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Abstract. We extend the transfer theorem of [14] to the complex field. That is,
we investigate the links between the class VPSPACE of families of polynomials
and the Blum-Shub-Smale model of computation over C. Roughly speaking,
a family of polynomials is in VPSPACE if its coefficients can be computed in
polynomial space. Our main result is that if (uniform, constant-free) VPSPACE

families can be evaluated efficiently then the class PARC of decision problems
that can be solved in parallel polynomial time over the complex field collapses
to PC. As a result, one must first be able to show that there are VPSPACE

families which are hard to evaluate in order to separate PC from NPC, or even
from PARC.
Keywords: computational complexity, algebraic complexity, Blum-Shub-Smale
model, Valiant’s model.

1 Introduction

In algebraic complexity theory, two main categories of problems are studied:
evaluation and decision problems. The evaluation of the permanent of a matrix
is a typical example of an evaluation problem, and it is well known that the
permanent family is complete for the class VNP of “easily definable” polynomial
families [18]. Deciding whether a system of polynomial equations has a solution
over C is a typical example of a decision problem. This problem is NP-complete
in the Blum-Shub-Smale model of computation over the complex field [1,2].

The main purpose of this paper is to provide a transfer theorem connecting
the complexity of evaluation and decision problems. This paper is therefore in
the same spirit as [13] and [14] (see also [4]). In the present paper we work with
the class of polynomial families VPSPACE introduced in [14]. Roughly speaking,
a family of polynomials (of possibly exponential degree) is in VPSPACE if its
coefficients can be evaluated in polynomial space. For instance, it is shown in [14]
that resultants of systems of multivariate polynomial equations form a VPSPACE

family. The main result in [14] was that if (uniform, constant-free) VPSPACE

families can be evaluated efficiently then the class PARR of decision problems
that can be solved in parallel polynomial time over the real numbers collapses
to PR.

⋆ UMR 5668 ENS Lyon, CNRS, UCBL, INRIA. Research report RR2007-27.
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Here we extend this result to the complex field C. At first glance the result
seems easier because the order ≤ over the reals does not have to be taken into
account. The result of [14] indeed makes use of a clever combinatorial lemma
of [10] on the existence of a vector orthogonal to roughly half a collection of
vectors. More precisely, it relies on the constructive version of this lemma [6].
On the complex field, we do not need this construction.

But the lack of an order over C makes another part of the proof more difficult.
Indeed, over R testing whether a point belongs to a real variety is done by testing
whether the sum of the squares of the polynomials is zero, a trick that cannot be
used over the complex field. Hence one of the main technical developments of this
paper is to explain how to decide with a small number of tests whether a point
is in the complex variety defined by an exponential number of polynomials. This
enables us to follow the nonconstructive proof of [12] for our transfer theorem.

Therefore, the main result of the present paper is that if (uniform, constant-
free) VPSPACE families can be evaluated efficiently then the class PARC of deci-
sion problems that can be solved in parallel polynomial time over the complex
field collapses to PC (this is precisely stated in Theorem 2). The class PARC plays
roughly the same role in the theory of computation over the complex field as
PSPACE in discrete complexity theory. In particular, it contains NPC [1] (but the
proof of this inclusion is much more involved than in the discrete case). It follows
from our main result that in order to separate PC from NPC, or even from PARC,
one must first be able to show that there are VPSPACE families which are hard
to evaluate. This seems to be a very challenging lower bound problem, but it is
still presumably easier than showing that the permanent is hard to evaluate.
Organization of the paper. We first recall in Section 2 some usual notions
and notations concerning algebraic complexity (Valiant’s model, the Blum-Shub-
Smale model) and quantifier elimination. The class VPSPACE is defined in Sec-
tion 3 and some properties proved in [14] are given. Section 4 explains how to
decide with a polynomial number of VPSPACE tests whether a point belongs to
a variety. The main difficulty here is that the variety is given as a union of an
exponential number of varieties, each defined by an exponential number of poly-
nomials. Finally, Section 5 is devoted to the proof of the transfer theorem. Sign
conditions are the main tool in this section. We show that PARC problems are
decided in polynomial time if we allow Uniform VPSPACE0 tests. The transfer
theorem follows as a corollary.

