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Abstract

We illustrate the use of recent, non-trivial proof techniques for weak bisimulation
by analysing a generic framework for the definition of distributed abstract machines
based on a message-passing implementation. The definition of the framework comes
from previous works on a specific abstract machine; however, its new presentation,
as a labelled transition system, makes it suitable for a wider range of calculi.

A first version of the framework can be analysed using the standard bisimulation
up to expansion proof technique. We show that in a second, optimised version,
rather complex behaviours appear, for which more sophisticated techniques, relying
on termination arguments, are necessary to establish behavioural equivalence.

Key words: weak bisimilarity, up-to techniques, abstract machines.

Introduction

Recently, many calculi encompassing distribution and mobility have been
studied as a basis for programming languages. Examples include Join [5],
Distributed Pi [6], Nomadic Pict [16], Kells [2], Ambients [3], Klaim [10],
Seals [4]. The expressive power supplied by the primitives underlying such
models raises the question of implementability in a distributed framework.
In [14], a distributed abstract machine is defined, to implement the Safe Am-
bient Calculus [8]: the PAN. The main ingredients in the definition of this
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machine are locations – where local processes are executed – and forwarders,
that transmit messages between locations. In [7], we defined an optimised ver-
sion of this machine where useless forwarders can be garbage collected, and
less messages are transmitted along the network. We proved that the resulting
abstract machine is weak barbed bisimilar to the original one; however due to
the lack of adequate up-to techniques or compositionality results, this proof
is quite tedious, and cannot easily be used as a basis for further studies.

Motivated by these difficulties, we introduced new up-to techniques for weak
bisimulation [11]. These techniques improve on previously known techniques;
however, they are developed in a completely abstract setting and their applica-
bility has not yet been evaluated beyond rather simple illustrative examples. In
this paper, we show how these techniques can be used to develop bisimulation
proofs about nontrivial systems, and how to do so in a modular way.

The first contribution of this work is the definition of a framework to define and
reason about distributed implementations of process algebras with mobility.

We want to represent the execution of a collection of local processes, distributed
over a set of locations – thought of as asynchronous, independent entities. Each
local process may:

• evolve by itself, independently from local processes running at distant sites;
• send arbitrary messages to the local processes hosted in other locations;
• receive such messages;
• spawn new local processes, inside new locations;
• migrate to another location, and redirect further messages to that location.

We abstract over the structure of local processes by representing them by the
states of an arbitrary labelled transition system (LTS), whose labels corre-
spond to the above primitives. These local processes, together with the set of
messages they exchange, form the input of our framework. We do not make
any assumption on the behaviour of local processes, or about the content
of messages. Notably, messages may contain locations or processes, so that
π-calculus-like name mobility or higher-order messages are allowed.

We then define another family of LTSs, called abstract nets, whose labels
represent reactions to the primitives: in a sense these labels form the interface
of libraries to which local processes can be linked, or equivalently, the interface
of environments in which local processes may be executed. Before defining the
“body” of such libraries, we show how to “link” them to local processes, by
showing how to compose any abstract net (an LTS), with the LTS formed by
local processes. Intuitively, the composite LTS that we obtain executes the
local processes concurrently and react to the actions they request: sending
a message, spawning a location, etc. . . This approach allows us to separate
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completely the study of local processes from the study of the library: weak
bisimilarity, like other standard behavioural equivalences, is preserved by this
composition (Prop. 2.3).

We then study several concrete instantiations of abstract nets, that actually
describe the behaviour of the network.

At first, we define a specification, by providing a reference LTS that describes
the expected behaviour the system using a rather coarse grain semantics. This
specification makes use of forwarders to record the set of locations whose local
processes decided to migrate to another location. The transitions of the LTS
are given by means of high-level inference rules that route messages through
forwarders in an atomic way.

While the reference is well-suited to reason about the whole system (the com-
posite LTS, containing local processes), it cannot directly be implemented in a
distributed way: several locations are involved in order to decide that a single
action shall occur. We refine this specification into a simple implementation
by defining a simple LTS, where internal – local – actions are used to mimic
atomic actions of the reference: messages are routed along forwarders in an
asynchronous way.

The main drawback of this simple implementation is the persistence of for-
warder chains, that slow down the communications between local processes.
To address this inefficiency, we introduce an optimisation, inspired from [7].
This optimisation exploits a forwarder relocation mechanism, that contracts
forwarder chains. It is expressed as a third optimised LTS, that refines the
simple one.

While the initial definition of this framework [12] forms the basis of the PAN
abstract machine [14], we got rid of all hypotheses that were related to the
implementation of an Ambient-based calculus. Therefore, it should be suitable
to analyse a rather wide range of calculi (this is discussed in Remark 2.7).

Our second main contribution is an illustration of non-trivial use of recent
proof techniques to reason about a rather complex system. We achieve this by
proving the correctness of the simple implementation, and of its optimisation,
that is, that both the simple and the optimised LTS are weakly bisimilar to
the reference LTS. The main steps of the proof are summed up in Fig. 1; we
explain them below.

A first difficulty comes from the fact that, unlike in [12], we handle the cases
where forwarder cycles are created. This occurs for example, when a local pro-
cess migrates to a location that actually points to its current location. These
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simple optimised

% %

reference - clean, simple ≈ clean, optimised

Fig. 1. Main steps in the proof of correctness.

cases can be considered as erroneous behaviours of local processes; however
they cannot easily be detected or prevented (at least at our abstract level,
where local processes are seen as “black boxes”). Therefore, we prove that
our implementations resists to these cases: simple and optimised LTSs remain
weakly bisimilar to the reference LTS, even in presence of forwarder cycles. In
doing so, we leave the choice of preventing or supporting such cycles to the
designer of local process.

Basically, messages sent along forwarder cycles are lost : they will never reach
a local process. Therefore, we can remove such messages without changing the
behaviour of the system. We can express this property using the expansion
preorder (%) [6]: a state of the system expands the state obtained by removing
all lost messages. This fact allows us to prove that by “patching” the simple
LTS so that it systematically removes lost messages, we obtain a behaviourally
equivalent LTS, called clean, where lost messages do not exist. Of course, the
clean LTS is not realistic from an implementation point of view: detecting
that a message is lost may require an analysis of the whole network. This
step makes it possible to reason on a simpler system, which is free of the
irregularities that appear with lost messages.

This important expansion result can be established for both the simple and
the optimised LTS, with little more work in the latter case.

Once the problem has been reduced to the case of clean LTSs, we have to
show that the routing of messages, which is achieved by silent transitions, is
done correctly in both systems. This involves:

• proving that any message eventually reaches its actual destination, and
• proving that the routing of messages does not affect the behaviour of the

system.

The first point is quite easy: for any state, we show that there exists a sequence
of internal transitions that brings a given message to its destination. This is
almost straightforward in the simple LTS, and requires only little care in the
optimised one.

The second point is more demanding: in some sense, we have to show that any
internal transition “commutes” with any potential evolution of the system.
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In the simple LTS, internal transitions are actually contained in expansion,
which makes it possible to use standard up-to techniques. On the contrary,
like in [7,12], the relocation mechanism introduced in the optimisation breaks
this proof strategy, as the expansion result does no longer hold. We show in
details how one of the techniques we developed in [11] makes it possible to
give a modular proof of correctness, where the bisimulation candidate that we
manipulate remains tractable and expresses only local properties of processes.

Being able to work with small bisimulation candidates is really helpful: they
are much easier to check, and when a small part of the system is refined,
there is hope that only some of the proofs will need to be updated. Even more
important is the fact that the relations focus on local properties, since this
allows one to write explicitly the slight differences between related processes
and to reason syntactically about these.

Outline of the paper. In Sect. 1, we introduce our notations and the no-
tions used in the sequel. We define the abstract framework and its simple
implementation in Sect. 2. Section 3 is devoted to the definition of the opti-
misation, and to the corresponding correctness proof.

1 Labelled Transition Systems, Bisimilarity

We assume in this section a set L of labels (or actions); this set will be instan-
tiated in different ways in the following sections. Since we will work with weak
equivalences, we require that L contains a distinguished silent (or internal)
action, denoted by τ .

