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Abstract. Dimitri Grigoriev has shown that for any family of N vectors in the d-dimensional linear
space E = (F2)

d, there exists a vector in E which is orthogonal to at least N/3 and at most 2N/3
vectors of the family. We show that the range [N/3, 2N/3] can be replaced by the much smaller range
[N/2 −

√
N/2, N/2 +

√
N/2] and we give an efficient, deterministic parallel algorithm which finds a

vector achieving this bound. The optimality of the bound is also investigated.
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1 Introduction

Dimitri Grigoriev [6] has shown that the point location problem3 in arrangements of m algebraic hypersur-
faces of degree D in R

n can be solved by topological decision trees of depth O(n log(mD)). In topological
decision trees [14,16] nodes are labelled by arbitrary polynomials, i.e., the cost of their evaluation is ignored.
The key ingredient in his nonconstructive proof is the following combinatorial lemma. Let F2 be the two-
element field. For any family of N vectors in the d-dimensional linear space E = (F2)

d, there exists a vector
in E which is orthogonal to at least N/3 and at most 2N/3 vectors of the family. Orthogonality is defined

with respect to the F2-valued “inner product” u.v =
∑d

i=1 uivi (strictly speaking, this is of course not a
“honest” inner product since for instance a vector can be orthogonal to itself).

In order to explore the constructive aspects of Grigoriev’s point location theorem it is useful to have a
constructive version of this combinatorial lemma. Here one main goal is to obtain new transfer theorems for
algebraic versions of the P vs. NP problem. It is well known that the point location problem in arrangements
of hyperplanes can be solved efficiently by linear decision trees [9,10,11]. This was the main technical tool
in the proof that the P vs. NP problem for the real numbers with addition and order is equivalent to the
classical problem [4,5]. As suggested in [4] and [7], a better understanding of point location in arrangements
of hypersurfaces will make it possible to obtain transfer theorems for a richer model of computation in
which multiplication is allowed. Precise statements and proofs can be found in [8]. The goals of the present
paper are to improve Grigoriev’s lemma and to give a constructive version of it. Namely, we show that the
range [N/3, 2N/3] can be replaced by the much smaller range [N/2 −

√
N/2, N/2 +

√
N/2] and we give an

efficient, deterministic parallel algorithm which finds a vector achieving this bound. Our algorithm is logspace
uniform NC, i.e., it can be implemented by a family of logspace uniform boolean circuits of polynomial size
and polylogarithmic depth.

Organization of the paper. Grigoriev’s lemma is stated in [6] and at the beginning of this introduction in
the language of linear algebra. There is an equivalent formulation in a purely set-theoretic language. Namely,
we are given a set F of N distinct subsets of a finite set X . The goal is to find a subset F of X such that
roughly |F|/2 elements of F have an intersection with F of even cardinality. This set-theoretic point of view
is developed in Section 2. In Section 2.1 we give a probabilistic proof of the combinatorial lemma which
yields the improved range [N/2 −

√
N/2, N/2 +

√
N/2]. Moreover, we show that a random subset F ⊆ X

will fall in the slightly bigger range [N/2−
√

N, N/2 +
√

N ] with probability at least 3/4, so there is a quite
simple randomized algorithm for our problem. We then show that a deterministic algorithm can be obtained

3 It is misleadingly called “range searching problem” in [4] and [6].



by derandomizing the probabilistic proof of the combinatorial lemma. In Section 2.2 we give another (graph-
theoretic) proof of the lemma which achieves the same bound as the probabilistic proof. This yields another
deterministic sequential algorithm given in Section 2.3. The optimality of the bound is then discussed in
Section 2.4. We return to the language of linear algebra in Section 3 to describe our parallel algorithm. Note
that this algorithm relies on elementary facts about extensions of finite fields. Field extensions seem to be of
an intrinsically algebraic nature, so the linear algebraic point of view seems most appropriate to state and
prove the results of that section.