2 Notations and Preliminaries

2.1 The Blum-Shub-Smale Model

In contrast with boolean complexity, algebraic complexity deals with other struc-
tures than {0, 1}. In this paper we will focus on the complex field (C,+,−,×,=).
Although the original definitions of Blum, Shub and Smale [2,1] are in terms of
uniform machines, we will follow [17] by using families of algebraic circuits to
recognize languages over C, that is, subsets of C∞ =

⋃

n≥0 Cn.
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An algebraic circuit is a directed acyclic graph whose vertices, called gates,
have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is
a gate of outdegree 0. We assume that there is only one such gate in the circuit.
Gates of indegree 2 are labelled by a symbol from the set {+,−,×}. Gates of
indegree 1, called test gates, are labelled “= 0?”. The size of a circuit C, in
symbols |C|, is the number of vertices of the graph.

A circuit with n input gates computes a function from Cn to C. On input
ū ∈ Cn the value returned by the circuit is by definition equal to the value of
its output gate. The value of a gate is defined in the usual way. Namely, the
value of input gate number i is equal to the i-th input ui. The value of other
gates is then defined recursively: it is the sum of the values of its entries for a
+-gate, their difference for a −-gate, their product for a ×-gate. The value taken
by a test gate is 0 if the value of its entry is 6= 0 and 1 otherwise. Since we are
interested in decision problems, we assume that the output is a test gate: the
value returned by the circuit is therefore 0 or 1.

The class PC is the set of languages L ⊆ C∞ such that there exists a tuple
ā ∈ Cp and a P-uniform family of polynomial-size circuits (Cn) satisfying the
following condition: Cn has exactly n+ p inputs, and for any x̄ ∈ Cn, x̄ ∈ L ⇔
Cn(x̄, ā) = 1. The P-uniformity condition means that Cn can be built in time
polynomial in n by an ordinary (discrete) Turing machine. Note that ā plays the
role of the machine constants of [1,2].

As in [5], we define the class PARC as the set of languages over C recognized
by a PSPACE-uniform (or equivalently P-uniform) family of algebraic circuits of
polynomial depth (and possibly exponential size), with constants ā as for PC.
Note at last that we could also define similar classes without constants ā. We
will use the superscript 0 to denote these constant-free classes, for instance P0

C

and PAR0
C.

We end this section with a theorem on the first-order theory of the complex
numbers: quantifiers can be eliminated without much increase of the coefficients
and degree of the polynomials. We give a weak version of the result of [9]:
in particular, we do not need efficient elimination algorithms. Note that the
only allowed constants in our formulae are 0 and 1 (in particular, only integer
coefficients can appear). For notational consistency with the remainding of the

paper, we denote by 2s, 2d and 22M

the number of polynomials, their degree
and the absolute value of their coefficients respectively. This will simplify the
calculations and emphasize that s, d andM will be polynomial. Note furthermore
that the polynomial p(n, s, d) in the theorem is independent of the formula φ.

Theorem 1. Let φ be a first-order formula over (C, 0, 1,+,−,×,=) of the form
∀x̄ψ(x̄), where x̄ is a tuple of n variables and ψ a quantifier-free formula where
2s polynomials occur. Suppose that their degrees are bounded by 2d and their

coefficients by 22M

in absolute value.
There exists a polynomial p(n, s, d), independent of φ, such that the formula

φ is equivalent to a quantifier-free formula ψ in which all polynomials have degree
less than D(n, s, d) = 2p(n,s,d), and their coefficients are integers strictly bounded

in absolute value by 22MD(n,s,d).
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2.2 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages.
We thus use arithmetic circuits instead of algebraic circuits. A book-length treat-
ment of this topic can be found in [3].

An arithmetic circuit is the same as an algebraic circuit but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together
with arbitrary constants of C; there are +, − and ×-gates, and we therefore
compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual way
by the polynomial computed by its output gate. Thus a family (Cn) of arithmetic
circuits computes a family (fn) of polynomials, fn ∈ C[x1, . . . , xu(n)]. The class
VPnb defined in [15] is the set of families (fn) of polynomials computed by a
family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes fn and there
exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume without
loss of generality that the number u(n) of variables is bounded by a polynomial
function of n. The subscript nb indicates that there is no bound on the degree
of the polynomial, in contrast with the original class VP of Valiant where a
polynomial bound on the degree of the polynomial computed by the circuit is
required. Note that these definitions are nonuniform. The class Uniform VPnb

is obtained by adding a condition of polynomial-time uniformity on the circuit
family, as in Section 2.1.