Definition 1.1 (Labelled Transition System, Processes). We call L-transition
system (L-TS) any pair 〈P , ↪−→〉 where P is an arbitrary set of states, and
↪−→ ⊆ P × L× P is a set of labelled transitions. P is called the domain of the
L-TS.
An L-process is a rooted L-TS: a pair 〈P, 〈P , ↪−→〉〉 where 〈P , ↪−→〉 is a L-TS,
and the root P is a distinguished state of the domain, P .

We write P ↪
α−→ P ′ when 〈P, α, P ′〉 ∈ ↪−→. We shall often denote an L-TS 〈P , ↪−→〉

by the set ↪−→ of its labelled transitions, when the domain is irrelevant or clear
from ↪−→. Accordingly, an L-process 〈P, 〈P , ↪−→〉〉 will be denoted by 〈P, ↪−→〉, or
P , when the L-TS is clear from the context.

Until the end of this section we define several notions that actually depend on
L. We do not make this dependency explicit in order to alleviate notations.
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We let p, q, r range over L-processes and we let R,S, E range over binary
relations between L-processes (simply called relations in the sequel). When
a relation relates L-processes sharing a unique L-TS, it will be identified
with the corresponding binary relation between the states of that L-TS. Let
R, S be two relations; we write p R q when 〈p, q〉 ∈ R; we denote re-
spectively by R+, R=, R? the transitive, reflexive, transitive and reflexive
closures of R; the relational composition of R and S, written RS, is de-
fined by RS , {〈p, r〉 | p R q and q S r for some q}; the converse of R is
R−1 , {〈p, q〉 | q R p}; R is symmetric if R = R−1; we say that R con-
tains S (alternatively, that S is contained in R), written S ⊆ R, if p S q
implies p R q. Finally we denote by I the reflexive relation.

Definition 1.2 (Transition Relations). Any action α ∈ L induces a relation,
denoted by

α−→ :

α−→ ,
{
〈〈P, ↪−→〉 , 〈P ′, ↪−→〉〉 | for any L-TS ↪−→ and states P, P ′ s.t. P ↪

α−→, P ′
}

.

Its converse is written using a reversed arrow:
α←− = (

α−→)−1, and similarly for
other forms of arrows, like the following weak transition relations :

α̂−→ ,


τ−→=

if α = τ
α−→ otherwise

α
=⇒ , τ−→? α−→ τ−→? α̂

=⇒ , τ−→? α̂−→ τ−→?

We can remark the following properties:
τ̂
=⇒ =

τ−→?
,

τ
=⇒ =

τ−→+
and

α̂
=⇒ =

α
=⇒

when α 6= τ (note in particular the difference between
τ̂
=⇒ and

τ
=⇒).

Definition 1.3 (Simulation, Bisimulation, Bisimilarity). A relation R is a
simulation if for any label α ∈ L and L-processes p, q, p′, we have:

p R q and p
α−→ p′ entail q

α̂
=⇒ q′ and p′ R q′ for some q′.

A bisimulation is a symmetric simulation. Bisimilarity, denoted by ≈, is the
union of all bisimulations.

Proposition 1.4. Bisimilarity is an equivalence relation, it is the greatest
bisimulation.

By defining bisimilarity as a relation between rooted L-TS (L-processes) rather
than between the states of a given L-TS, we gain the ability to relate processes
which are associated to different transitions systems. This will be useful in
order to compare the different versions of our framework. We finally define
expansion (%), the standard behavioural preorder [1] that leads to the correct
“bisimulation up to expansion” technique [13].
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Definition 1.5 ((Pre)-Expansion). A pre-expansion relation is a relation R
such that for any α ∈ L, whenever p R q we have:

if p
α−→ p′ then q

α̂−→ q′ and p′ R q′ for some q′.

An expansion relation is a pre-expansion relation R such that R−1 is a simu-
lation. Expansion, denoted by %, is the union of all expansion relations.

Proposition 1.6. Expansion is a preorder contained in bisimilarity, it is the
greatest expansion relation.

We have that R is a simulation iff ∀α ∈ L,
α←− R ⊆ R α̂⇐= ; accordingly, R is

a pre-expansion iff ∀α ∈ L,
α←− R ⊆ R α̂←− . This kind of concise definitions

will be used in sequel to state various up-to techniques involving such kind of
“challenges” or “games”.

We shall use the notation x̃ to denote finite multisets of various kind of ele-
ments. The empty multiset is denoted by ∅ and we denote by x; x̃ (resp. ỹ; x̃)
the addition of an element x (resp. a multiset ỹ) to a multiset x̃.

Definition 1.7 (Termination). A relation R terminates if there is no infinite
sequence (pi)i∈N such that ∀i, pi R pi+1.

2 A Framework for Distributed Computation

2.1 Abstract Description

We let h, k range over a given setH of locations. We assume a set of elementary
messages, and we let m, n range over finite multisets of elementary messages,
that we simply call messages ; their set is denoted byM. We let α range over
a given set L of labels (containing the distinguished element τ). We let P, Q
range over a given set P of local processes.

We define the set Lp of process labels with the following syntax:

δ ::= α (local action)

| h〈m〉 (message emission)

| (m) (message reception)

| . h (migration)

| νh[P ] (location creation)

We assume an Lp-TS with domain P : 〈P , ↪−→〉. This is the only Lp-TS we shall
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consider, so that a local process P ∈ P will implicitly represent the Lp-process
〈P, ↪−→〉.

The process labels correspond to the primitives we alluded to in the intro-
duction: α corresponds to a standalone transition of a local process, h〈m〉 to
the emission of message m to location h, (m) to the reception of message m,
. h to the migration to some location h, and νh[P ] to the spawning of a new
location h, with local process P .

A distributed process is a finite mapping from H to P , that we write as follows:
h1 : P1, . . . , hn : Pn . In this situation, we say that the local process Pi is hosted
at hi. The set of distributed processes, ranged over with D, is denoted by DP .
In order to represent the execution of distributed processes, we define a notion
of abstract net and we show how to compose the states of an abstract net with
a distributed process.

Definition 2.1 (Abstract Nets). We call abstract net any Ln-process, where
Ln is the set of net labels defined below:

µ ::= τ (internal action)

| h〈m〉 (message emission)

| h(m) (message reception)

| h . k (migration)

| νh (location creation)

Net labels closely correspond to process labels: they are actually associated
pairwise in order to define the following composite LTS, that describes the
execution of a distributed process, inside a given Ln-TS:

Definition 2.2 (Composition of Abstract Nets and Distributed Processes).
We associate to any Ln-TS 〈U ,−→u〉 the L-TS 〈U × DP , 7→u〉 where 7→u is
defined defined by the inference rules given in Fig. 2 (states of the domain are
denoted by U ◦D).

By rule [Loc◦], a local process may evolve on its own; accordingly the net may
achieve some internal transitions by rule [Int◦]. A local process hosted at h
can send a message to k via rule [Snd◦], and receive messages by rule [Rcv◦].
Rule [New◦] allows a local process hosted at h to spawn a process Q at new
location k. Finally, by rule [Mig◦], a local process hosted at h may migrate
to some location k; in that case, the continuation of the local process (P ′)
is lost. Notice that this is not restrictive: a local process that has to execute
some code at k, after the migration (as is often the case in Dπ [6]), can send
a message to k before the migration, containing the code to execute.

8



[Loc◦]
P ↪

α−→ P ′

U ◦D,h : P
α7→u U ◦D,h : P ′ [Int◦]

U
τ−→u U ′

U ◦D
τ7→u U ′ ◦D

[Snd◦]
U

k〈m〉−−−→u U ′ P ↪
k〈m〉−−−→ P ′

U ◦D,h : P
τ7→u U ′ ◦D,h : P ′ [Rcv◦]

U
h(m)−−−→u U ′ P ↪

(m)−−→ P ′

U ◦D,h : P
τ7→u U ′ ◦D,h : P ′

[New◦]
U

νk−→u U ′ P ↪
νk[Q]−−−→ P ′

U ◦D,h : P
τ7→u U ′ ◦D,h : P ′, k : Q

[Mig◦]
U

h.k−−→u U ′ P ↪
.k−→ P ′

U ◦D,h : P
τ7→u U ′ ◦D, ∅

Fig. 2. Transitions for the composite L-TS.