It would be interesting to find out whether the probabilistic proof of Section 2.1 can be derandomized to
yield not only an efficient sequential algorithm, but also an efficient parallel algorithm (more on this at the
end of Section 2.1). We conclude this introduction with a long quote from [12]: “A natural approach towards
de-randomizing algorithms is to find a method for searching the associated sample Ω for a good point w
with respect to a given input instance I. Given such a point w, the algorithm A(I, w) is now a deterministic
algorithm and it is guaranteed to find a correct solution. The problem faced in searching the sample space
is that it is generally exponential in size. The result of Adleman showing that RP ⊆ P/poly implies that
the sample space Ω associated with a randomized algorithm always contains a polynomial-sized subspace
which has a good point for each possible input instance. However, this result is highly non-constructive
and it appears that it cannot be used to actually de-randomize algorithms.” Our paper gives an example
of a problem for which this “Adlemanian” approach to derandomization is actually feasible. Indeed, our
parallel algorithm constructs a polynomial-size list of “candidate vectors” which for any set of N input
vectors is guaranteed to contain a vector orthogonal to roughly N/2 input vectors. This list is made up of
all vectors in a polynomial-size family of “candidate subspaces” of small (logarithmic) dimension. Once the
list is constructed we only have to solve an exhaustive search problem, and this can be done quite easily in
parallel.

2 The set theoretic point of view

In this section we study the set theoretic formulation of our problem: X is a finite set and F a set of N
nonempty distinct subsets of X . The goal is to find a subset F of X such that the number of elements of F
which have an odd intersection with F is as close as possible to |F|

2 .

2.1 A probabilistic proof

The first natural idea for this problem is to take for F a random subset of X .

Theorem 1. Let X be a finite set and F be a set of N nonempty subsets of X. There is a subset F ⊆ X
such that

−
√

N

2
≤ |{Fi ∈ F : |F ∩ Fi| even}| − N

2
≤

√
N

2
. (1)

Proof. Call F1, . . . , FN the elements of F . We choose a random subset F of X obtained by selecting or not
every element of X with probability 1/2.

Let Yi be the random variable defined by:

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

Therefore we are interested in the random variable

Y =

N
∑

i=1

Yi = |{i : |F ∩ Fi| even}| − |{i : |F ∩ Fi| odd}| = 2|{i : |F ∩ Fi| even}| − N.

We want to show that there exists an F for which |Y | ≤
√

N , i.e. Y 2 ≤ N .
First, let us prove that P (Yi = 1) = 1/2. This follows immediately from the facts that every subset F

occurs with same probability and that there are as many odd as even subsets in each Fi. Thus E(Yi) = 0.
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Then we prove that the events {Yi = 1} are pairwise4 independent. For this let us consider two elements
F1 and F2 of F . We have to prove that

P (Y1 = 1 ∩ Y2 = 1) = P (Y1 = 1)P (Y2 = 1) = 1/4. (2)

There are three cases:

– F1 and F2 are disjoint. In this case, it is clear that the events are independent.
– F1 ⊆ F2. This case can be reduced to the previous one for F1 and F2 \ F1 and we still have (2).
– The three sets A = F1 \ F2, B = F1 ∩ F2 and C = F2 \ F1 are nonempty. Then Y1 = 1 and Y2 = 1

is equivalent to |A ∩ F | ≡ |B ∩ F | ≡ |C ∩ F | mod 2. But since these three sets are disjoint, we have a
probability 1/8 to be in the case even-even-even and 1/8 to be in the case odd-odd-odd. Eventually, we
also have (2).

Since the events are pairwise independent we have E(YiYj) = E(Yi)E(Yj) = 0 if i 6= j. Furthermore,
E(Y 2

i ) = 1 so by linearity of the expectation we have

E(Y 2) = E(

N
∑

i=1

Y 2
i +

∑

i6=j

YiYj) = N.