We can also forbid constants from our arithmetic circuits in unbounded-
degree classes, and define constant-free classes. The only constant allowed is
1 (in order to allow the computation of constant polynomials). As for classes
of decision problems, we will use the superscript 0 to indicate the absence of
constant: for instance, we will write VP0

nb
(for bounded-degree classes, we are to

be more careful: the “formal degree” of the circuits comes into play, see [15,16]).

3 The Class VPSPACE

The class VPSPACE was introduced in [14]. Some of its properties are given there
and a natural example of a VPSPACE family coming from algebraic geometry,
namely the resultant of a system of polynomial equations, is provided. In this
section, after the definition we give some properties without proof and refer
to [14] for further details.

3.1 Definition

We fix an arbitrary field K. The definition of VPSPACE will be stated in terms
of coefficient function. A monomial xα1

1 · · ·xαn
n is encoded in binary by α =

(α1, . . . , αn) and will be written x̄α.

Definition 1. Let (fn) be a family of multivariate polynomials with integer co-
efficients. The coefficient function of (fn) is the function a whose value on input
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(n, α, i) is the i-th bit a(n, α, i) of the coefficient of the monomial x̄α in fn. Fur-
thermore, a(n, α, 0) is the sign of the coefficient of the monomial x̄α. Thus fn

can be written as

fn(x̄) =
∑

α

(

(−1)a(n,α,0)
∑

i≥1

a(n, α, i)2i−1x̄α
)

.

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be
viewed as a language. This allows us to speak of the complexity of the coefficient
function. Note that if K is of characteristic p > 0, then the coefficients of our
polynomials will be integers modulo p (hence with a constant number of bits).
In this paper, we will focus only on the field C (which is of characteristic 0).

Definition 2. The class Uniform VPSPACE0 is the set of all families (fn) of
multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-
ments:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to present only Uniform VPSPACE0, a uniform class without
constants, because this is the main object of study in this paper. In keeping
with the tradition set by Valiant, however, the class VPSPACE is nonuniform
and allows for arbitrary constants. See [14] for a precise definition.

3.2 An Alternative Characterization and Some Properties

Let Uniform VPAR0 be the class of families of polynomials computed by a
PSPACE-uniform family of constant-free arithmetic circuits of polynomial depth
(and possibly exponential size). This in fact characterizes Uniform VPSPACE0.
The proof is given in [14].

Proposition 1. The two classes Uniform VPSPACE0 and Uniform VPAR0 are
equal.

We see here the similarity with PARC, which by definition are those languages
recognized by uniform algebraic circuits of polynomial depth. But of course there
is no test gate in the arithmetic circuits of Uniform VPAR0.

We now turn to some properties of VPSPACE. The following two propositions
come from [14]. They stress the unlikeliness of the hypothesis that VPSPACE has
polynomial-size circuits.

Proposition 2. Assuming the generalized Riemann hypothesis (GRH), VPnb =
VPSPACE if and only if [P/poly = PSPACE/poly and VP = VNP].
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Proposition 3. Uniform VPSPACE0 = Uniform VP0
nb =⇒ PSPACE = P-uniform NC.

Remark 1. To the authors’ knowledge, the separation “PSPACE 6= P-uniform NC”
is not known to hold (by contrast, PSPACE can be separated from logspace-
uniform NC thanks to the space hierarchy theorem).

Let us now state the main result of this paper.

Theorem 2 (main theorem). If Uniform VPSPACE0 = Uniform VP0
nb

then
PAR0

C = P0
C
.

Note that the collapse of the constant-free class PAR0
C to P0

C
implies PARC =

PC: just replace constants by new variables so as to transform a PARC problem
into a PAR0

C problem, and then replace these variables by their original values
so as to transform a P0

C
problem into a PC problem.

The next section is devoted to the problem of testing whether a point be-
longs to a variety. This problem is useful for the proof of the theorem: indeed,
following [12], several tests of membership to a variety will be made; the point
here is to make them constructive and efficient. The main difficulty is that the
variety can be defined by an exponential number of polynomials.

4 Testing Membership to a Union of Varieties

In this section we explain how to perform in Uniform VPSPACE0 membership
tests of the form “x̄ ∈ V ”, where V ⊆ Cn is a variety. We begin in Section 4.1 by
the case where V is given by s polynomials. In that case, we determine after some
precomputation whether x̄ ∈ V in n + 1 tests. We first need two lemmas given
below in order to reduce the number of polynomials and to replace transcendental
elements by integers.