Remark that since the communication is achieved by unification (rule [Rcvs]
requires that the network and the local process agree on the same message
m), we actually impose an “early” semantics [15] to local processes. Adapting
this rule to the case where local processes have a “late” semantics is possible;
however this would require us to ask for a notion of substitution over local
processes. Also notice that while we exchange multisets of elementary messages
(this facilitates our notations in the sequel), the early semantics allows a local
process to decide to receive only single elementary messages.

The main advantage of this approach, where local processes are strongly sep-
arated from the network, is that we can study these two entities separately,
as expressed by the following proposition:

Proposition 2.3. Let 〈U,−→u〉 and 〈V,−→v〉 be two abstract nets, let P, Q be
two local processes and let D be a distributed process.

• If 〈U,−→u〉 ≈ 〈V,−→v〉 then 〈U ◦D, 7→u〉 ≈ 〈V ◦D, 7→v〉.
• If P ≈ Q then 〈U ◦D, h : P, 7→u〉 ≈ 〈U ◦D, h : Q, 7→u〉.

Proof. We first show that for any states U,U ′, local processes P, P ′, distributed
process D, and location h, we have:

• U
τ−→?

u U ′ entails U ◦D
τ7→?

u U ′ ◦D , and
• P ↪

τ−→?
P ′ entails U ◦D, h : P

τ7→?

u U ◦D, h : P ′ .

It follows easily that the two relations below are bisimulations:

R1 , {〈U ◦D, V ◦D〉 | ∀U, V, s.t. 〈U,−→u〉 ≈ 〈V,−→v〉} ,

R2 , {〈U ◦D, h : P, U ◦D, h : Q〉 | ∀U, P,Q, s.t. P ≈ Q}∪ I . �

We can show that Prop. 2.3 also holds for stronger behavioural preorders or
equivalences like expansion (%) or strong bisimilarity [9].
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reference nets simple nets optimised nets

U ::= 0

| U | U
| h[m]

| h . k

U ::= 0

| U | U
| h[m]

| h . k

| h〈m〉

U ::= 0 (empty net)

| U | U (parallel composition)

| h[m] (real location)

| h . k (forwarder)

| h〈m〉
k̃

(pending message)

| h7k (blocked forwarder)

| h〈.k〉 (relocation message)

Fig. 3. Syntax of reference, simple and optimised nets.

2.2 Specification of the Expected Behaviour

While the abstract view we have introduced allows us to define several exe-
cution models, it does not specify their expected behaviour: only some of all
possible Ln-TS, each corresponding to a possible behaviour, are of interest.
In order to fix the expected behaviour we define a “reference Ln-TS”; valid
(interesting) execution models will correspond to Ln-TS which are bisimilar
to this reference Ln-TS.

The syntax of nets is given in Fig. 3. At first we only consider reference nets :
the two other extensions of this syntax will be studied later on. We implicitly
reason modulo associativity and commutativity of the parallel composition (|)
which admits 0 as a neutral element. Therefore, a reference net is basically a
finite multiset where each element is either

• a real location h[m] containing a message m (recall that a message is actually
a collection of elementary messages) – in the composite L-TS (Def. 2.2), a
local process will be running at such locations;
• or a forwarder h . k that will redirect any message for h to k.

Therefore, locations are independent entities that host some “agents” which
have to be uniquely identified. This is what we express using the following
well-formedness property:

Definition 2.4 (Well-formedness). A reference net U is well-formed if any
location h ∈ H appears at most once as a real location (h[m]) or as the source
of a forwarder (h . k) in U .
For any reference net U , we call locations defined in U – denoted by l(U) –
the set of locations that appear at such positions in U .

Well-formed nets could thus be defined as finite mappings, associating an agent
to the element of a finite subset of H. We prefer our explicitly concurrent
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[Rcv]
h[m; n] | U h(m)−−−→r h[n] | U

[Snd]
h[n] | U h〈m〉−−−→r h[m; n] | U

[Kil]
h 6∈ l(U)

U
h〈m〉−−−→r U

[Fwd]
U

k〈m〉−−−→r U ′

h . k | U h〈m〉−−−→r h . k | U ′

[New]
h 6∈ l(U)

U
νh−→r h[∅] | U

[Mig]
U

k〈m〉−−−→r U ′

h[m] | U h.k−−→r h . k | U ′

Fig. 4. Transitions of reference nets.

syntax, which we find both easier to manipulate and more intuitive.

We can now define the dynamics of our specification:

Definition 2.5 (Reference Ln-TS). The reference Ln-TS is 〈Ur,−→r〉, where
Ur is the set of well-formed reference nets, and −→r is defined by the inference
rules of Fig. 4.

The following lemma validates our definition, and allows us to consider only
well-formed nets in the sequel.

Lemma 2.6. Well-formed nets are preserved by −→r , i.e., if U
µ−→r U ′ and

U is well-formed, then U ′ is well-formed. Hence, 〈Ur,−→r〉 is an Ln-TS.

We briefly describe the transitions of reference nets (Fig. 4): when a real
location contains some message m, the latter can be received by the local
process hosted at that location (rule [Rcv], recall that messages m and n are
multiset of elementary messages). When a message is sent to a real location,
it is added to the other elementary messages of that location (rule [Dst]); by
rule [Kil], any message sent on a location which is not defined just disappears;
when a message is sent to a location hosting a forwarder h.k, it is redirected to
k by rule [Fwd]: by successive applications of this rule, it will either disappear,
or be added into some real location. Notice that since the forwarder is removed
in the premise of rule [Fwd], any message trapped in a forwarder cycle will
eventually be removed by rule [Kil]. Rule [New] allows one to add a new real
location, provided that it is not yet defined. Finally a real location h[m] may
migrate to some location k by rule [Mig]; in that case, the message m is first
routed to k (m contains the elementary messages that reached h, but that
the local process hosted at h has not yet consumed), and the real location is
replaced by a forwarder h . k.

This reference Ln-TS is a rather high-level one: it does not use internal transi-
tions, and the routing of messages through forwarders is achieved in one atomic
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step, by successive applications of rule [Fwd]. We can moreover remark that

the transitions are deterministic: if U
µ−→r U1 and U

µ−→r U2, then U1 = U2. As
hinted in the introduction, this makes a distributed implementation of this
Ln-TS hardly feasible.

Remark 2.7 (On the expressiveness of the framework). Locations express
only the logical distribution of processes. Hence, the well-formedness condi-
tion does not rule out the case where several locations are thought of as re-
siding physically on the same device. Also, unlike in [14,7], the processes are
not required to be distributed along a tree structure, and there is no con-
straint on the communication topology: since messages may contain locations,
π-calculus-like mobility of links is provided by the model. Remark also that
migration is subjective in our model: local processes decide to migrate by them-
selves. Objective migration mechanisms (like the passivation available in the
Kell-calculus [2]) may be simulated by using messages to trigger migrations.

2.3 A Simple Implementation of the Specification

We now define another Ln-TS, which is more tractable from an implementation
point of view. We validate this implementation by proving that it is bisimilar
to the reference Ln-TS.

We consider simple nets whose syntax – which is given in Fig. 3 – extends that
of reference nets by adding pending messages. They will be used to track the
intermediate steps corresponding to the routing of pending messages trough
forwarders.

We extend Def. 2.4 to simple nets by ignoring pending messages and we can
define the corresponding dynamics:

Definition 2.8 (Simple Ln-TS). The simple Ln-TS is 〈Us,−→s〉, where Us is
the set of well-formed simple nets, and −→s is defined in Fig. 5.

Lemma 2.9. Well-formedness of simple nets is preserved by −→s ; hence,
〈Us,−→s〉 is an Ln-TS.

