Optimal routing for end-to-end guarantees: the price of multiplexing
Anne Bouillard, Bruno Gaujal, Sébastien Lagrange, Eric Thierry

To cite this version:
Anne Bouillard, Bruno Gaujal, Sébastien Lagrange, Eric Thierry. Optimal routing for end-to-end guarantees: the price of multiplexing. 2007. ensl-00151655

HAL Id: ensl-00151655
https://ens-lyon.hal.science/ensl-00151655
Preprint submitted on 5 Jun 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal routing for end-to-end guarantees:
the price of multiplexing

Anne Bouillard,
Bruno Gaujal,
Sébastien Lagrange,
Eric Thierry

Juin 2007

Research Report N° 2007-25
Optimal routing for end-to-end guarantees:
the price of multiplexing

Anne Bouillard, Bruno Gaujal, Sébastien Lagrange, Eric Thierry

Juin 2007

Abstract
In this paper we show how Network Calculus can be used to compute the optimal route for a flow (w.r.t. end-to-end guarantees on the delay or the backlog) in a network in the presence of cross-traffic. When cross-traffic is independent, the computation is shown to boil down to a functional shortest path problem. When cross-traffic perturbs the main flow over more than one node, then the “Pay Multiplexing Only Once” phenomenon makes the computation more involved. We provide an efficient algorithm to compute the service curve available for the main flow and show how to adapt the shortest path algorithm in this case. This work is supported by the ARC INRIA COINC.

Keywords: Network Calculus, (min,+) algebra, shortest path, multiplexing.

Résumé
Dans cet article, nous montrons comment utiliser le Network Calculus pour router un flux en optimisant ses garanties de délai et charge, dans un réseau en présence de trafic transverse. Quand les flux du trafic transverse sont indépendants, le problème se ramène à une version fonctionnelle de la recherche de plus court chemin. Quand le trafic transverse perturbe le flux principal sur plus d’un nœud, le phénomène de “Pay Multiplexing Only Once” permet d’améliorer les garanties mais complique les calculs. Nous décrivons un algorithme efficace permettant de calculer la courbe de service fourni au flux principal dans ce cas là, et nous montrons alors comment adapter nos algorithmes de plus courts chemins. Ce travail est soutenu par l’ARC INRIA COINC.

Mots-clés: Network Calculus, algèbre (min,+), plus courts chemins, multiplexage.
Optimal routing for end-to-end guarantees: the price of multiplexing

Anne Bouillard
ENS Cachan / IRISA
Campus de Beaulieu
35000 Rennes, France
Anne.Bouillard@irisa.fr

Bruno Gaujal
INRIA / LIG
51, Av Jean Kuntzmann
38330 Montbonnot, France
Bruno.Gaujal@inria.fr

Sébastien Lagrange
INRIA / LISA
62, Av Notre Dame du Lac
49000 Angers, France
Sebastien.Lagrange@istia.univ-angers.fr

Eric Thierry
ENS Lyon / IXXI
46 Allee d’Italie
69007 Lyon, France
Eric.Thierry@ens-lyon.fr

ABSTRACT
In this paper we show how Network Calculus can be used to compute the optimal route for a flow (w.r.t. end-to-end guarantees on the delay or the backlog) in a network in the presence of cross-traffic. When cross-traffic is independent, the computation is shown to boil down to a functional shortest path problem. When cross-traffic perturbs the main flow over more than one node, then the “Pay Multiplexing Only Once” phenomenon makes the computation more involved. We provide an efficient algorithm to compute the service curve available for the main flow and show how to adapt the shortest path algorithm in this case.

General Terms
Network Calculus, (min,+) algebra, shortest path, multiplexing

1. INTRODUCTION
Optimizing the route of a flow of packets through a network has been investigated in many directions and using many approaches depending on the assumptions made on the system as well as the performance objectives. When one wants to maximize the throughput of one connection, most recent results in deterministic contexts use multi-flow or LP techniques [3, 4], or optimal control and/or game theory in a stochastic one as for example in [1].

When the maximal delay over all packets in the flow is the performance index, fewer results are available in the literature. Under static assumptions on the flows and the network resources, optimal bandwidth allocation has been investigated in [7]. However, when the flows and the resources have dynamic features, most focus is on simple systems such as single nodes where the issue becomes optimal scheduling.

Here we consider the problem of computing the route of a flow that provides the best delay guarantee \(D_{\text{max}} \) (no packet of the flow will ever spend more than \(D_{\text{max}} \) seconds in the system) or backlog guarantee \(B_{\text{max}} \) (the number of packets of the flow inside the network never tops \(B_{\text{max}} \)), in the presence of cross-traffic. Network Calculus [6, 11] is a framework that allows us to formulate this problem as a mathematical program.

In the first part of this paper, we show how to compute the best route for one flow from source to destination over an arbitrary network when the cross-traffic in each node is independent. Using the network calculus framework, we show that this boils down to solving a classical shortest path problem using appropriate costs at each node, as soon as the service curves are convex (resp. affine) and arrival curves are affine (resp. concave), which are classical assumptions in Network Calculus.

The second part of the paper considers the more realistic case where cross-traffic in each node is not independent. This happens when several flows follow the same sub-paths over more than two nodes or when the main flow crosses the same cross-traffic several times. This case is much harder to solve because of the “Pay Multiplexing Only Once” (PMOO) phenomenon, which was first identified in [10]. When the main flow merges with a cross-traffic, its service might be strongly reduced in the first node. However, in the following nodes, the interference due to the cross-traffic cannot be as severe since the competition for the resource has already been partially resolved in the previous ones. The PMOO phenomenon can be quantified in the Network Calculus context. It does provide tighter bounds on performance guarantees but this comes with a price:

- In that case we only tackle efficiently networks with a strong acyclicity property (introduced in this paper).
- The algorithms involved have much higher complexities.

For single paths, the approach in [13] provides an example showing how to compute the global service curve for a single path with 2 cross-traffic flows. When the service curve in each node is piecewise affine, then the algorithm provided in [13] is based on a decomposition in affine functions. The complexity grows exponentially with the number of cross-traffic flows and the number of nodes in the path. Here, we provide an explicit general formula for the PMOO phenomenon for arbitrary cross-traffic. The global service curve is written under the form of a multi-dimensional convolu-
tion which helps designing an algorithm to compute it with a sub-quadratic complexity. For routing problems, this single path computation can be applied to find the best route in an acyclic network, taking into account PMOO. Under stronger assumptions (affine functions, concentration of the cross-traffic), we show how to speed up the best route computation by reducing the problem once more to classical shortest path algorithms.

2. PERFORMANCE GUARANTEES

In this section, we recall the main definitions and the main properties of the Network Calculus functions and operations. More precise insights can be found in [6, 11].