Then, in Section 4.2, we deal with the case where V is given as a union of
an exponential number of such varieties, as in the actual tests of the algorithm
of Section 5. Determining whether x̄ ∈ V still requires n + 1 tests, but the
precomputation is slightly heavier.

Let us first state two useful lemmas. Suppose a variety V is defined by
f1, . . . , fs, where fi ∈ Z[x1, . . . , xn]. We are to determine whether x̄ ∈ V with
only n + 1 tests, however big s might be. In a nonconstructive manner, this is
possible and relies on the following classical lemma already used (and proved)
in [12]: any n + 1 “generic” linear combinations of the fi also define V (the
result holds over any infinite field but here we need it only over C). We state
this lemma explicitly since we will also need it in our constructive proof.

Lemma 1. Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials and V be the variety
of Cn they define. Then for all coefficients (αi,j)i=1..s,j=1..n+1 ∈ Cs(n+1) alge-
braically independent over Q, the n + 1 linear combinations gj =

∑s

i=1 αi,jfi

(for j from 1 to n+ 1) also define V .
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Unfortunately, in our case we cannot use transcendental numbers and must
replace them by integers. The following lemma from [11] asserts that integers
growing sufficiently fast will do. Once again, this is a weaker version adapted to
our purpose.

Lemma 2. Let φ(α1, . . . , αr) be a quantifier-free first-order formula over the
structure (C, 0, 1,+,−,×,=), containing only polynomials of degree less than
D and whose coefficients are integers of absolute value strictly bounded by C.
Assume furthermore that φ(ᾱ) holds for all coefficients ᾱ = (α1, . . . , αr) ∈ Cr

algebraically independent over Q.
Then φ(β̄) holds for any sequence (β1, . . . , βr) of integers satisfying β1 ≥ C

and βj+1 ≥ CDjβD
j (for 1 ≤ j ≤ r − 1).

The proof can be found in [11, Lemma 5.4] and relies on the lack of big
integer roots of multivariate polynomials.

Let us sketch a first attempt to prove a constructive version of Lemma 1,
namely that n + 1 polynomials with integer coefficients are enough for defin-
ing V (this first try will not work but gives the idea of the proof of the next
section). The idea is to use Lemma 2 with the formula φ(ᾱ) that tells us that
the n+ 1 linear combinations of the fi with αi,j as coefficients define the same
variety as f1, . . . , fs. At first this formula is not quantifier-free, but over C we
can eliminate quantifiers while keeping degree and coefficients reasonably small
thanks to Theorem 1. Lemma 1 asserts that φ(ᾱ) holds as soon as the αi,j are
algebraically independent. Then Lemma 2 tells us that φ(β̄) holds for integers
βi,j growing fast enough. Thus V is now defined by n+ 1 linear combinations of
the fi with integer coefficients.

In fact, this strategy fails to work for our purpose because the coefficients
involved are growing too fast to be computed in polynomial space. That is why
we will proceed by stages in the proofs below: we adopt a divide-and-conquer
approach and use induction.

4.1 Tests of Membership

The base case of our induction is the following lemma, whose proof is sketched
in the end of the preceding section. We only consider here a small number of
polynomials, therefore avoiding the problem of too big coefficients mentioned in
the preceding section.

Lemma 3. There exists a polynomial q(n, d) such that, if V ⊆ Cn is a variety
defined by 2(n + 1) polynomials f1, . . . , f2(n+1) ∈ Z[x1, . . . , xn] of degree ≤ 2d

and of coefficients bounded by 22M

in absolute value, then:

1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of

degree ≤ 2d and of coefficients bounded by 22M+q(n,d)

in absolute value;
2. furthermore, the coefficients of the gi are bitwise computable from those of

the fj in working space Mq(n, d).
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Proof. The first-order formula φ(ᾱ) (where ᾱ ∈ C2(n+1)2), expressing that the
n + 1 linear combinations of the fj ’s with coefficients ᾱ also define V , can be
written as follows:

φ(ᾱ) ≡ ∀x ∈ Cn





n+1
∧

i=1

2(n+1)
∑

j=1

αi,jfj(x) = 0 ↔

2(n+1)
∧

j=1

fj(x) = 0



 ,

where αi,j is a shorthand for α2(i−1)(n+1)+j . The polynomials in this formula are

of degree ≤ 1 + 2d and their coefficients are bounded in absolute value by 22M

.
Over C, the quantifier of this formula can be eliminated by Theorem 1: φ(ᾱ)

is equivalent to a quantifier-free formula ψ(ᾱ), the polynomials occuring in which
have their degree less than D = D(n, log(3(n+ 1)), d+ 1) and their coefficients

strictly bounded in absolute value by C = 22M D, where D(n, log(3(n+ 1)), d+
1) = 2p(n,log(3(n+1)),d+1) is defined in Theorem 1.