Rules [Rcvs] and [News] are unchanged, rule [Snds] is simplified: we just add
the message to the net, as a pending message. The two silent transition rules
are concerned with the routing of messages: rule [Fwds] defines the behaviour
of forwarders: they transmit the messages; rule [Dsts] performs the actual
reception of a message at a real location. Notice that rule [Migs], which may
seem different from [Mig], is actually the same, due to the new definition of
h〈m〉−−−→s. Finally, there is no rule corresponding to rule [Kil]: messages whose
destination is “undefined” persist as garbage in simple nets.
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[Rcvs]
h[m; n] | U h(m)−−−→s h[n] | U

[Snds]
U

h〈m〉−−−→s h〈m〉 | U

[Dsts]
h〈m〉 | h[n] | U τ−→s h[m; n] | U

[Fwds]
h〈m〉 | h . k | U τ−→s h . k | k〈m〉 | U

[Migs]
h[m] | U h.k−−→s h . k | k〈m〉 | U

[News]
h 6∈ l(U)

U
νh−→s h[∅] | U

Fig. 5. Transitions of simple nets.

k

h′
k

h′
k

h′
hk k

h′

2k′

h

k′

h h

k′k′ h′ k′

h

τ

[Migs] [Fwds][Fwds]

h′ . k τ τ

[Dsts]

m
k′〈m〉

h〈m〉

h〈m〉

h′〈m〉

Fig. 6. Migration and routing of messages in simple nets.

A sequence of transitions is depicted in Fig. 6, where squares and triangles
respectively represent real locations and forwarders; location h′ migrates to k
and the message h′〈m〉 is routed to k′, its final destination.

We can remark that the rules defining the simple Ln-TS have no premise,
and that each of these rules affects only one location. This is what makes this
Ln-TS well-suited for a distributed implementation: the programs running at
each location can be executed asynchronously.

2.4 Correctness of the Simple Implementation

In the sequel, we denote by Πi∈I Ui the parallel composition of some nets
(Ui)i∈I .

Definition 2.10 (Destination, Lost Locations, Clean Nets). We say that h
has destination k in a simple net U if there exist some l,m, V and (hi)i≤l with
h = h0, k = hl such that: U = V | Πi<l hi . hi+1 | hl[m] . We say that h is
lost in U if h has no destination in U .
A simple net U is called clean if all its pending messages are sent on locations
that have a destination in U . We denote by bUsc the set of clean simple nets.

Intuitively, a location is lost in U when it does not belong to l(U) or when it
belongs to a cycle of forwarders. Notice that any reference net is clean, and
that thanks to the well-formedness condition, each location has at most one
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destination in a given simple net. We have the following properties:

Lemma 2.11. (1) If h is lost in U , and U
µ−→s U ′, then h is lost in U ′.

(2) h is lost in U = h . k | V , if and only if k is lost in V .

(3) If h is lost in a reference net U then for any message m, U
h〈m〉−−−→r U .

(4) If h has destination k in a reference net of the form U | k[n], then for

any message m, U | k[n]
h〈m〉−−−→r U | k[m; n].

Proof. (1) Straightforward.
(2) We check that h has destination k′ in U iff k has destination k′ in V .
(3) We proceed by induction on the size of U . Since h is lost in U , either

• h 6∈ l(U), and U
h〈m〉−−−→r U by rule [Kil];

• or U = h . k | V , by (2), k is lost in V , so that we have V
k〈m〉−−−→r V by

induction. We conclude by applying the rule [Fwd]: U
h〈m〉−−−→r U .

(4) We have U = V | Πi<l hi . hi+1 with k = hl, and we can proceed by
induction on l. �

In the sequel, we shall say that a pending message has destination k (in a
net) when it is emitted on a location which has destination k (in that net).
Similarly, we shall say that a pending message is lost when it is emitted on a
lost location. This is justified by the following result:

Lemma 2.12. Let h be a lost location in a simple net U . For any message
m, we have:

U | h〈m〉 % U .

Proof. We check that R , {〈U | h〈m〉, U〉 | U ∈ Us, h lost in U} is an expan-

sion relation. We obviously have that U
µ−→s U ′ entails U | h〈m〉 µ−→s U ′ | h〈m〉,

and Lemma 2.11(1) ensures that h is still lost in U ′. For the other direction,
the only non-trivial case is when U = V | h . k, U | h〈m〉 τ−→s U | k〈m〉.
In that case, by Lemma 2.11(2), k is lost in V , so that U | k〈m〉 R U : the
right-hand-side process does not move. �

At this point, we can show directly that the relation
τ−→s is contained in % .

Together with Lemma 2.12, this would suffice to prove Theorem 2.23 below.
We however introduce a somewhat artificial step in the proof, that will be
useful in Sect. 3.

The converse of Lemma 2.11(1) does not hold: by rule [Migs], it is possible to
introduce forwarder cycles, so that some locations may become lost locations
along the visible action h . k. This entails that the set bUsc of clean simple
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nets is not preserved by −→s (rule [Snds] is also problematic, as it may add
arbitrary pending messages to the net).

For any simple net U , we denote by bUc the clean net obtained from U by
removing all messages pending on lost locations. We can use this “normalisa-
tion” function to define an Ln-TS over clean simple nets (bUsc). This Ln-TS
is not realistic from an implementation point of view, as it is able to detect
lost messages; however, we will only use it to reason about the simple Ln-TS,
by showing that both systems are behaviourally equivalent.

Definition 2.13 (Clean Ln-TS). The clean Ln-TS is
〈
bUsc,−→bsc

〉
, where −→bsc

is defined by the following rule:

U
µ−→s U ′

U
µ−→bsc bU ′c

The following lemma shows that the use of the cleaning function is only re-
quired after a migration or the emission of a message (rules [Fwds], [Migs]):

Lemma 2.14. For any U ∈ bUsc, and µ 6∈ {h . k; h〈m〉}, if U
µ−→s U ′ then U ′

is clean: U
µ−→bsc U ′ = bU ′c.

Lemma 2.12 entails that 〈U,−→s〉 % 〈bUc,−→s〉 : any simple net U expands its
cleaned form, seen as a state of the simple Ln-TS. To be able to reason only
about clean nets, we actually need to show that the result remains true when
we consider bUc as a state of the clean Ln-TS (Prop. 2.16 below). In order to
obtain this result, we will need the following standard up to technique [15].
It basically states that we can use expansion to rewrite the left-hand-side
process, when playing the games required by an expansion relation:

Technique 2.15 (Expansion up to Expansion). Let R be a relation such that

for any α ∈ L,
α←− R ⊆ α̂←− %R , and R α−→ ⊆ α̂

=⇒ %R .
Then %R is an expansion relation, and R ⊆ % .

Proposition 2.16. For any simple net U , we have

〈U,−→s〉 %
〈
bUc,−→bsc

〉
.

Proof. Since for any simple net U , 〈U,−→s〉 % 〈bUc,−→s〉 , and bUc is a clean

net, it suffices to show that 〈U,−→s〉 %
〈
U,−→bsc

〉
for any clean net U .

We apply Technique 2.15 to the following relation:

R ,
{〈
〈U,−→s〉 ,

〈
U,−→bsc

〉〉
| U ∈ bUsc

}
.
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• If 〈U,−→s〉
µ−→ 〈U ′,−→s〉 , then

〈
U,−→bsc

〉
µ−→

〈
bU ′c,−→bsc

〉
and we check that

〈U ′,−→s〉 % 〈bU ′c,−→s〉R
〈
bU ′c,−→bsc

〉
.

• If
〈
U,−→bsc

〉
µ−→

〈
U ′,−→bsc

〉
, then 〈U,−→s〉

µ−→ 〈V,−→s〉 with bV c = U ′ and we

check that 〈V,−→s〉 % 〈U ′,−→s〉R
〈
U ′,−→bsc

〉
. �

Now that we have a clean Ln-TS where any pending message has a destination,
we can examine the correctness of the routing of pending messages. We first
show that internal transitions are deterministic:

Lemma 2.17. The relation
τ−→bsc is terminating and confluent.

Proof. For any pending message h〈m〉 of a clean net U , define its weight as
the natural number l +1, where l is given by Def. 2.10 (since U is clean, h has
a destination in U); then let the size of U be the sum of the weights of all its
pending messages. This size strictly decreases along silent transitions,

τ−→bsc.

Thanks to the well-formedness condition,
τ−→bsc has no critical pair, so that it

is confluent. �

Notice on the contrary that
τ−→s does not terminate, due to the potential pres-

ence of pending messages in forwarder cycles. We denote by U↓ the normal form
w.r.t.

τ−→bsc of any clean net U . Remark that for any simple net U , U = bUc↓
if and only if U is actually a reference net.