Hence there exists F for which Y 2 ≤ N : this is the desired set. ⊓⊔

Remark 1. In the above proof, taking into account the fact that Y 2 = N2 for F = ∅, we obtain E(Y 2|F 6=
∅) < N . Thus there exists a set F for which the inequality is strict, i.e. Y 2 < N . In other words, there exists
a set F satisfying the stronger inequality:

−
√

N

2
< |{Fi ∈ F : |F ∩ Fi| even}| − N

2
<

√
N

2
.

Remark 2. The pairwise independence of the Yi enables us to evaluate the variance of Y : V ar(Y ) =
∑N

i=1 V ar(Yi) = N . By Tchebycheff’s inequality, we have:

P (|Y − E(Y )| > 2
√

N) = P (|Y | > 2
√

N) < V ar(Y )/(2
√

N)2 = 1/4.

This ensures that at least 3/4 of the subsets F fall within the range [N/2 −
√

N, N/2 +
√

N ], and yields a
trivial randomized algorithm for finding such a set. The deterministic algorithms of Proposition 1, Section 2.3
and Section 3 achieve however the better range [N/2 −

√
N/2, N/2 +

√
N/2] obtained in the theorem.

We now show how to derandomize the proof of Theorem 1 by the method of conditional expectations, in
order to obtain a deterministic algorithm. Note that a simpler deterministic algorithm will be presented in
Section 2.3.

Proposition 1. The proof of Theorem 1 can be derandomized using the method of conditional expectations.
This yields a polynomial-time deterministic algorithm for finding a set of even intersection with at least
N/2 −

√
N/2 and at most N/2 +

√
N/2 of the Fi’s.

Proof. Following the proof of Theorem 1, this amounts to finding a set F for which Y 2 ≤ N . We build such
a set by enumerating the elements of X and deciding in turn for each x ∈ X whether it must belong to F .
Along the way, we keep E(Y 2) bounded above by N , thus giving a guarantee that the final set F will have
the expected property.

At the beginning, we know from the proof of Theorem 1 that E(Y 2) ≤ N . At each subsequent step,
we have already determined for some elements whether they belong to F : let us call C this condition (for

4 It can be shown that these events are not always 3-wise independent.
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example, C ≡ (x1 ∈ F ) ∧ (x2 6∈ F )). By induction hypothesis we have E(Y 2|C) ≤ N . The next step is to
determine whether an element x ∈ X is in F . We have:

E(Y 2|C) = 1/2(E(Y 2|C ∧ (x ∈ F )) + E(Y 2|C ∧ (x 6∈ F ))).

Therefore there exists a choice c (either c ≡ (x ∈ F ) or c ≡ (x 6∈ F )) for which E(Y 2|C ∧c) ≤ E(Y 2|C) ≤ N .
We then move on to the next step according to this choice: this will ensure that the induction hypothesis is
satisfied at the next step. At the end of the algorithm, i.e., when every element x ∈ X has been considered,
the set F obtained satisfies E(Y 2|F ) ≤ N , and hence the statement of Theorem 1.

The only remaining point to settle is how to compute E(Y 2|C ∧ (x ∈ F )) and E(Y 2|C ∧ (x 6∈ F )): we
need these values in order to make our choice. More generally, we want to be able to compute E(Y 2|C) for
an arbitrary condition C:

C ≡
∧

x∈A

(x ∈ F ) ∧
∧

x∈B

(x 6∈ F ).

Let Ti be the random variable defined by

Ti = 1 if |(Fi \ (A ∪ B)) ∩ F | is even, and Ti = −1 otherwise.