By Lemma 1, ψ(ᾱ) holds for all coefficients ᾱ algebraically independent, so
that we wish to apply Lemma 2 with integers βi growing sufficiently fast. Let
r = (1 + 2(n+ 1)2)p(n, log(3(n+ 1)), d+ 1), so that

D ≤ 2r and CD2(n+1)2 ≤ 22M+r

and define
βi = 22M+2ir

for 1 ≤ i ≤ 2(n+ 1)2.

Note that for all i, βi ≤ 22M+4(n+1)2r

, and it is furthermore easy to check that
β1 ≥ C and βi+1 ≥ CDiβD

i . Thus by Lemma 2, ψ(β̄) is true. Define the poly-
nomial q(n, d) = 1 + 4(n + 1)2r (up to a multiplicative constant for the space
complexity below). Now, letting

gi =

2(n+1)
∑

j=1

βi,jfj ,

where βi,j is a shorthand for β2(i−1)(n+1)+j , proves the first point of the lemma.
For the second point, remark that the coefficients βi are bitwise computable

in space O(M + rn2) and that the coefficients of the gi are merely a sum of
2(n+ 1) products of βj and coefficients of the fk. This multiplication uses only

space O(M + rn2) since the integers involved have encoding size 2O(M+rn2) (in
our case this is particularly easy because the βj are powers of 2). The 2n + 1
additions are also performed in space O(M + rn2). This proves the second point
of the lemma. ⊓⊔

Proposition 4 now follows by induction.

Proposition 4. There exists a polynomial p(n, s, d) such that, if V is a vari-
ety defined by 2s polynomials f1, . . . , f2s ∈ Z[x1, . . . , xn] of degree ≤ 2d and of

coefficients bounded by 22M

in absolute value, then:
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1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of

degree ≤ 2d and of coefficients bounded by 22M+p(n,s,d)

in absolute value;
2. moreover, the coefficients of the gi are bitwise computable from those of the

fj in working space Mp(n, s, d).

Proof. This is done by induction on s. Take p(n, s, d) = sq(n, d) where q(n, d) is
the polynomial defined in Lemma 3. The base case 2s ≤ 2(n + 1) follows from
Lemma 3. Suppose therefore that 2s > 2(n + 1). Call V1 and V2 the varieties
defined respectively by f1, . . . , f2s−1 and by f2s−1+1, . . . , f2s . Then V = V1 ∩ V2

and by induction hypothesis, V1 and V2 are both defined by n+1 polynomials of

degree ≤ 2d whose coefficients are bounded by 22M+(s−1)q(n,d)

in absolute value
and computable in space M(s− 1)q(n, d).

Therefore by Lemma 3, V is defined by n + 1 polynomials of degree ≤ 2d

whose coefficients are bounded by 22M+sq(n,d)

in absolute value and computable
in space Msq(n, d) as claimed in the proposition. ⊓⊔

4.2 Union of Varieties

In our case, however, the tests made by the algorithm of Section 5 are not exactly
of the form studied in the previous section: instead of a single variety given by
s polynomials, we have to decide “x ∈ W?” when W ⊆ Cn is the union of k
varieties. Of course, since the union is finite W is also a variety, but the encoding
is not the same as above: now, k sets of s polynomials are given.

A first naive approach is to define W = ∪iVi by the different products of the
polynomials defining the Vi, but it turns out that there are too many products to
be dealt with. Instead, we will adopt a divide-and-conquer scheme as previously.

Lemma 4. There exists a polynomial q(n, d) such that, if V1 and V2 are two
varieties of Cn, each defined by n + 1 polynomials in Z[x1, . . . , xn], respectively

f1, . . . , fn+1 and g1, . . . , gn+1, of degree ≤ 2d and of coefficients bounded by 22M

in absolute value, then:

1. the variety V = V1 ∪ V2 is defined by n + 1 polynomials h1, . . . , hn+1 in

Z[x1, . . . , xn] of degree ≤ 2d+1 and of coefficients bounded by 22M+q(n,d)

in
absolute value;

2. the coefficients of the hi are bitwise computable from those of the fj and gk

in space Mq(n, d).