2.1 Network Calculus Functions

Network Calculus is based on the (min,+) algebra and models flows and services in a network with non-decreasing functions taking their values in the (min,+) semiring.

Formally, the (min,+) semiring, denoted by \((\mathbb{R}_{\min}, \circ, \oplus)\) is defined on \(\mathbb{R}_{\min} = \mathbb{R} \cup (+\infty)\), and is equipped with two internal operations: \(\circ\), the minimum, and \(\oplus\), the addition. The zero element is \(+\infty\), the unitary element is \(0\). The \(\odot\) and \(\oplus\) operators are commutative and associative. Moreover \(\odot\) is distributive over \(\oplus\).

Consider the set \(\mathcal{F} = \{f: \mathbb{R} \rightarrow \mathbb{R}_{\min} | f \) continuous\}. One can define as follows two operators on \(\mathcal{F}\), the minimum, denoted by \(\circ\) and the (min,+) convolution, denoted by \(\odot\): for all \(f, g \in \mathcal{F}\), \(\forall t \in \mathbb{R}_{\geq 0}\),

- \(f \circ g(t) = f(t) \circ g(t)\) and
- \(f \odot g(t) = \inf_{s \leq t}(f(s) + g(t - s))\).

The triple \((\mathcal{F}, \circ, \odot)\) is also a semiring and the convolution can be seen as an analogue to the classical \((+,\times)\) convolution of filtering theory, transposed in the \((\text{min},+)\) algebra. Another important operator for Network Calculus is the (max,+) deconvolution, denoted by \(\otimes\): let \(f, g \in \mathcal{F}\), \(\forall t \geq 0\),

- \(f \otimes g(t) = \sup_{s \geq 0} f(t + s) - g(u)\).

2.2 Arrival and Service Curves

Given a data flow traversing a system, let \(A\) be its arrival function (i.e. \(A(t)\) is the number of packets that have arrived until time \(t\)). We say that \(\alpha\) is an arrival curve for \(A\) (or that \(A\) is upper-constrained by \(\alpha\)) if for all \(t \in \mathbb{R}_{\geq 0}\), \(A(t + s) - A(s) \leq \alpha(t)\). This means that the number of packets arriving between time \(s\) and \(t + s\) is never larger than \(\alpha(t)\). An important particular case of arrival curve is the affine functions: \(\alpha(t) = \sigma t + \rho\). Then \(\sigma\) represents the maximum number of packets that can arrive simultaneously (the maximal burst) and \(\rho\) the maximal long-term rate of arrivals.

Consider \(D\) the departure function of the flow, defined similarly by the number \(D(t)\) of packets that have left the system until time \(t\). The system provides a (minimum) service curve \(\beta\) if \(D \geq A \odot \beta\). Particular cases of service curves are the peak rate functions with rate \(\rho\) (the system can serve \(\rho\) packets per unit of time) and the pure delay service curves with delay \(d\): \(\beta(t) = 0\) if \(t < d\) and \(\beta(t) = +\infty\) otherwise. The combination of those two service curves gives a rate-latency function \(\beta: t \mapsto R(t - T)\), where \(\alpha\) denotes \(\max(\alpha, 0)\). A strict service curve \(\beta\) is a service curve s.t. for all \(t \in \mathbb{R}_{\geq 0}\), \(\forall u \in \mathbb{R}_{\geq 0} \text{ and } \forall v \geq 0, \alpha(t) + \beta(t - u)\).

The worst case backlog and the delay can be characterized easily with Network Calculus.

Definition 1. Let \(A\) be the arrival function of a flow through a system and \(D\) be its corresponding departure function. Then the backlog of the flow at time \(t\) is

\[b(t) = A(t) - D(t)\]

and the delay (assuming FIFO order for serving packets of the flow) at time \(t\) is

\[d(t) = \inf\{s \geq 0 | A(t) \leq D(t + s)\}\].

Given an arrival curve and a service curve, it is possible to compute the Network Calculus operations the maximal backlog and delay. Moreover, one can also compute the arrival curve of the departure process.

Theorem 1. (\([6, 11]\)). Let \(A\) be the arrival function with an arrival curve \(\alpha\) for a flow entering a system with service curve \(\beta\). Let \(D\) be the departure function. Then,

1. \(D\) has an arrival curve \(\alpha' = \alpha \odot \beta\).
2. \(b(t) \leq B_{\text{max}} = \sup\{\alpha(t) - \beta(t) | t \geq 0\} = \alpha \odot \beta(0)\).
3. \(d(t) \leq D_{\text{max}} = \inf\{d \geq 0 | \forall t \geq 0, \alpha(t) \leq \beta(t + d)\} = \sup\{d \geq 0 | (-\beta) \odot (-\alpha)(d) \leq 0\}\).

The maximal backlog in the maximal vertical distance between \(\alpha\) and \(\beta\) while the maximal delay is given by the maximal horizontal distance between those two functions. Figure 1 illustrates this fact.

![Figure 1: Guarantee bounds on backlog and delay.](image-url)
flows can interfere. A network can be modeled, with no loss of generality, by a directed graph where the flows must follow the arcs and the servers (commuters, transmission links, routers...) are represented by the vertices.

The two following lemmas are very useful for computing service curves for concatenation of servers and for blind multiplexing of flows.

Lemma 1 ([6, 11]). Consider two servers in tandem with respective service curves β_1 and β_2. Then the concatenation of the two servers offers a minimum service curve $\beta_1 \cdot \beta_2$ to the flow.

Lemma 2 ([6, 11]). Consider a server offering a strict concave arrival curve α and two flows entering that server, with respective arrival curves α_1 and α_2. Then a service curve for flow 1 is $\beta_1 = (\beta - \alpha_2)$.

The next example illustrates some Network Calculus computations for usual input functions. We will make an intensive use of those elementary results throughout the paper.

Example 1 ([11]). Let $\alpha(t) = \sigma + pt$, $\beta(t) = R(t-T)$, where $\sigma, p, R, T \geq 0$. Then $(\alpha \circ \beta)(t) = (\sigma + pt) + pt$ if $p \leq R$ and $+\infty$ everywhere if $p \geq R$. And $\beta \circ \alpha$ is $(R - p)(t-T)$, where T is $\frac{\sigma}{p}$ if $p < R$ and 0 everywhere if $p \geq R$. Let $\beta_1(t) = R(t - T)$, $i \in \{1, 2\}$. Then $(\beta_1 \circ \beta_2)(t) = \min(R_1, R_2)(t - (T_1 + T_2)) +$.

2.4 Representation of the functions

Our main objective is to find algorithms that enable to do some computations in Network Calculus. Then, we have to consider the implementability of the Network Calculus operations and functions. This question is addressed in [5] where it is shown that Network Calculus operations can be performed efficiently on a good class of functions with a finite representation: the piecewise affine functions that are ultimately pseudo-periodic. Here, we will make some further assumptions: our functions are continuous and piecewise affine with a finite number of segments, i.e. its slope. The end of the segment is given by the next point.

