While the PAN can be
implemented in our framework (obviously, by design), it is unclear whether the
optimisation introduced here would be useful in the case of the AtJ machine,
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where the role of forwarders is not essential.

Gardner, Laneve and Wischik also used forwarders, first in order to implement
the calculus of “explicit fusions” [13], and then to implement the asynchronous
π-calculus [14]. In the fusion machine, forwarders are created in order to im-
plement the substitutions that appear along with reactions (the “explicit fu-
sions”); the union-part of Tarjan’s union-find algorithm [34] is used in order
to optimise these distributed substitutions, the find -part of that algorithm
(contraction of chains) is not implemented however. It seems straightforward
to implement this machine using our framework, which would give a further
optimisation. Although the second work by Gardner et al. [14] actually comes
from the work on the fusion machine, the forwarders they use there have a
different behaviour: first of all, they are linear, in the sense that they are in-
tended to transmit only one message; therefore, there is no point in trying
to contract forwarder chains. Secondly, rather than small processes executed
at some source location in order to redirect a potential message to a target
location, they should be thought of as a message, sent to the source location in
order to inform that location that there is a “listener” at the target location.

5.2.3 Using up-to techniques

Up-to techniques based on the expansion preorder [30] are certainly the most
popular ones: Sangiorgi combined them with the “up to context” technique [29],
in order to reason about the π-calculus [32] (notably for the encoding of the
λ-calculus). Notice that while we used techniques based on expansion, rea-
sonning “up to contexts” was not required in the present work. Merro and
Nardelli [22] extended the “weak bisimulation up to expansion” technique to
Mobile Ambients [5]: they used it in order to validate some laws of this calcu-
lus. Unyapoth and Sewell also used the “expansion up to expansion” technique
in order to reason about their infrastructure for Nomadic Pict [35].

Jeffrey and Rathke defined the “up to β” technique [19] (β are deterministic
transitions), that they use quite intensively in order to prove the completeness
of a bisimulation proof method for Concurrent ML [28]. This technique, which
is actually a very special case of “up to expansion” (β transitions form an ex-
pansion relation), has also been used by Hennessy et al. [7,18] in the setting of
Distributed Pi [16]. Fournet also defines such an “up to deterministic reduc-
tions” technique [8], that he uses to reason about the Join calculus [10], and to
prove the correctness of the AtJ machine for Mobile Ambient [12]. Unlike “up
to β” these techniques go slightly beyond expansion; they rely on the ideas of
decreasing diagrams for confluence, by van Oostrom [36].

Although these “up to deterministic transitions” techniques correspond to
our way of reasoning “up to silent transitions” when we prove the correctness
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of both implementations, the situation we describe in this article is more
demanding, as far as up to techniques are concerned: in the simple model, we
need an “up to transitivity” technique in order to prove that silent transitions
are contained in expansion; moreover, in the optimised model, where these
transitions are contained in weak bisimilarity only, the technique based on
termination guarantees is required.

5.3 Directions for future work

In order to reason about clean models, our strategy was to refine the initial
model by using a function to “normalise” the reducts after each transition.
This method seems to be quite generic, and it would be nice to obtain general
results about this kind of refinements: what are the requirements in order for
an LTS refined in such a way to remain equivalent to the initial one? In the
present work, we used expansion results between nets and their cleaned forms
(both in the simple and optimised models); as expansion may not always hold
however, it would be interesting to understand how the use of the “up to
expansion” technique could be replaced by more elaborate techniques, when
reasoning about such refined LTSs.

As hinted in section 3.2, an LTS whose silent transitions are contained in weak
bisimilarity is commonly called τ -inert [23]. This property, which we proved
to be satisfied by simple and optimised models, is generally quite useful: it
states that the internal behaviour of a system does not disturb its external
behaviour. Groote and Sellink [15] have given some “up to transitivity” tech-
niques to prove the τ -inertness of a system whose silent transitions happen to
be terminating. Their results are weaker than ours (Technique 4.11 [26]), and
they cannot be used in our setting: basically they do not allow one to reason
simultaneously about silent transitions and rearrangement of forwarder trees.
We plan to extend the work of Groote and Sellink, by giving a general account
of how the results from [26] can be used to obtain more powerful techniques
for proving τ -inertness, under some termination hypotheses.
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acyclic garbage collection. In Proc. PODC ’92. ACM Press, 1992.

[34] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of ACM, 22(2), 1975.

[35] A. Unyapoth, P. Sewell. Nomadic pict: Correct Communication Infrastructure
for Mobile Computation. In Proc. 28th POPL. ACM Press, 2001.

[36] V. van Oostrom. Confluence by Decreasing Diagrams. Theoretical Computer
Science, 126(2), 1994.

40