Proof. The variety V is defined by the (n + 1)2 polynomials figj for 1 ≤ i, j ≤
n + 1: these polynomials have degree ≤ 2d+1. Note moreover that there are at
most 2n(d+1) monomials of fixed degree δ ≤ 2d+1, therefore the coefficients of
the figj are a sum of at most 2n(d+1) products of integers of encoding size 2M .
Thus they are computable in space O(Mnd) from those of the fi and gj. This
also shows that the coefficients of the products figj are bounded in absolute

value by 2n(d+1)22M+1

≤ 22M+1+n(d+1)

. Applying Proposition 4 now enables to
conclude if we take q(n, d) = 1 + n(d+ 1) + p(n, log((n+ 1)2), d+ 1), where p is
the polynomial defined in Proposition 4. ⊓⊔
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The next proposition now follows by induction.

Proposition 5. There exists a polynomial r(n, s, k, d) such that, if V1, . . . , V2k ⊆

Cn are 2k varieties, Vi being defined by 2s polynomials f
(i)
1 , . . . , f

(i)
2s ∈ Z[x1, . . . , xn]

of degree ≤ 2d and of coefficients bounded by 22M

in absolute value, then:

1. the variety V = ∪2k

i=1Vi is defined by n + 1 polynomials g1, . . . , gn+1 in
Z[x1, . . . , xn] of degree ≤ 2d+k and whose coefficients are bounded in ab-

solute value by 22M+r(n,s,k,d)

;

2. moreover, the coefficients of the gi are bitwise computable from those of the

f
(j)
j′ in space Mr(n, s, k, d).

Proof. We proceed by induction on k. Define r(n, s, k, d) = (k+1)(p(n, s, d+k)+
q(n, d+k)), where p and q are defined in Proposition 4 and Lemma 4 respectively.
The base case k = 0 is merely an application of Proposition 4. For k > 0, we first
apply Proposition 4 to the Vi, so that each variety Vi is now defined by n + 1
polynomials of degree ≤ 2d and whose coefficients are bounded in absolute value

by 22M+p(n,s,d)

and computable in space Mp(n, s, d). Let us group the varieties
Vi by pairs: call Wi = V2i−1 ∪ V2i for 1 ≤ i ≤ 2k−1. There are 2k−1 varieties Wi

and we have V = ∪iWi. By Lemma 4, each variety Wi is defined by n+ 1 poly-
nomials of degree ≤ 2d+1, of coefficients of bitsize 2M+p(n,s,d)+q(n,d) and bitwise
computable in space M(p(n, s, d) + q(n, d)). By induction hypothesis at rank
k−1, V is defined by n+1 polynomials of degree ≤ 2d+1+(k−1), of coefficients of
bitsize 2M+p(n,s,d)+q(n,d)+k(p(n,⌈log(n+1)⌉,d+k−1)+q(n,d+k−1)) ≤ 2M+r(n,s,k,d) and
bitwise computable in space Mr(n, s, k, d). This proves the proposition. ⊓⊔

Here is the main consequence on membership tests to a union of varieties.

Corollary 1. Let p(n) and q(n) be two polynomials. Suppose (fn(x̄, ȳ, z̄)) is a
Uniform VPSPACE0 family with |x̄| = n, |ȳ| = p(n) and |z̄| = q(n). For an integer

0 ≤ i < 2p(n), call V
(n)
i ⊆ Cn the variety defined by the polynomials fn(x̄, i, j)

for 0 ≤ j < 2q(n) (in this notation, i and j are encoded in binary).

Then there exists a Uniform VPSPACE0 family gn(x̄, ȳ, z̄), where |x̄| = n,
|ȳ| = p(n) and |z̄| = ⌈log(n+ 1)⌉, such that

∀x̄ ∈ Cn, ∀k < 2p(n),



x̄ ∈

k
⋃

i=0

V
(n)
i ⇐⇒

n
∧

j=0

gn(x̄, k, j) = 0



 .