In all the following, the functions we consider are always continuous and piecewise affine with a finite number of segments, or even if not stated.

We will also always suppose that the networks are stable, i.e. the total number of packets in the servers never grows to infinite. For the class of functions we use as arrival and service curves, checking the stability of a network is easy if the directed graph is acyclic: at each vertex, the long-term rate of arrivals must be less than the long-term service rate, i.e. the sum over the flows entering the vertex of the ultimate slopes of their arrival curves must be less than the ultimate slope of the service curve. For general digraphs, the complexity of this decision problem is open [2].

3. OPTIMAL ROUTING WITH INDEPENDENT CROSS-TRAFFIC

In this section, we wish to route one flow over an arbitrary network. Each vertex may or may not be subject to interference due to independent cross-traffic: the cross-traffic in any two vertices are not correlated. We want to find a path from the source x of the flow to its destination y, that optimizes the end-to-end performance guarantees for that flow, given the service curves at each vertex and the arrival of that flow and of the cross-traffic.

Here, every function is continuous and non-decreasing. Moreover, we consider that the service curves are convex and take into account the cross-traffic with blind multiplexing: if vertex v offers a service curve β_v and the cross-traffic in vertex v has arrival curve α_v, then we will use $\beta_v = (R_v - \alpha_v)$ as the service curve for the main flow, as shown in Lemma 2. Such a reduction is totally appropriate for independent cross-traffic. Once this is done, no mention of the cross-traffic is necessary anymore in this section.

We also suppose that the arrival curves are concave, which occurs in many classical cases. Note that given an arrival curve for a flow, its concave envelope remains an arrival curve, it provides concavity at the price of loosening the bounds. The service curves will be supposed convex. Moreover, the interferences with other cross-traffic flows with concave arrival curves, captured by Lemma 2, leave the service curves convex.

The general routing problem we consider in this section is:

Given a directed graph $G = (V, A)$ with a service curve β_v for all $v \in V$ and some flow specifications, namely its source $x \in V$, its destination $y \in V$ and an arrival curve α_v compute a path from x to y such that the worst case backlog/delay for the flow is minimal.

In graph theory, one can mention two classical versions of optimal routing. With arcs and/or vertices weighted by numbers, the first one consists in finding the shortest path from one source to one destination, and the latter one is to find a path with maximum bottleneck capacity. Those two problems can be seen as special cases of our problem, when respectively the service curves β_v are all pure delays or are all peak rates.

We will present some special cases of our general problem. Let first state some general lemmas about computing the maximum backlog and delay.

Let f be a continuous piecewise affine function. We define $r_f(t)$ as $\lim_{\epsilon \to 0^+} \frac{B_{f+\epsilon}(t) - B_f(t)}{\epsilon}$, the slope of f at the right of t.

Lemma 3. Let A be an arrival flow with a concave continuous and piecewise affine arrival curve α and S be a system with a convex continuous and piecewise affine service curve β. Then, the maximal backlog for the system crossed by A is

$$B_{\text{max}} = \alpha(t_0) - \beta(t_0),$$

where $t_0 = \min \{ t \in \mathbb{R}_+ \mid r_\alpha(t) \leq r_\beta(t) \}$.

Before proving that lemma, let first notice that t_0 is a point
of change of slope of α or of β and can be computed in linear time in the number of slopes of the functions.

Proof. As α is concave, continuous and piecewise affine and β is convex, continuous and piecewise affine, $\gamma = \beta - \alpha$ is also convex, continuous and piecewise affine. Then, γ has at most one local maximum (that can be an interval).

For every $t \leq t_0$, $r_s(t) = r_s(t) - r_e(t) \geq 0$, and then γ is non-decreasing on $[0, t_0]$. For every $t \geq t_0$, $r_s(t) = r_s(t) - r_e(t) \leq 0$ (by convexity of β and concavity of α), and then γ is non-increasing on $[t_0, +\infty[$. The maximum of γ is then obtained at t_0.

Lemma 4. Let L be an arrival process with a convex continuous and piecewise affine arrival curve α and S be a system with a convex continuous and piecewise affine service curve β. Then, the maximal delay for packets of S through L is

$$D_{\text{max}} = \begin{cases} \beta^{-1}(\alpha(i0)) & \text{if } r_s(\beta^{-1}(\alpha(i0))) \geq r_e(0) \\ \beta^{-1}(\alpha(t0)) - t_0 & \text{otherwise,} \end{cases}$$

where $t_0 = \min(t \mid r_s(\beta^{-1}(\alpha(t))) \geq r_e(t))$.

Proof. The horizontal distance between α and β at ordinate y is $\beta^{-1}(y) - \alpha^{-1}(y)$, with $\alpha^{-1}(0) = 0$ if $\alpha(0) < y$. As α and β are increasing, α^{-1} and β^{-1} are well-defined and are piecewise affine. Moreover, α^{-1} is convex and continuous, and β^{-1} is concave and continuous, so Lemma 3 can be applied to those two functions.

Here again, to compute t_0, one only has to look among the points where α or β have a change of slope. That can be done in linear time.

3.1 Concave arrival curve / rate-latency service curves

We consider here concave arrival curves, and service curves that are the combination of a pure delay and a conservative link: $\forall v \in S$, $A(v) = r(v) + D(v)$.

Lemma 5. Let $\beta: t \mapsto r(t - T_1)$, be a service curve for an arrival curve α (concave, piecewise-affine and continuous). Let $t_0 = \min(t \mid r_s(t) \leq r)$ be the point where the slope of α becomes less than r. The maximum delay is $D_{\text{max}} = T - \alpha(t_0)/r - t_0$ and the maximum backlog is $D_{\text{max}} = \alpha(T) - \beta(t_0)$ otherwise.

Proof. It is a direct consequence of Lemmas 3 and 4.

Consider a simple path v_0, \ldots, v_i in the graph. The concatenation of the servers of those vertices is $\beta = \beta_{v_0} \cdots \beta_{v_i}$ and for all $i \in [1, I]$, we have $\beta(t) = (\min_{s \in \{i, \ldots, j\}} r_s(t - \text{sum}_{s=i}^j T_s))$. Then the previous lemma can apply to the concatenation of servers. If $\min_{s \in \{i, \ldots, j\}} r_s$ is fixed and only the β_s's make β vary, then t_0 is also fixed and the maximum delay is given by $D_{\text{max}} = \alpha(t_0)/r - t_0 + \text{sum}_{s=i}^j T_s$. The computation of the maximum delay over simple paths can be reduced to the addition of delays T_s, on the vertices of the paths, plus a constant. As for paths containing cycles, the maximal delay cannot be computed the same way, but it is always larger than the maximum delay over the simple path obtained by removing all the cycles. Therefore, they can be discarded in our optimization problem. One can use a shortest path algorithm to compute the path that minimizes the maximal delay.