The following lemma states the correctness of the routing algorithm: given a
reference net U , if the routing of a message by the reference Ln-TS leads to a
net V , then the clean Ln-TS can do so, by performing some silent transitions.
Conversely, if a pending message is added to U so that we obtain a clean net
V , the normalisation of V yields exactly the same simple net as the one we
obtain with the reference Ln-TS.

Lemma 2.18. Let U be a reference net.

(1) If U
h〈m〉−−−→r V , then U

h〈m〉−−−→bsc
τ̂
=⇒bsc V .

(2) If U
h〈m〉−−−→bsc V , then U

h〈m〉−−−→r V↓.

Proof. (1) If h is lost in U , then by Lemma 2.11(3) U = V , and we have

U
h〈m〉−−−→bsc bh〈m〉 | Uc = bUc = U . Otherwise, h has some destination in

U , so that

U = U ′ | Πi<l hi . hi+1 | hl[n] (with h = h0)

V = U ′ | Πi<l hi . hi+1 | hl[m; n], (Lemma 2.11(4))
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and we check that U
h〈m〉−−−→bsc h〈m〉 | U τ̂

=⇒bsc V , by an induction on l.

(2) If h is lost in U , then V = bh〈m〉 | Uc = U , and U
h〈m〉−−−→r U by

Lemma 2.11(3). Otherwise,

U = U ′ | Πi<l hi . hi+1 | hl[n] (with h = h0)

U
h〈m〉−−−→bsc V = h〈m〉 | U τ̂

=⇒bsc U ′ | Πi<l hi . hi+1 | hl[m; n] = V ′.

where U ′ and thus V ′ are necessarily reference nets. By Lemma 2.11(4),

U
h〈m〉−−−→r V ′, and since V ′ is a normal form of V , V↓ = V ′. �

We now have to prove that silent transitions do not change the behaviour
of the system, i.e., that silent transitions are contained in bisimilarity. We
actually show a stronger result: silent transitions are contained in expansion;
as explained below, this allows us to use the following up-to technique, so that
the proof remains tractable. Technique 2.19 below actually defines two up-to
techniques, the second will be used in Sect. 3.

Technique 2.19 (Expansion up to Transitivity).

Let R be a relation such that for any α ∈ L,
α←− R ⊆ α̂←− R? .

If R−1 is a simulation or R is symmetric, then R ⊆ % .

Proof. The first hypothesis allows us to show that R? is a pre-expansion rela-
tion. IfR−1 is a simulation, then (R?)−1 = (R−1)? is a simulation. IfR is sym-
metric, then we have (R?)−1 = R? which is a pre-expansion relation, and hence
a simulation. Therefore, R? is an expansion relation, and R ⊆ R? ⊆ % . �

Lemma 2.20. The relation
τ−→bsc is contained in expansion.

Proof. We apply Technique 2.19 to R =
τ−→bsc ∪R′, where

R′ = {〈h〈m〉 | h〈n〉 | U, h〈m; n〉 | U〉 | U ∈ bUsc, h not lost in U}

The two cases where we need transitivity are the following visible and silent
left-to-right challenges:

• U = h〈m〉 | h[n] | U0
τ−→bsc h[m; n] | U0 = V by rule [Dsts], and

U
h.k−−→bsc U ′ = h〈m〉 | h . k | k〈n〉 | U0 by rule [Migs]. We have:

V
h.k−−→bsc V ′ = h . k | k〈m; n〉 | U0 [Migs]

U ′ R h . k | k〈m〉 | k〈n〉 | U0 R V ′ ; [Fwds],(R′)
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• U = h〈m〉 | h〈n〉 | h . k | U0 R′ h〈m; n〉 | h . k | U0 = V and
U

τ−→bsc U ′ = h〈m〉 | h . k | k〈n〉 | U0 by rule [Fwds]. In this case we have:

V
τ−→bsc V ′ = h . k | k〈m; n〉 | U0 [Fwds]

U ′ R h . k | k〈m〉 | k〈n〉 | U0 R V ′ . [Fwds],(R′)

�

The smallest bisimulation relation containing
τ−→bsc contains at least

τ̂
=⇒bsc.

Hence, proving the weaker result
τ−→bsc ⊆ ≈ without using this expansion-

based technique would require to check that some relation containing
τ̂
=⇒bsc is

a bisimulation (“bisimilarity up to transitivity” is not a valid technique [13]).
This could be tedious: while U and V differ only slightly when U

τ−→bsc V , this

is no longer the case when U
τ̂
=⇒bsc V .

Corollary 2.21. For any clean net U we have:〈
U,−→bsc

〉
%

〈
U↓,−→bsc

〉
.

We now have enough technical devices to give the correctness proof of the
implementation w.r.t. the specification. Thanks to the “expansion up to ex-
pansion” technique (Technique 2.15), we can work with a very simple candi-
date relation: syntactical identity between reference nets, equipped with clean
simple transitions on one side, and with reference transitions on the other side:

Lemma 2.22. For any reference net U , we have:〈
U,−→bsc

〉
% 〈U,−→r〉

Proof. We apply Technique 2.15 to the following relation:

R =
{〈〈

U,−→bsc
〉

, 〈U,−→r〉
〉
| U ∈ Ur

}
.

We consider the different challenges along a label µ:

• µ cannot be τ , since reference nets are in normal form;
• if µ = νh or µ = h(m), we have U

µ−→bsc V iff U
µ−→r V ;

• if µ = h〈m〉, we apply Lemma 2.18:

· if U
h〈m〉−−−→bsc V , then we have U

h〈m〉−−−→r V↓ and by Cor. 2.21, we obtain〈
V,−→bsc

〉
%

〈
V↓,−→bsc

〉
R 〈V↓,−→r〉 (V↓ is a reference net);

· if U
h〈m〉−−−→r V , then we have U

ĥ〈m〉
==⇒bsc V and

〈
V,−→bsc

〉
R 〈V,−→r〉 .

• The case µ = h . k relies on the previous one, and is very similar. �
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Theorem 2.23. For any simple net U , we have:

〈U,−→s〉 %
〈
bUc↓,−→r

〉
.

Proof. By Prop. 2.16, Cor. 2.21 and Lemma 2.22, we have:

〈U,−→s〉 %
〈
bUc,−→bsc

〉
%

〈
bUc↓,−→bsc

〉
%

〈
bUc↓,−→r

〉
(recall that bUc↓ is a reference net). �

3 Validating an Optimisation

The forwarder chains that are generated along the evolution of a net are the
source of inefficiencies. For example, the message m in Fig. 6 will have to go
trough three locations before reaching its final destination. In this section, we
define an optimised Ln-TS, that contracts such forwarder chains, and we prove
the correctness of this optimisation by showing that simple nets are bisimilar
to optimised nets.

3.1 Optimised Nets

The syntax of optimised nets is given in Fig. 3; it extends the syntax of simple
nets by

• annotating pending messages with a list of locations: h〈m〉
k̃

;
• introducing blocked forwarders : h7 ;
• adding a second kind of messages: relocation messages h〈.k〉 .

Intuitively, the list that decorates a pending message contains the set of for-
warder locations the message did pass through. Messages emitted by the un-
derlying local processes will have an empty list, which will allow us to omit
their annotation. Relocation messages are received only by blocked forwarders.
Their effect is to redirect such forwarders to a destination closer to the location
they indirectly point to.

Definition 3.1 (Well-formedness for Optimised Nets). An optimised net U
is well-formed if:

(1) any location h ∈ H appears at most once as a real location (h[m]), as the
source of a forwarder (h.k) in U , or as the source of a blocked forwarder
(h7);
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[Rcvo]
h[m; n] | U h(m)−−−→o h[n] | U

[Sndo]
U

h〈m〉−−−→o h〈m〉∅ | U

[Migo]
h[m] | U h.k−−→o h . k | k〈m〉∅ | U

[Newo]
h 6∈ l(U)

U
νh−→o h[∅] | U

[Dsto]
h〈m〉

k̃
| h[n] | U τ−→o h[m; n] | k̃〈.h〉 | U

[Fwdo]
h〈m〉

k̃
| h . k | U τ−→o h7 | k〈m〉

h;̃k
| U

[Updo]
h〈.k〉 | h7 | U τ−→o h . k | U

Fig. 7. Transitions of optimised nets.