Proof. If (fn) is a Uniform VPSPACE0 family, by definition there exists a poly-
nomial p(n) such that the degree of fn is bounded by 2p(n) and the absolute

value of the coefficients by 22p(n)

. Therefore d, M , s and k are polynomially
bounded in Proposition 5 and the space needed to compute the coefficients of
gn is polynomial. ⊓⊔
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5 Proof of the Main Theorem

Sign conditions are the main ingredient of the proof. Over C, we define the
“sign” of a ∈ C by 0 if a = 0 and 1 otherwise. Let us fix a family of polynomials
f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign condition is an element S ∈ {0, 1}s. Hence
there are 2s sign conditions. Intuitively, the i-th component of a sign condition
determines the sign of the polynomial fi.

5.1 Satisfiable Sign Conditions

The sign condition of a point x̄ ∈ Cn is the tuple Sx̄ ∈ {0, 1}s defined by
Sx̄

i = 0 ⇐⇒ fi(x̄) = 0. We say that a sign condition is satisfiable if it is the
sign condition of some x̄ ∈ Cn. As 0-1 tuples, sign conditions can be viewed as
subsets of {1, . . . , s}. Using a fast parallel sorting algorithm (e.g. Cole’s, [7]),
we can sort satisfiable sign conditions in polylogarithmic parallel time in a way
compatible with set inclusion (e.g. the lexicographic order). We now fix such
a compatible linear order on sign conditions and consider our satisfiable sign
conditions S(1) < S(2) < . . . < S(N) sorted accordingly.

The key point resides in the following theorem, coming from the algorithm
of [9]: there is a “small” number of satisfiable sign conditions and enumerating
them is “easy”.

Theorem 3. Let f1, . . . , fs ∈ Z[x1, . . . , xn] and d be their maximal degree. Then
the number of satisfiable sign conditions is N = (sd)O(n), and there is a uniform

algorithm working in space
(

n log(sd)
)O(1)

which, on boolean input f1, . . . , fs (in
dense representation) and (i, j) in binary, returns the j-th component of the i-th
satisfiable sign condition.

When log(sd) is polynomial in n, as will be the case, this yields a PSPACE

algorithm. If furthermore the coefficients of fi are computable in polynomial
space, we will then be able to use the satisfiable sign conditions in the coefficients
of VPSPACE families, as in Lemma 5 below.

Let us explain why we are interested in sign conditions. An arithmetic circuit
performs tests of the form f(x̄) = 0 on input x̄ ∈ Cn, where f is a polynomial.
Suppose f1, . . . , fs is the list of all polynomials that can be tested in any possible
computation. Then two elements of Cn with the same sign condition are simul-
taneously accepted or rejected by the circuit: the results of the tests are indeed
always the same for both elements.

Thus, instead of finding out whether x̄ ∈ Cn is accepted by the circuit, it is
enough to find out whether the sign condition of x̄ is accepted. The advantage
resides in handling only boolean tuples (the sign conditions) instead of complex
numbers (the input x̄). But we have to be able to find the sign condition of
the input x̄. This requires first the enumeration of all the polynomials possibly
tested in any computation of the circuit.
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5.2 Enumerating all Possibly Tested Polynomials

In the execution of an algebraic circuit, the values of some polynomials at the
input x̄ are tested to zero. In order to find the sign condition of the input x̄, we
have to be able to enumerate in polynomial space all the polynomials that can
ever be tested to zero in the computations of an algebraic circuit. This is done
level by level as in [8, Th. 3] and [14].

Proposition 6. Let C be a constant-free algebraic circuit with n variables and
of depth d.

1. The number of different polynomials possibly tested to zero in the computa-
tions of C is 2d2O(n).

2. There exists an algorithm using work space (nd)O(1) which, on input C and
integers (i, j) in binary, outputs the j-th bit of the representation of the i-th
polynomial.

Together with Theorem 3, this enables us to prove the following result which
will be useful in the proof of Proposition 7: in Uniform VPSPACE0 we can enu-
merate the polynomials as well as the satisfiable sign conditions.

Lemma 5. Let (Cn) be a uniform family of polynomial-depth algebraic circuits
with polynomially many inputs. Call d(n) the depth of Cn and i(n) the number

of inputs. Let f
(n)
1 , . . . , f

(n)
s be all the polynomials possibly tested to zero by Cn

as in Proposition 6, where s = 2O(nd(n)2). There are therefore N = 2O(n2d(n)2)

satisfiable sign conditions S(1), . . . , S(N) by Theorem 3.
Then there exists a Uniform VPSPACE0 family (gn(x̄, ȳ, z̄)), where |x̄| = i(n),

|ȳ| = O(n2d(n)2) and |z̄| = O(nd(n)2), such that for all 1 ≤ i ≤ N and 1 ≤ j ≤
s, we have:

gn(x̄, i, j) =

{

0 if S
(i)
j = 1

f
(n)
j (x̄) otherwise.