The basic idea is to consider one by one each vertex of the graph, and for each vertex v_0 compute the shortest path from x to y, with weights on vertex v being T_0 or $+\infty$ if $r(v) < r$. The weight of the path plus $\alpha(t_0)/r - t_0$ gives the maximal delay for a fixed service rate. The minimal worst-case delay is then the minimum of all the computed delays. Algorithm 1 uses the same principle, but automatically eliminates vertices that cannot lead to better performances on the delay. **Shortest-path**(G, x, y, w) computes the shortest path in G from x to y with weights on the vertices $w(v)$, $v \in V$. This can be done using Dijkstra’s algorithm, which can be implemented with complexity $O(|E| + |V| \log |V|)$.

If the graph is acyclic, it can be done in $O(|V| + |E|)$.

The overall complexity of Algorithm 1 is $O(|E|(|V| + |V| \log |V|))$.

Algorithm 1. Min worst case delay (rate-latency services)

Data: $G = (V,A)$ a directed graph, $(T(v))_{v \in V}$ weights on the vertices, $x, y \in V$.

Result: Path from x to y minimizing D_{max}

begin

$d_1 \leftarrow +\infty$;

while x and y are connected do

$\gamma \leftarrow$ Shortest-path(G, x, y, T);

$d_2 \leftarrow$ weight of p;

$r \leftarrow$ the minimum service rate of the vertices of p;

Compute t_0;

$d_1 \leftarrow \min(d_1, d_2 + \alpha(t_0)/r - t_0)$;

$V' \leftarrow \{v \in V \mid r_v \leq r\}$;

$G \leftarrow (V - V', A|_{V' \rightarrow V'})$.

return d_1;

end

The same algorithm can be used for computing the best path regarding the backlog. The main difference is that the backlog is not exactly additive, depending on the comparison between t_0 and $\sum_{s=i}^j T_s$ on a path. But the smallest T is, the smallest the backlog is. One only has to replace the command $d_1 \leftarrow \min(d_1, d_2 + \alpha(t_0)/r - t_0)$ by Algorithm 2.

Algorithm 2 Min worst case backlog (rate-latency services)

begin

If $t_0 \leq d_1$ then

$d_2 \leftarrow \alpha(t_0) - r(t_0 - D)$;

$d_1 \leftarrow \min(d_1, d_2)$;

end

3.2 Affine arrival curve / convex service curves

We now consider the dual case, where the service curves are quite general (convex, piecewise affine and continuous) and the arrival curves are affine functions. We will see that it is easier to compute the maximal backlog, as a single shortest path computing is enough, but for the delay, we show that sub-paths may not be optimal in some cases, which makes the shortest path problem very tricky since up to our knowledge no shortest path algorithm exists in that case.
3.2.1 Minimizing the maximal backlog

Proposition 1. Let \(S \) be a non-decreasing, piecewise affine convex service curve for a server \(S \) and a flow entering \(S \) that has an affine arrival curve \(\alpha, \alpha(t) = \sigma + pt \). Let \(t_0 = \min\{ t \in \mathbb{R}_+ \mid \beta(t) \geq 0 \} \). Then, \(\max_{t \in [0, t_0]} \beta(t) = \sigma + \rho t_0 - f(t_0) \).

Proof. This is a direct consequence of Lemma 3.

We now give the key theorem of the paragraph, that is the optimality of the sub-paths, regarding the backlog. More precisely, if there exist two paths from \(x \) to \(p_1 \) and \(p_2 \) and a path \(p_3 \) from \(x \) to \(v \), then if \(p_1 \) offers a better guarantee than \(p_3 \) then \(p_2 \) offers a better guarantee than \(p_2 p_3 \).

Theorem 2. Let \(\beta_1, \beta_2, \beta_3 \) be three non-decreasing convex functions on \(\mathbb{F} \) and \(\alpha : t \mapsto \sigma + pt \). Set \(b_i = \max\{ \sigma + pt - \beta_i(t) \} \) and \(b_i' = \max\{ \sigma + pt - \beta_i (t) \}, i \in \{1, 2, 3\} \). If \(b_1 \leq b_2 \), then \(b_1' \leq b_2' \).

Proof. Let \(t_l = \min\{ t \in \mathbb{R}_+ \mid r(t) \geq 0 \}, i \in \{1, 2, 3\} \).

Let \(\beta_1 \) and \(\beta_2 \) be convex, \(\beta_1 \times \beta_2 \) is also convex, and it is a well-known fact that the convolution of such piecewise affine functions is the concatenation of the segments of the functions in the increasing order of the slopes, starting from \(\beta_1 \times \beta_2(0) = \beta_1(0) + \beta_2(0) \). Then, the backlog for the concatenation of \(\beta_1 \) and \(\beta_2 \) is obtained as

\[
\begin{align*}
b_i &= \alpha(t_1 + t_2) - \beta_i(t_1 + t_2) \\
&= \alpha(t_1 + t_2) - \beta_i(t_1) - \beta_i(t_2) \\
&= \beta_i + \rho t_1 - \beta_i(t_1) \\
&= \beta_i + \rho t_2 - \beta_i(t_2).
\end{align*}
\]

The same holds for \(\beta_2 \) and \(\beta_3 \). Then \(b_1' - b_2' = b_1 - b_2 \).

The proof of the theorem gives a method, shown in Algorithm 3, to minimize the maximal backlog of the system only computing a shortest path in a graph, with the adequate weighting.

Algorithm 3. Min worst case backlog (affine arrivals).

Data: A directed graph \(G = (V, A) \), \(\beta_i, \forall v \in V \), the service curve for the servers for each vertex, \(x, y \in V \), \((x, y) \) arrival curve.

Result: Path from \(x \) to \(y \) minimizing the maximal backlog of the system.

begin
foreach \(v \in V \) do
\(t_v = \min\{ t \mid r_v(t) \geq 0 \} \);
\(u(v) = \rho t_v - \beta_i(t_v) \);
\(p = \text{Shortest-path}(G, x, y, v) \);
\(B_{\max} \leftarrow u(v) + \sigma \).
end

3.2.2 Maximal delay of a packet

Proposition 2. Let \(\alpha \) be a continuous, convex, piecewise affine service curve for a server \(S \) and a flow entering \(S \) that have an affine arrival curve \(\alpha, \alpha(t) = \sigma + pt \). Let \(t_0 = \min\{ t \mid r(t) \geq 0 \} \). Then

\[
B_{\max} = \begin{cases}
\beta^{-1}(\sigma) & \text{if } t_0 \leq \sigma \\
\frac{t_0 - \beta^{-1}(\sigma)}{\rho} & \text{if } t_0 \geq \sigma
\end{cases}
\]

Proof. This is a direct consequence of Lemma 4.