(2) for any blocked forwarder h7, h appears exactly once in the annotation
of a pending message (k〈m〉

h̃
, with h ∈ h̃), or as the destination of a

relocation message (h〈.k〉);
(3) any location registered in a pending message or appearing as the target

of a relocation message hosts a blocked forwarder.

According to (1), our definition of defined locations (l(U)) is extended by
taking blocked forwarders into account.

Definition 3.2 (Optimised Ln-TS). The optimised Ln-TS is 〈O,−→o〉, where
O is the set of well-formed optimised nets, and −→o is defined in Fig. 7.

Proposition 3.3. Any simple well-formed net in the sense of Def. 2.4 is well-
formed in the sense of Def. 3.1. Well-formed optimised nets are preserved by
−→o , so that 〈O,−→o〉 is an Ln-TS.

This allows us to consider only well-formed nets in the sequel.

We describe the rules below; in comparison to the simple Ln-TS, “visible” rules
[Rcv], [Snd], [Mig] and [New] are left unchanged, the two “silent” rules
[Fwds] and [Dsts] are updated and the rule [Updo] is new. In rule [Dsto],
we use h̃〈.k〉 to denote Π

h∈h̃
h〈.k〉. In the sequel, we shall furthermore use

h̃ . k and h̃7 to respectively denote Π
h∈h̃

h . k and Π
h∈h̃

h7.

When a forwarder transmits a message (rule [Fwdo]), it registers its location
and enters a blocked state so that it will temporarily block further poten-
tial messages. Upon reception at the final location, a relocation message is
broadcasted to the locations registered in the message (rule [Dsto]). The
blocked forwarders located at these locations will then update their destina-
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〈n〉 〈n〉 〈n〉

〈m〉

〈n〉 〈n〉

〈n〉

τ 2 τ τ 3 τ

[Fwdo] [Fwdo] [Updo] [Fwdo]

τ
〈m〉

m m m

〈.〉 〈n〉
[Dsto]

Fig. 8. Optimised Forwarder Behaviour

tion accordingly (rule [Updo]). This behaviour is illustrated in Fig. 8, where
grey triangles correspond to blocked forwarders. Notice that forwarders have
to block until they receive the relocation message: otherwise, a timestamps
mechanism would be required, so that a forwarder can cleverly chose between
two possibly distinct relocation messages.

Remark 3.4 (Further possible optimisations). We could go beyond the op-
timisation presented here: for example, pending messages waiting behind a
blocked forwarder could be packed together so that they can be sent at once,
when the blocked forwarder gets relocated:

[Pcko]
h〈m〉

h̃
| h〈n〉

k̃
| h7 | U τ−→o h〈m; n〉

h̃;̃k
| h7 | U

We could also decompose rule [Dsto], in order to make the broadcast of the
relocation message explicit and asynchronous:

[Dsto]
h〈m〉

k;̃k
| h[n] | U τ−→o h〈m〉

k̃
| h[n] | k〈.h〉 | U

[Dst’o]
h〈m〉∅ | h[n] | U τ−→o h[m; n] | U

However, rather than finding the best implementation of the specification, the
aim of this paper is to give a methodology for the analysis of such distributed
systems. Therefore, we prefer sticking to our rather simple optimisation, so
that hopefully our methodology does not get lost into technical details.

We now prove the correctness of the optimisation. As explained in the intro-
duction, this requires us to handle forwarder cycles (Sect. 3.2), and to validate
the algorithm for routing pending messages (Sect. 3.3).

3.2 Handling Forwarder Cycles

We start by extending Def. 2.10 to optimised nets:

Definition 3.5 (Destination, Lost Locations, Clean Nets). We say that h
has destination k in an optimised net U if there exist l,m, V and (hi)i≤l with
h = h0, k = hl s.t. U = Πi<n Fi | hl[m] | V , where for all i < l, Fi is either:
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• a forwarder: hi . hi+1, or
• a blocked forwarder, together with a relocation message: hi7 | hi〈.hi+1〉, or
• a blocked forwarder whose location is registered in a message blocking some

other forwarders: hi7 | k̃7 | hi+1〈n〉hi ;̃k
.

We say that h is lost in U if h has no destination in U .
An optimised net U is called clean if all its pending messages are sent on
locations that have a destination in U . We denote by bOc the set of clean
optimised nets.

Again, well-formedness ensures that each location has at most one destination
in a given net. We have the following properties:

Lemma 3.6. (1) If h is lost in U , and U
µ−→o U ′, then h is lost in U ′.

(2) In each of the following nets, h is lost if and only if k is lost:

(a) h . k | U , (b) h7 | h〈.k〉 | U , (c) h〈m〉
k,̃k
| U .

We can no longer directly remove lost messages: we have to take care of the
forwarders that are blocked by these messages. We introduce for that the
following relation:

Definition 3.7. We call cleaning relation the following relation over O:

E ,
{〈

U | h̃7 | h〈m〉
h̃

, U | h̃ . h
〉 ∣∣∣ h lost in

(
U | h̃7 | h〈m〉

h̃

)}
.

Notice that V is well-formed whenever U E V and U is well-formed, and
that E preserves destinations and lost locations. We show that this relation is
contained in expansion by using the second version of the “expansion up to
expansion” technique (Technique 2.19)

Lemma 3.8. The cleaning relation is contained in expansion.

Proof. Let E ′ be the symmetric closure of the following relation:{〈
U, U0 | Πh∈h̃

h . kh

〉 ∣∣∣ U = U0 | h̃7 | h〈m〉
h̃

and h, (kh)h∈h̃
are lost in U

}
E is clearly contained in E ′; and E ′ preserves well-formed nets, destinations
and lost locations. We show that E ′ is a candidate to Technique 2.19. Since
E ′ is symmetric, it suffices to show that this is a “pre-expansion up to transi-
tivity”. The well-formedness condition allows us to rule out a lot of cases, the
remaining interesting cases are the following:

• U = U0 | h̃7 | h〈m〉
h̃
| h . k E ′ V = U0 | Π

h∈h̃
h . kh | h . k and

U
τ−→o U ′ = U0 | (h; h̃)7 | k〈m〉

h;̃h
by rule [Fwdo]. We just check that
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U ′ E ′ V : the right-hand-side process does not move.

• U = U0 | k̃7 | k〈n〉
k̃
| (k; h̃)7 | h〈m〉

k;̃h

E ′ V = U0 | k̃7 | k〈n〉
k̃
| k . k′ | Π

h∈h̃
h . kh

and V
τ−→o V ′ = U0 | (k; k̃)7 | k′〈n〉

k;̃k
| Π

h∈h̃
h . kh by rule [Fwdo]. In this

case, we have V E ′2 V ′:

V E U0 | (k; k̃) . k′ | Π
h∈h̃

h . kh E ′ V ′ .

Hence the left-hand-side process (U) does not move, and we apply E ′ three
times in order to relate U and V ′: U E ′ V E ′2 V ′. �

The cleaning relation is confluent and terminating; we denote by bUc the
normal form of an optimised net U w.r.t. E (on simple nets, this function
coincides with that defined in Sect. 2.4). We have:

Corollary 3.9. For any optimised net U , we have:

〈U,−→o〉 % 〈bUc,−→o〉 .

Like in Sect. 2.3, we use this “cleaning function”, to define a optimised Ln-TS
over clean optimised nets (bOc), which is equivalent to the initial one:

Definition 3.10 (Clean Optimised Ln-TS). The clean optimised Ln-TS is〈
bOc,−→boc

〉
, where −→boc is defined by the following rule:

U
µ−→o U ′

U
µ−→boc bU ′c

Proposition 3.11. For any optimised net U , we have:

〈U,−→o〉 %
〈
bUc,−→boc

〉
.

Proof. Identical to the proof of Prop. 2.16. �

Like in Sect. 2.4, the cleaning function is actually only used upon migration
and emission of messages:

Lemma 3.12. For any U ∈ bOc, and µ 6∈ {h . k; h〈m〉}, if U
µ−→o U ′ then U ′

is clean: U
µ−→boc U ′ = bU ′c.