5.3 Finding the Sign Condition of the Input

In order to find the sign condition Sx̄ of the input x̄ ∈ Cn, we will give a
polynomial-time algorithm which tests some VPSPACE family for zero. Here is
the formalized notion of a polynomial-time algorithm with VPSPACE tests.

Definition 3. A polynomial-time algorithm with Uniform VPSPACE0 tests is
a Uniform VPSPACE0 family (fn(x1, . . . , xu(n))) together with a uniform fam-
ily (Cn) of constant-free polynomial-size algebraic circuits endowed with spe-
cial test gates of indegree u(n), whose value is 1 on input (a1, . . . , au(n)) if
fn(a1, . . . , au(n)) = 0 and 0 otherwise.

Observe that a constant number of Uniform VPSPACE0 families can be used in
the preceding definition instead of only one: it is enough to combine them all in
one by using “selection variables”.
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The precise result we show now is the following. By the “rank” of a satisfiable
sign condition, we merely mean its index in the fixed order on satisfiable sign
conditions.

Proposition 7. Let (Cn) be a uniform family of algebraic circuits of polynomial
depth and with a polynomial number i(n) of inputs. There exists a polynomial-
time algorithm with Uniform VPSPACE0 tests which, on input x̄ ∈ Ci(n), returns
the rank i of the sign condition S(i) of x̄ with respect to the polynomials g1, . . . , gs

tested to zero by Cn given by Proposition 6.

Proof. Take the Uniform VPSPACE0 family (gn(x̄, ȳ, z̄)) as in Lemma 5: in essence,
gn enumerates all the polynomials f1, . . . , fs possibly tested to zero in Cn and
enumerates the N satisfiable sign conditions S(1) < . . . < S(N). The idea now is
to perform a binary search in order to find the rank i of the sign condition of
the input x̄.

Let S(j) ∈ {0, 1}s be a satisfiable sign condition. We say that S(j) is a candi-

date whenever ∀m ≤ s, S
(j)
m = 0 ⇒ fm(x̄) = 0. Remark that the sign condition

of x̄ is the smallest candidate. Call Vj the variety defined by the polynomi-

als {fm|S
(j)
m = 0}: by definition of gn, Vj is also defined by the polynomials

gn(x̄, j, k) for k = 1 to s. Note that S(j) is a candidate if and only if x̄ ∈ Vj .
Corollary 1 combined with Lemma 5 asserts that tests of the form x̄ ∈ ∪k≤jVk

are in Uniform VPSPACE0. They are used to perform a binary search by making
j vary. In a number of steps logarithmic in N (i.e. polynomial in n), we find the
rank i of the sign condition of x̄. ⊓⊔

5.4 A Polynomial-time Algorithm for PARC Problems

Lemma 6. Let (Cn) be a uniform family of constant-free polynomial-depth al-
gebraic circuits. There is a (boolean) algorithm using work space polynomial in
n which, on input i, decides whether the elements of the i-th satisfiable sign
condition S(i) are accepted by the circuit Cn.

Proof. We follow the circuit Cn level by level. For test gates, we compute the
polynomial f to be tested. Then we enumerate the polynomials f1, . . . , fs as
in Proposition 6 for the circuit Cn and we find the index j of f in this list.
By consulting the j-th bit of the i-th satisfiable sign condition with respect to
f1, . . . , fs (which is done by the polynomial-space algorithm of Theorem 3), we
therefore know the result of the test and can go on like this until the output
gate. ⊓⊔

Theorem 4. Let A ∈ PAR0
C. There exists a polynomial-time algorithm with

Uniform VPSPACE0 tests that decides A.

Proof. A is decided by a uniform family (Cn) of constant-free polynomial-depth
algebraic circuits. On input x̄, thanks to Proposition 7 we first find the rank i of
the sign condition of x̄ with respect to the polynomials f1, . . . , fs of Proposition 6.
Then we conclude by a last Uniform VPSPACE0 test simulating the polynomial-
space algorithm of Lemma 6 on input i. ⊓⊔
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Theorem 2 follows immediately from this result. One could obtain other ver-
sions of these two results by changing the uniformity conditions or the role of
constants.
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