The fact that there are two different possible values for the maximum delay prevents from adapting any simple shortest algorithm: the property that an optimal path is also locally optimal cannot be applied anymore. Indeed, let define \(\beta_i : t \mapsto \max(0, \frac{t}{3} - 2t - 10) \), \(\beta_2 : t \mapsto \max(0, \frac{t}{3} - 2t - 20) \) and \(\beta_3 : t \mapsto \max(0, \frac{t}{3} - 2t - 22) \) and an arrival \(\alpha : t \mapsto 2 + 1/2t \).

Those function are represented on Figure 2. The maximal delay for \(\beta_1 \) is \(d_1 = 6 \), and for \(\beta_2, d_2 = 8 \). Now, look at the delay for the \(\beta_1 + \beta_2 \) and \(\beta_3 + \beta_1 \)-servers (\(d_1' \) and \(d_2' \) respectively). We have \(d_1' = 17 \) and \(d_2' = 16 \). Then the sub-path optimality is violated in that case, jeopardizing the shortest path algorithms.

4. OPTIMAL ROUTING WITH GENERAL CROSS TRAFFIC

When the cross-traffic is not independent, the previous approach collapses. The first issue comes from the computation of the service curve over a simple path which is addressed in the next subsection while the problem of optimization is addressed in Section 4.4.

The algorithms described in the previous section only deal with independent flows. In the general case, there are several flows interfering. In that case, the Pay Multiplexing Only Once (PMOO) phenomenon has to be taken into account to have tighter bounds. In all the section, we make a strong assumption: we focus on a single flow that crosses several interfering traffic flows over sets of consecutive vertices.

As in [12], we assume here that we have blind multiplexing of the flows (there are no priority / FIFO policy) and make a worst case analysis. We generalize the bounds in [12] and give an efficient algorithm to compute the minimal service curve for one flow interfering with several other flows under blind multiplexing.

4.1 PMOO for one interfering flow
Let A_1 and A_2 be two arrival processes with respective arrival curves α_1 and α_2 that cross two concatenated servers with strict service curves β_1 and β_2. Let us compute the overall service curve for A_1 under blind multiplexing. Lemma 2 and Theorem 1 ensure that the service curve for A_1 is $\langle \beta_1 - \alpha_1 \rangle$, at server 1 and $\langle \beta_2 - \alpha_2 \circ \beta_1 \rangle$ at server 2. Lemma 1 then states that the service curve for the two concatenated servers is $\beta = \langle \beta_1 - \alpha_2 \rangle + \langle \beta_2 - \alpha_2 \circ \beta_1 \rangle$. On the other hand, if one sees the two servers as one server (their concatenation) and then compute the service curve for A_1 under blind multiplexing, then the service curve for A_1 is $\beta' = \langle (\beta_1 - \alpha_2) \rangle$.

We have $\forall t \in \mathbb{R}_+$,

$$\langle (\beta_1 - \alpha_2) \rangle_+ \ast \langle (\beta_2 - \alpha_2) \rangle_+ \leq \langle \beta_1 - \alpha_2 \rangle_+ \ast \langle \beta_2 - \alpha_2 \circ \beta_1 \rangle_+$$

$$= \inf_{s \in [t \leq t]} (\beta_1(s) + \beta_2(t - s) - \alpha_2(t))_+ \leq \left(\inf_{s \in [t \leq t]} (\beta_1(s) + \beta_2(t - s)) \right)_+.$$

So $\beta' \geq \beta$ and the second service curve is better than the first one. This illustrates the PMOO phenomenon: considering the multiplexing only once with the concatenation of the servers gives better results. Things become more complex when there are several interfering flows. An example of overlapping flows is given in Figure 3, where PMOO cannot be analysed using only the simple convolution and multiplexing operations described in Lemmas 1 and 2.

Figure 3: Overlapping flows.

4.2 PMOO with several interfering flows

Now, consider a flow F_j with an arrival curve α_j, crossing servers S_1, \ldots, S_n in that order. A strict service curve for $S_j, j \in \{1, \ldots, n\}$ is β_j. Let $\{F_j\}_{j=1}^{n}$ be the flows that interfere with F_j, with respective arrival curves α_j. Suppose that flow F_j interfere with F_i only on a connected subpath (concatenated servers in the same order). Let us denote by S_{n_j} the server where the interference between F_j and F_i starts, and by S_{i_j} the server where it ends (in particular, we have $S_{n_j} = S_1$ and $S_{i_j} = S_n$). We denote by $A_j(t)$ the number of packets of flow F_j served by server S_j at time t and by $A_j^{(n-1)}(t)$ the number of packets of flow F_j arrived at time t.

Lemma 6. With the notations and assumptions above, $\forall t \in \mathbb{R}_+$, $\sum_{j=1}^{n} \alpha_j \in \mathbb{R}_+$ such that

$$A_j^{(n)}(t) - A_j^{(n)}(t - \sum_{j=1}^{n} u_j) \geq 0, \text{ and}$$

$$A_j^{(n-1)}(t) - A_j^{(n-1)}(t - \sum_{j=1}^{n} u_j) \geq \sum_{j=1}^{n} \beta_j(u_j) - \sum_{j=1}^{n} A_j^{(n)}(t) - A_j^{(n-1)}(t - \sum_{j=1}^{n} u_j).$$

Proof. The proof is done by induction on the number of servers.

For $n = 0$, nothing needs to be done: $A_j^{(0)}(t) - A_j^{(0)}(t) \geq 0 = e(0)$, where e is the unit element of \mathcal{F}, $e(0) = 0$ and $e(t) = +\infty$ otherwise. Now, suppose that the lemma holds for $n - 1$ servers. In particular, it holds for the $n - 1$ first servers of a system of n servers, with the restriction of the interfering flows to S_1, \ldots, S_{n-1}.

Consider the n-th server and denote by B the set of flows beginning their interaction with F_j at server S_n and C the flows that have an interaction continuing to server S_n. For every $t \in \mathbb{R}_+$, there exists u_n such that

$$A_j^{(n)}(t) + \sum_{i \in B \setminus C} A_j^{(n)}(t) \geq \beta_j(u_n) + A_j^{(n-1)}(t - u_n),$$

and $t - u_n$ is the start of the last backlog period at server n. This gives

$$A_j^{(n)}(t) - A_j^{(n-1)}(t - u_n) \geq 0 \text{ and } \beta_j(u_n) = \sum_{i \in B \setminus C} A_j^{(n)}(t) - A_j^{(n-1)}(t - u_n). \tag{1}$$

Note that for every flow i in $B, s_i = n$ and for every flow in $B \cup C$, $e_i = n$.