We now can work with clean optimised nets, and validate the routing of pend-
ing messages without bothering with lost messages.
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Fig. 9. Unblocking a forwarder in order to route a given message.

3.3 Validating the Routing Algorithm

Like in Sect. 2.4, the smallest bisimulation relation containing
τ−→boc contains

at least
τ̂
=⇒boc, so that we need some bisimulation proof technique in order to

be able to work with small and local candidate relations.

However, unlike in the previous section, we cannot rely on expansion-based
up-to techniques: silent transitions are not contained in expansion. This comes
from the race conditions introduced by the blocking behaviour of forwarders:
for example, in Fig. 8, the message n has to wait for the arrival of m. The
very “controlled” nature of expansion – the right-hand-side process has to be
as fast as the left-hand-side process, at each step – cannot take into account
the fact that n is closer to its destination at the end.

We will actually use the following technique, from [11], that relies on a termi-
nation argument in order to allow the “up to transitivity” technique:

Technique 3.13 (Simulation up to Transitivity, Constrained).

Let R be a relation such that ∀α ∈ L,
α←− R ⊆ R? α̂⇐= .

If R+ τ
=⇒ terminates, then R? is a simulation.

Since we work with clean nets, any pending message has a destination; we first
prove a lemma that allows us to route these messages to their destination.
While this was almost trivial in the simple Ln-TS (Lemma 2.18(1)), here, as
depicted on Fig. 9, in order to route a given message m to its destination,
we first have to route any message that blocks some forwarder between the
message and its destination. As a side effect, this involves some reconfiguration
of the forwarders tree.

Lemma 3.14. Let U = V | h0〈m0〉h̃ be a (clean) optimised net. By Def. 3.5,
U = V ′ | h0〈m0〉h̃ | Πi<lFi | hn[n], and we have:

U
τ
=⇒boc V ′ | h̃〈.hl〉 | Πi<lhi . hl | hl[m0; m; n] | k̃ . hl

where n and k̃ are the messages and forwarder locations collected in Πi<lFi.

Proof. We proceed by induction over l: if l = 0 we simply apply rule [Dsto],
otherwise we reason by case analysis on the shape of F0:
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• a simple forwarder: h0.h1: we transmit the message with rule [Fwdo], apply
the induction hypothesis (IH), and relocate the forwarder using rule [Updo]:

U
τ−→boc V ′ | h07 | h1〈m0〉h0 ,̃h

| Π0<i<lFi | hl[n] [Fwdo]
τ
=⇒boc V ′ | h07 | (h0, h̃)〈.hl〉 | Π0<i<lhi . hl | hl[m0; m; n] | k̃ . hl (IH)
τ−→boc V ′ | h̃ . hl | h0 . hl | Πi<lhi . hl | hl[m0; m; n] | k̃ . hl [Updo]

• a blocked forwarder with a relocation message: h07 | h0〈.h1〉: we relocate
the forwarder with rule [Updo] and fall back into the previous case.
• (h0; k̃1)7 | h1〈m1〉h0 ,̃k1

: we apply the induction hypothesis to the message
at h1, and transmit the initial message trough the relocated forwarder:

U = V ′ | h0〈m0〉h̃ | (h0; k̃1)7 | h1〈m1〉(h0 ;̃k1)
| Π0<i<lFi | hl[n]

τ
=⇒boc V ′ | h0〈m0〉h̃ | (h0; k̃1)7 | (h0; k̃1)〈.hl〉 | Π0<i<lhi . hl

| hl[m1; m; n] | k̃ . hl (IH)
τ
=⇒boc V ′ | h0〈m0〉h̃ | (h0; k̃1) . hl | Π0<i<lhi . hl | hl[m1; m; n] | k̃ . hl

[Updo]
τ−→3

boc V ′ | h̃〈.hl〉 | Πi<lhi . hl | hl[m0; m1; m; n] | (h0; k̃1; k̃) . hl

[Fwdo,Dsto,Updo]

�

Despite these modifications of forwarder trees, the routing of messages is de-
terministic (we shall prove that it terminates in the sequel). Notice that this
is not true in presence of pending messages whose location is in a forwarder
cycle: in that case the way the cycle gets blocked may depend on the order of
the routing steps.

Lemma 3.15.
τ−→boc is locally confluent.

Proof. By well-formedness, the only critical pair is the following:

U = V | h〈m〉
h̃
| h〈n〉

k̃
| h . k

U
τ−→boc V | h〈m〉

h̃
| h7 | k〈n〉

h,̃k
= U1 [Fwdo]

U
τ−→boc V | h〈n〉

k̃
| h7 | k〈m〉

h,̃h
= U2 [Fwdo]

By using Lemma 3.14 on U1, we can route the message n to some location k′:

U1
τ̂
=⇒boc V ′ | h〈m〉

h̃
| h7 | (h, k̃)〈.k′〉 | k′[n; m′] (Lemma 3.14)

τ−→boc V ′ | h〈m〉
h̃
| h . k′ | k̃〈.k′〉 | k′[n; m′] [Updo]

τ−→3

boc V ′ | (k̃, h̃)〈.k′〉 | h . k′ | k′[m; n; m′] = U ′ [Fwdo,Dsto,Updo]

The same reasoning about U2 leads to U2
τ
=⇒boc U ′. �
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However, due to forwarders relocations,
τ−→boc does not commute with visible

actions. To handle this, we introduce the following relation, that allows one
to reorganise step by step the forwarder structure of a net:

Definition 3.16. We denote by S the swapping relation, defined as the sym-
metric closure of the following relation over bOc:

{〈h . h′ | h′ . k | U, h . k | h′ . k | U〉} .

Notice that S preserves destinations and lost locations. Our goal is to prove
that (S ∪ τ−→boc) is a candidate relation for Technique 3.13. This will allow

us to prove that both S and
τ−→boc are contained in bisimilarity. The two

following lemmas establish progressively that (S ∪ τ−→boc) is a “simulation up
to transitivity”.

Lemma 3.17. If U
τ−→boc V and U

µ−→boc U ′, then U ′ τ̂
=⇒boc S? τ̂⇐=boc

µ̂←−boc V .

Proof. The case µ = τ is given by the local confluence of
τ−→boc (Lemma 3.15);

otherwise, it holds that U ′ τ−→boc
µ←−boc V , except in the following case:

U = W | h〈m〉
h̃
| h[n]

τ−→boc W | h[m; n] | h̃〈.h〉 = V [Dsto]

U
h.k−−→boc W | h〈m〉

h̃
| h . k | k〈n〉 = U ′ [Migo]

where we have

V
h.k−−→boc W | h . k | k〈m; n〉 | h̃〈.h〉 = V ′ . [Migo]

We reason by case analysis on the agent located at k:

• a localised process k[n′]: by routing to k the messages exhibited in U ′ and
V ′, we obtain:

U ′ τ
=⇒boc W ′ | (h, h̃) . k | k[m; n; n′]

V ′ τ
=⇒boc W ′ | h̃ . h | h . k | k[m; n; n′]

(the only message to route in V ′ is almost at its final destination, and the
relocation message has already been sent to the blocked forwarders located
at h̃, so that the latter gets relocated under h instead of k).

Finally, we relocate these forwarders with l applications of the swapping

relation, l being the length of h̃: U ′ τ̂
=⇒boc S l τ̂⇐=boc V ′.

• A forwarder k . k′: like in the previous case, we first route the available
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messages to their destination, say k′′:

U ′ τ
=⇒boc W ′ | (h, k, h̃) . k′′ | k′′[m; n; n′] ,

V ′ τ
=⇒boc W ′ | h̃ . h | h . k | k . k′′ | k′′[m; n; n′] .

Here we need an additional application of the swapping relation to relocate
h to k′′, before being able to relocate the forwarders at h̃:

U ′ τ̂
=⇒boc S l+1 τ̂⇐=boc V ′ .

• A blocked forwarder k7. We reason like in the previous case by first routing
the message that blocks this forwarder to its destination. �

Lemma 3.18. If U S V and U
µ−→boc U ′ then U ′ τ

=⇒boc S? µ̂⇐=boc V .