Now, we are ready to combine Eq. (1) and the induction hypothesis applied to $t - u_n$: there exists of $u_1, \ldots, u_{n-1} \in \mathbb{R}_+$ such that

$$A_j^{(n)}(t) - A_j^{(n)}(t - \sum_{j=1}^{n} u_j) \geq \sum_{j=1}^{n} \beta_j(u_j) - \left(\sum_{i \in B \setminus C} A_j^{(n)}(t - \sum_{j=1}^{n} u_j) - A_j^{(n-1)}(t - \sum_{j=1}^{n} u_j) \right)$$

$$- \left(\sum_{i \in B \setminus C} A_j^{(n)}(t - \sum_{j=1}^{n} u_j) - A_j^{(n-1)}(t - \sum_{j=1}^{n} u_j) \right) - \left(\sum_{i \in B \setminus C} A_j^{(n)}(t) - A_j^{(n-1)}(t - u_n) \right).$$

The above remarks and straightforward simplifications for flows in C lead to the result for n servers, and in the same way this difference is proved to be non-negative.

Theorem 3. With the same assumptions and notations as above, if for each $i \in \{1, \ldots, k\}$, α_i is concave, then a service curve for F_i of the servers S_1, \ldots, S_n under blind multiplexing is

$$\phi(t) = \inf_{u_n, \ldots, u_k \geq 0} \sum_{i=1}^{k} \beta_i(u_i) + \sum_{i=1}^{k} \alpha_i \left(\sum_{j=1}^{n} u_j \right) \tag{2}$$

Proof. Take the formula of the previous lemma. By causality of the system, we have $\forall t \in \{1, \ldots, k\}$,
Consider server bounding work calculus operators. Here is one possible simplification, of Figure 3. The service curve given by Theorem 3 is trac \nows and 3 nodes. In the following we will show how ane arrival curves and the service curve of the path for each of these ane arrival curves and thus, we can decide how to compute the service curve \(\phi \) by taking advantage of the convexity and the concavity of the curves. It directly uses an algorithmic approach which is detailed in the next section, and it outperforms the algorithm in [12].

4.3 Computation of the service curve of a path

Set \(J = \{1, \ldots, n \} \) and \(I = \{1, \ldots, k \} \). Here we state a more general problem: let \(\{f_i\}_{i \in I} \) be a finite set of convex, continuous and piecewise affine functions on \(\mathbb{R}^+ \) and for each \(i \in I \), define \(J_i \subseteq J \). One wants to compute \(\phi \) defined on \(\mathbb{R}_+ \) as

\[
\phi(t) = \min_{u_1, \ldots, u_n \geq 0} \sum_{i \in I} f_i \left(\sum_{j \in J_i} u_j \right), \quad u_1 + \cdots + u_n = t
\]

LEMMA 7. The function \(\phi \) is convex, continuous and piecewise affine.

PROOF SKETCH. For all \(i \in I \), the function \(f_i(\sum_{j \in J_i} u_j) \) is convex because it is a maximum of affine functions. Therefore, \(\sum_{i \in I} f_i(\sum_{j \in J_i} u_j) \) is also convex over the compact domain \(\{u_1, \ldots, u_n \geq 0, \sum_{j \in J_i} u_j = t \} \). The minimum over \(\{u_1, \ldots, u_n \geq 0, \sum_{j \in J_i} u_j = t \} \) is also convex because \(\sum_{j \in J_i} u_j = t \) is a linear constraint over \(\mathbb{R}^n \).

Secondly, the functions \(f_i(\sum_{j \in J_i} u_j) \) are piecewise affine so that \(\sum_{i \in I} f_i(\sum_{j \in J_i} u_j) \) is piecewise affine as well as \(\min_{u_1 + \cdots + u_n = t} \sum_{i \in I} f_i(\sum_{j \in J_i} u_j) \).

Now, let compute \(\phi \) on an interval \([0, a]\), \(a > 0 \), and a small enough so that \(\phi|_{[0,a]} \) is affine. Pose

\[
F(u_1, \ldots, u_n) = \sum_{i \in I} f_i \left(\sum_{j \in J_i} u_j \right).
\]

For every \(j \in J \), let \(I_j = \{ i \in I | j \in J_i \} \) be the set of functions where \(u_j \) appears in the expression of \(\phi \) and let \(\rho_j = \sum_{i \in I_j} r_i(0) \) be the slope of \(F \) when only \(u_j \) varies around 0. Let \(\rho = \min \{ \rho_1, \ldots, \rho_N \} \) be the minimal slope and suppose, without loss of generality that \(\rho_j = \rho \). Then, on an interval \([0,a]\), we have \(\phi(t) = F(t, 0, \ldots, 0) \). As every function \(f_i \) is convex, the slopes are increasing and that equality holds for \(a \) being the first point of change of slope of a function \(f_i \), \(i \in I_1 \).

Let \(t \geq a \). Suppose that \(\phi(t) = F(u_1, \ldots, u_n) \) with \(u_1 < a \). We show that there exists another decomposition \(\phi(t) = F(u_1', \ldots, u_n) \) where \(u_1' = a \).
Set \(b = a - u_1, v_1 = a \) and consider a decomposition of \(t - a \) in \(t = a = \sum_{j \in J-1} v_j \) with \(v_1 \leq v_j \), \(j \in J-1 \). We have

\[
F(u_1, \ldots, u_n) - F(v_1, \ldots, v_n) = \sum_{i \in \{1, n\}} f_i \left(\sum_{j \in J} u_j \right) - f_i \left(\sum_{j \in J} v_j \right).
\]

For \(i \in \{1, n\} \), let us define \(h_i \) by \(f_i \left(\sum_{j \in J} u_j \right) - f_i \left(\sum_{j \in J} v_j \right) = h_i \sum_{j \in J} \left(u_j - v_j \right) \), the average slope for \(f_i \), being \(h_i \) over \(I-1 \) and over \(I \). For \(i \in I_1 \), define \(h_i \) by \(f_i \left(\sum_{j \in J} u_j \right) - f_i \left(\sum_{j \in J} v_j \right) = h_i \sum_{j \in J-1} \left(u_j - v_j \right) \).

The equation above can be rewritten as

\[
\sum_{j \in J} h_j \sum_{j \in J-1} \left(u_j - v_j \right) = \sum_{j \in J-1} h_j \left(u_j - v_j \right) - \rho b.
\]

But, because of the convexity of the functions and because \(\rho \) is the minimum of the slopes around 0, we have \(\sum_{j \in J} h_j \geq 0 \) and a decomposition for \(\phi(t) \) can be found where \(u_j \geq a \).

Set \(f_i(x) = f_i(t + u) \neq f_i(t) \) if \(i \notin I_1 \) and \(f_i(x) = f_i(t) \) for \(i \in I_1 \). For every \(t \geq a \), there exists \(u_1, \ldots, u_n \geq 0 \) with \(u_j \geq a \) such that

\[
\phi(t) = \sum_{j \in J} f_i \left(\sum_{j \in J} u_j \right) = \sum_{j \in J} f_i \left(\sum_{j \in J} u_j \right),
\]

with \(u_j = u_j - a \) and \(u_j' = u_j \) for \(j \geq 2 \). The functions \(f_j' \) are still convex, continuous and piecewise affine. So one can compute \(\phi \) on an interval \([a, b]\) using the \(f_j' \). Remark also that the total size of the functions \(f_j' \) is strictly less than that of the \(f_j \), because \(a \) corresponds to a change of slope of a function (so the first segment of that function disappears in at least on of the \(f_j \), \(j \in I_1 \)). The function \(\phi \) can then be computed in finite time, repeating the computations above at most as many times as the total number of the last segment of the functions \(f_j \).

Algorithm 4 gives the computation of \(\phi \). The operators are represented as described in Paragraph 2.4. Operator \text{Next} \(f \) points on the next triple of \(f \) and \text{AddSegment} construct \(\phi \) adding the last three parameters as the last segment of \(\phi \). Moreover \(\phi \), \(x \), \(y \) and \(\rho \) represent the triple of the last constructed segment. In the outside loop, \(p \) can be found in time \(n, t_0 \) in time at most \(k \). The inside loop has a constant execution time if the total length remains the same, and has a complexity at most \(n \) if the total size of the \(f_j \)’s decreased by one. The overall complexity is then in \(O(f(J) |I| k + n) \).

Applying Algorithm 4 to the functions \(\beta_j \) and \(-\alpha_i \) outputs a function \(\phi \) and then removing the negative part by taking \(\phi_* \) gives the computation of the service curve of Theorem 3.

Algorithm 4: Computation of \(\phi \).

Data: \(I, J \) two finite sets, \(f_j, i \in I \) convex continuous piecewise affine functions, \(I \subseteq J, I_1 \subseteq I \) such that \(i \in I \leftrightarrow j \in J, \).

Result: \(\phi(t) = \min_{u_j \in J} \sum_{j \in I} f_j(u_j) \).

begin
\(\phi = \infty; x = \sum_{j \in I} f_j(x); y = \sum_{j \in I} f_j(y); \)
\(\text{foreach} \ j \in J \ do \ \rho[j] = \sum_{j \in I} f_j; \)
\(\text{foreach} \ i \in I \ do \ \ell_i = \text{Next} f_i, x = f_i, x; \)
repeat
\(\text{Find} \ \rho \ \text{such that} \ \rho[\phi] = \min\{\rho[j], j \in J\}; \)
\(\rho = \rho[\phi]; \text{AddSegment}(\phi, x, y, \rho); \)
\(\ell_0 = \min\{\ell_i \in I \}; \)
\(x = \phi \times x + \ell = x, y = \phi \times y + \rho \times \ell; \)
\(\text{foreach} \ i \in I_0 \ do \ \ell_i = \text{Next} f_i, x = f_i, x; \)
if \(\ell_i = 0 \) then \(\rho = f_i, \rho = f_i, \)
\(\ell_i = \text{Next} f_i, x = f_i, x; \)
\(\text{foreach} \ j \in J \ do \ \rho[j] = \rho[j] - \rho^2 + f_i, \rho; \)
until \(\ell_0 = +\infty; \)
end

When all \(\beta_j \) are rate-latency functions and all \(\alpha_i \) are affine, \(\phi_* \) is also a rate-latency function and its computation can be done in linear time due to simplifications as shown in the next section.

4.4 Adaptation of the algorithms to the PMOO

In this section, we consider only the most simple case: arrival curves are affine and service curves are rate-latency curves.

4.4.1 General acyclic graphs

Also, we consider an acyclic graph \(G = (V, A) \). Each vertex \(v \) is a server with a minimal service curve \(\beta \), \(t \rightarrow R_s(t) - T_s \). In that graph, there are some cross-traffic flows \(F_j, i \in \{1, \ldots, k\} \) which respectively follow paths \(p_j \) and have respective arrival curves \(\alpha_i \). Consider that the main flow \(F_0 \) follows a path \(p \) of the graph. Since the network is acyclic, the vertices are sorted according to the topological order. If vertex \(v \in p \), one computes the service curve \(\phi_i(t) \) of the cross-traffic \(F_j \) just after \(v \). Its arrival curve in the following node will then be \(\alpha_i \circ \phi_i \). Using Theorem 3, the service curves \(\phi_i(t) \) are defined by the following inductive formula, where \(v_1, \ldots, v_m \) are the vertices over path \(p_j \) up to node \(v \) (included) and \(F_{j_1}, \ldots, F_{j_m} \) are all the flows interfacing with flow \(F_j \) up to vertex \(v \). \(\alpha_i(t) \) is the vertex on \(p_j \) just before flows \(F_j \) and \(F_k \) meet for the \(t \) time (they meet \(t \) in total) and \(p(t) \) is the \(t \) common sub-path for the flows \(F_j \) and \(F_k \) after node \(v(t) \):

\[
\phi_i(t) = \left\{ \min_{\sum_{j=1}^{m} \sum_{j=1}^{m} \alpha_i(v_j)} \sum_{j=1}^{m} \sum_{j=1}^{m} \alpha_i(v_j)(\sum_{j=1}^{m} u_j) \right\}.
\]

Using these notations, the end to end service curve of the main flow over path \(p \) is \(\phi_0(t) \).
The maximal delay and backlog strongly depend on the composition of a pure delay and a conservative link on path p chosen for the main flow. Here, we characterize networks for which this is not the case and where the arrival curve of cross traffic at each node can be precomputed by the classic use of the deconvolution formula as explained e.g. in [11]. Moreover the computation of the best route for the main flow can be carried without computing the service curve on each path.

An acyclic network with cross-traffic is strongly acyclic if for any pair of vertices in a connected component of the subgraph obtained by keeping only the arcs used by the cross-traffic, they are connected by at most one path in the initial graph which necessarily belongs to the subgraph.

Assuming that all α_i are affine with rate-latency service curves on each node, and using the formula of ϕ in Theorem 3, the service curve on a path $p = v_1, \ldots, v_m$ can be written as

$$\phi(t) = \left(-\int_{t}^{\infty} \alpha_i + \min_{e=\{v_{i-1},v_i\}} \sum_{j=1}^{\infty} (\beta_{i,j}(u_j) - (\sum_{k \in E_j} \rho_k)u_j) \right),$$

where I is the set of the flows crossing path p.