Proof. It is immediate if µ 6= τ : we have U ′ S µ←−boc V . When µ = τ , the inter-

esting cases are those where the silent transition U
τ−→boc U ′ is the transmission

of a message trough one of the two forwarders being swapped:

• U = W | h〈m〉
h̃
| h . h′ | h′ . k

τ−→boc W | h7 | h′〈m〉
h,̃h
| h′ . k = U ′.

By routing the messages, we obtain:

U ′ τ
=⇒boc W ′ | h . k′ | h′ . k′ | k′[m; n] = U ′′ ,

V
τ
=⇒boc W ′ | h . k′ | h′ . k | k′[m; n] = V ′ .

If k = k′, we are done: U ′′ = V ′. Otherwise, there is a forwarder k.k′ in W ′,
and we need one application of the swapping relation in order to relocate
the forwarder located at h′ in V ′.
• U = h . h′ | h′〈m〉

h̃
| h′ . k

τ−→boc h . h′ | h′7 | k〈m〉
h′ ,̃h

= U ′

By routing the messages, we obtain:

U ′ τ
=⇒boc W ′ | h . h′ | h′ . k′ | k′[m; n] = U ′′ ,

V
τ
=⇒boc W ′ | h . k | h′ . k′ | k′[m; n] = V ′ .

If k = k′, we are done: U ′′ = V ′. Otherwise, we have W ′ = W ′′ | k . k′, and
we need two applications of the swapping relation in order to relocate the
forwarder located at h in both nets:

U ′′ = W ′′ | h . h′ | k . k′ | h′ . k′ | k′[m; n]

S W ′′ | h . k′ | k . k′ | h′ . k′ | k′[m; n]

S W ′′ | h . k | k . k′ | h′ . k′ | k′[m; n] = V ′

This analysis also applies for the symmetric cases, where the silent transitions
are played by the net with “flat” forwarders. �
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We now have to prove the termination property for Technique 3.13. Since
(S ∪ τ−→boc)

+ τ
=⇒boc ⊆ S? τ

=⇒boc, the following lemma will suffice:

Lemma 3.19. S? τ
=⇒boc terminates.

Proof. We call size of a net U the triple s(U) = 〈n, r, l〉, where n is the number
of pending messages, r the number of relocation messages, and l the number
of forwarders that are not blocked. These triples are ordered lexicographically.
We check that U S V implies s(U) = s(V ), and that this size strictly decreases
along silent transitions (recall that

τ
=⇒boc contains at least one transition). �

Proposition 3.20. For any U, V ∈ bOc, if U S V or U
τ−→boc V , then we

have: 〈
U,−→boc

〉
≈

〈
V,−→boc

〉
.

Proof. By applying Technique 3.13 to (S ∪ τ−→boc), we obtain that (S ∪ τ−→boc)
?

is a simulation. Moreover,
τ̂←−boc is also a simulation (as is always the case for

reversed silent transitions). By combining these two results we obtain that the

symmetric relation (S ∪ τ←→boc)
? = ((S ∪ τ−→boc)

? ∪ τ̂←−boc)
? is a simulation, and

hence a bisimulation. We finally have (S ∪ τ−→boc) ⊆ (S ∪ τ←→boc)
? ⊆ ≈ . �

Notice that Technique 3.13 plays a crucial role in the proof of the above
proposition: it allows us to focus on the “local” relations S and

τ−→boc, which
relate nets that differ only slightly, so that we can reason about their small
syntactical differences. In contrast, if we had to prove the previous proposition
directly, we would have to show that (S∪ τ−→boc)

? is a simulation; which is really
hard as this relation relates completely different nets.

Lemmas 3.19 and 3.15 ensure that
τ−→boc defines a unique normal form for any

clean optimised net U (termination of S? τ
=⇒boc entails termination of

τ−→boc);
we denote by U↓o this normal form. Notice that U↓o is always a reference net:
it does not contain any blocked forwarder, relocation message, nor pending,
annotated messages.

The normalisation of a clean simple net by
τ−→bsc and

τ−→boc does not necessarily
lead to the same net: U↓ 6= U↓o. However, these nets differ only by some
rearrangement of their forwarders, they are related by S?:

Lemma 3.21. For any clean simple net U , we have:

U↓ S? U↓o .
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Proof. We proceed by well-founded induction on U , using the termination of
the relation

τ−→bsc:

• If U is a reference net, we have U↓ = U = U↓o.
• If U

τ−→bsc U ′, since U is clean and simple, we have

U = V | h0〈m〉 | Πi<l hi . hi+1 | hl[n]

U
τ−→bsc U ′ τ

=⇒bsc V | Πi<l hi . hi+1 | hl[m; n] = U1 [Fwds,Dsts]

U
τ
=⇒boc V | Πi<l hi . hl | hl[m; n] = U2 (Lemma 3.14)

We check that U1 S l U2, and we have U1
τ̂
=⇒boc U1↓o so that from Prop. 3.20,

U2
τ̂
=⇒boc U ′

2 with U1↓o(S ∪
τ−→boc)

?U ′
2.

Furthermore, since S preserves normal forms, U1↓o S? U ′
2, and U ′

2 = U2↓o.
Finally, by induction, U1↓ S? U1↓o and U↓ = U1↓ S? U1↓o S? U2↓o = U↓o. �

It follows that in the clean, optimised Ln-TS, any clean simple net is bisimilar
to its normal form w.r.t.

τ−→bsc (this correspond to Corollary 2.21 in the clean,
simple Ln-TS):

Corollary 3.22. For any clean simple net U , we have:〈
U,−→boc

〉
≈

〈
U↓o,−→boc

〉
≈

〈
U↓,−→boc

〉
.

Proof. By Lemma 3.21, U
τ̂
=⇒boc U↓o S? U↓; we conclude with Prop. 3.20. �

Since Corollary 3.22 does not give an expansion result, we cannot use the
standard bisimulation up-to expansion technique to give the final proof of
correctness. Instead, we use the following restricted form of the “bisimulation
up to bisimilarity” technique (in its unrestricted form, this technique is not
correct [13]):

Technique 3.23 (Bisimulation up to Bisimilarity on Visible Actions).
Let R be a relation such that:

• τ←− R ⊆ R τ̂⇐= and R τ−→ ⊆ τ̂
=⇒ R ; and

• a←− R ⊆ ≈R≈ a⇐= and R a−→ ⊆ a
=⇒ ≈R≈ for any visible action a ∈ L \ {τ}.

Then ≈R≈ is a bisimulation, and R ⊆ ≈ .

Using this technique, we can consider only reference nets, that do not contain
any pending messages, and normalise them whenever they do a visible action
that brings some pending messages. Since reference nets do not give rise to
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silent transitions, even when considered in the simple or optimised Ln-TSs, the
restriction of the previous technique to visible challenges is not problematic.

Lemma 3.24. For any reference net U , we have:〈
U,−→boc

〉
≈

〈
U,−→bsc

〉
.

Proof. We apply Technique 3.23 to the following relation:

R ,
{〈〈

U,−→boc
〉

,
〈
U,−→bsc

〉〉
| U ∈ Ur

}
.

For any reference net U , since U does not contain any pending message, we
have U

µ−→boc V iff U
µ−→bsc V . However, while V is a clean simple net, it is

not necessarily a reference net, so that we do not have
〈
V,−→boc

〉
R

〈
V,−→bsc

〉
.

Nevertheless, V↓ is a reference net, and by Corollaries 3.22 and 2.21, we have:〈
V,−→boc

〉
≈

〈
V↓,−→boc

〉
R

〈
V↓,−→bsc

〉
-

〈
V,−→bsc

〉
.

We use bisimilarity to rewrite the left-hand-side process; this is allowed by
Technique 3.23: we are necessarily in a visible challenge. �

By following the steps depicted in Fig. 1, we can finally prove the correctness
of the implementation w.r.t. the specification:

Theorem 3.25. For any optimised net U , we have:

〈U,−→o〉 ≈
〈
bUc↓o,−→r

〉
.

Proof. bUc↓o is a reference net, therefore, we have:

〈U,−→o〉 %
〈
bUc,−→boc

〉
(Proposition 3.11)

≈
〈
bUc↓o,−→boc

〉
(Corollary 3.22)

≈
〈
bUc↓o,−→bsc

〉
(Lemma 3.24)

%
〈
bUc↓o,−→r

〉
. (Theorem 2.23)

�
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