Then, the key idea to model this is to weight the graph with service curves on the vertices and on the arcs:

- Vertex v is weighted with $\beta_v : t \mapsto \beta_v(t) - (\sum_{e \in T_v} \rho_e)$. Then, the key idea to model this is to weight the graph with service curves on the vertices and on the arcs:

- Arc $e = (u,v)$ is weighted with β_e with $\beta_e(0) = \sum_{t \in E, e \in T} \sigma$, and $\forall t \in \mathbb{R}_+ - \{0\}, \beta_e(0) = +\infty$. On path $p = v_1, v_2, \ldots, v_n$, the service curve is $\phi = (\beta_{v_1} \ast \beta_{v_1,v_2} \ast \beta_{v_2,v_3} \ast \cdots \beta_{v_{n-1},v_n} \ast \beta_{v_n,v_{n+1}})$. With the hypothesis on the arrival and service curves, such a service curve is the composition of a pure delay and a conservative link $\phi : t \mapsto R(t-T)$. For a flow F on that path, with an affine arrival curve $\alpha(t) = \sigma + \rho t$, the maximal backlog is $\alpha(T) = \sigma + \rho T$ and the maximal delay is $\phi^{-1}(\sigma) = T + \sigma/R$. Due to the special shapes of input functions, both R and T can be easily computed. The rate R is the smallest number among the rates of the β_i. Then T can be deduced:

$$T = \sum_{e \in E} T_e \left(1 + \sum_{t \in E} \rho_e \frac{1}{R} + \sum_{t \in E} \frac{\sigma(t)}{R} \right)$$

The maximal delay and backlog strongly depend on R, and if R is fixed, the same kind of algorithm as Algorithm 1 can be applied. In order to compute the maximal delay, for fixed R, the weight of a vertex v is $T_e(1 + \sum_{i \in E} \frac{\rho_i}{R})$ and the weight of an arc $e = (u,v)$ is $\rho \sum_{i \in E} \frac{\sigma_i}{R}$. The maximal delay on a path is the sum of the weights on that path plus σ/R.

In order to compute the maximal backlog, for fixed R, the weight of a vertex v is $R(t - T_v)$ and the weight of an arc $e = (u,v)$ is $\rho \sum_{i \in E} \frac{\sigma_i}{R}$. The maximal backlog on a path is the sum of the weights on that path plus σ/R.

Following the scheme of Algorithm 1, in the worst case, one has to execute one shortest path algorithm per vertex (it covers all the possible rates R). All this is summarized in the following proposition.

Proposition 3. For a strongly acyclic network (V, A), with affine arrival curves and rate-latency service curves, the optimal end-to-end service curve is a rate-latency service curve that can be computed using a shortest path algorithm with an overall complexity in $O(|V|(|V| + |A|))$.

Like in the case without the interfering flows in Section 3.1, σ can be any concave function. However, if the α_i were not affine, the computation of ϕ on a path would not be based on these simple convolutions, but on the more complex operations explained in Section 4.3, preventing us from using the preceding reduction to a shortest path problem.

4.5 Implementation work

Following the algorithmic framework of [3], a software for worst case performance evaluation with Network Calculus is currently under development. The main Network Calculus operations have been implemented for a large class of piecewise affine functions including the classical arrival and service curves of network calculus. A first version should be released soon for downloads (COINC Project [8]).

The new multi-dimensional operator, described in Algorithm 4 and corresponding to the service curve ϕ on a path with cross traffic has been incorporated to the software. Routing algorithms presented in this paper have also been implemented.

These implementations are now tested on the example of Figure 4, which a strongly acyclic graph.

![Figure 4: An example of a strongly acyclic network.](image)

The routing problem has been solved for a main flow with arrival curve α that enters the network at vertex β_1 and leaves at vertex β_5. The arrival curves are affine: $\alpha(t) = \sigma + \rho t$ and for cross traffic $\alpha_i(t) = \sigma_i + \rho_i t$, $i \in \{8, 9, 10, 11\}$. The service curves are rate-latency functions in all nodes: $\beta_i(t) = R(t - T_i)$, $i \in \{0, 1, \ldots, 7\}$. The numerical values used for the example are given below.
In the example, the main flow may take three different paths:
Path 1 is \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \)
and Path 2 is \(\beta_1, \beta_2, \beta_3, \beta_4 \),
Path 3 is \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6 \).
It can be easily checked that this network with its cross-traffic is strongly acyclic.

By applying the routing algorithm sketched in Section 4.4.2,
we have also computed for each path:
- the best maximal delay is reached over Path 3:
\(B_{\text{max}} = 17.1875 \)
- the worst case backlog \(B_{\text{max}} = 70.51 \).
As for the delay, the best maximal delay is reached over Path 3:
\(D_{\text{max}} = 17 \).

In order to check the results and to point out the benefits of taking into account PMOO compared to the classical approach [11] treating the cross-traffic as independent in each node,
we have also computed for each path:
- the service curve \(\phi_{\text{PMOO}}^i \) for the path \(i \) when taking into account PMOO,
thanks to Algorithm 4,
- the service curve \(\phi_{\text{classic}}^i \) for the path \(i \) computed in the classical way.

These two service curves are (e.g. on Path 1):
\[
\phi_{\text{PMOO}}^1(t) = \left\{ \min \left(\beta_1(u_1) + \beta_1(u_1) + \beta_2(u_1) + \beta_3(u_3) \right) + \beta_4(u_4) + \beta_5(u_5) - \alpha_1(u_1 + u_4) - \alpha_2(u_3 + u_5) \right\} \\
\phi_{\text{classic}}^1(t) = \beta_1 * (\beta_1 - \alpha_1)_+ + (\beta_2 - \alpha_2)_+ \\
* (\beta_3 - \alpha_3) + (\beta_4 - \alpha_4) + (\beta_5 - \alpha_5) \\
\]

The six curves are pictured on Figure 5 and their parameters are listed below. One can measure the gain of \(\phi_{\text{PMOO}} \) over \(\phi_{\text{classic}} \) and note that with \(\phi_{\text{classic}} \), Path 3 would have been wrongly chosen as the best for the backlog.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\phi_{\text{PMOO}}^i)</th>
<th>(\phi_{\text{classic}}^i)</th>
<th>(B_{\text{max}} \text{ PMOO})</th>
<th>(B_{\text{max}} \text{ classic})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>46</td>
</tr>
</tbody>
</table>

5. CONCLUSION
Network Calculus does lend itself well to routing problems optimizing performance guarantees. We have shown how to solve them efficiently in some usual cases for an independent cross-traffic where extensions to more general arrival and service curves are under study. Then we have provided a new multi-dimensional operator quantifying the PMOO phenomenon for interfering flows, generalizing results of [12], and we have shown how to use it in routing problems for more general cross-traffic. Our results give insights into the benefit, but also the cost, of taking into account PMOO.
These are some new steps in the construction of efficient software tools for the analysis and the control of complex networks, based on Network Calculus.

6. REFERENCES