We have E(Yi|C) = (−1)|Fi∩A|E(Ti).
Note that some sets Fi \ (A∪B) can be equal (even if by assumption the Fi’s are different), and can even

be empty, thus evaluating E(Y 2|C) amounts to computing the expectation of Z2 where Z =
∑

i αiYi for a
set {F1, . . . , Fk} of (possibly empty) subsets of X together with weights α1, . . . , αk ∈ Z. As in the proof of
Theorem 1, the events {Yi = 1} are pairwise independent. Furthermore, if Fi = ∅ then of course E(Yi) = 1,
otherwise E(Yi) = 0. Finally, E(Y 2

i ) = 1 for any i. Thus computing E(Z2) is easy, because

E(Z2) = E(
∑

i

α2
i Y

2
i +

∑

i6=j

αiαjYiYj) =
∑

i

α2
i E(Y 2

i ) +
∑

i6=j

αiαjE(Yi)E(Yj).

This implies that in polynomial time one can compute E(Y 2|C ∧ (x ∈ F )) and E(Y 2|C ∧ (x 6∈ F )),
and decide whether x should be taken in F or not. The construction of F thus requires |X | steps, each
computable in polynomial time: the overall deterministic algorithm finds a set with the expected property
in polynomial time. ⊓⊔

As explained in the introduction, the main goal of Section 3 is to obtain a deterministic parallel algorithm
for our problem. It would be interesting to obtain such an algorithm from a different derandomization of
Theorem 1. The main derandomization method that yields efficient parallel algorithms is the method of
bounded independence, as described for instance in Section 15.2 of [1]. At first sight it looks like this method
might be applicable since the proof of Theorem 1 is based on the pairwise independence of the random
variables Yi. Unfortunately, the method is not applicable directly because Yi is defined only indirectly through
the formula

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

One must therefore construct a small sample space not for the Yi but for the random set F . This is achieved
in Section 3 through an ad-hoc method.

2.2 A graph-theoretic proof

Here we model the problem as a cut problem in a bipartite graph. We want to find a subset F that minimizes
the range between |{i : |F ∩ Fi| even}| and |{i : |F ∩ Fi| odd}|. But this means exactly finding F that
maximizes the number of pairs {Fi, Fj} with |F ∩ Fi| 6≡ |F ∩ Fj | mod 2. Indeed, if t denotes |{i : |F ∩
Fi| odd}| − N

2 , the number of such pairs is exactly (N/2 − t)(N/2 + t) = N2/4 − t2.
The crucial fact is that if F ⊆ X and Fi, Fj are two elements of F :

|F ∩ Fi| 6≡ |F ∩ Fj | mod 2 ⇐⇒ |F ∩ (Fi △ Fj)| ≡ 1 mod 2.

4



Thus, finding F that minimizes the range between |{i : |F ∩Fi| even}| and |{i : |F ∩Fi| odd}|, is exactly
finding F that maximizes |{(i, j) : |F ∩ (Fi △ Fj)| odd}|.

We consider the following bipartite graph (V, E):

– V = V1 ∪ V2 where V1 = {(i, j) : 1 ≤ i < j ≤ N}, and V2 = P(X);
– ((i, j), F ) ∈ E iff |F ∩ (Fi △ Fj)| odd.

What we are looking for is a vertex of V2 of maximum degree. Let N(x) denote the set of neighbours
of x. We will only need to apply the following lemma for A = V2, as in Lemma 2. However it turns out that
we can characterize in Lemma 1 all the subsets A ⊆ V2 for which the proof still holds (see also Remark 3 in
Section 3).

Lemma 1. Let A ⊆ V2 be such that ∅ ∈ A and ∀F, F ′ ∈ A, (F △ F ′) ∈ A. Assume moreover that ∀x ∈ V1,
N(x) ∩ A 6= ∅. Then

∀x ∈ V1, |N(x) ∩ A| =
|A|
2

.

Proof. Let x ∈ V1. By hypothesis, there exists F ∈ A such that (x, F ) is an edge of the graph. And by the
other hypothesis the following map is well-defined,

φ : A −→ A

F ′ 7−→ (F △ F ′)

and is a bijection of N(x) ∩ A onto A \ N(x) which proves the result. ⊓⊔
Lemma 2. There exists a subset A ⊆ V2 satisfying the hypothesis of Lemma 1.

Proof. It suffices to take A = V2. ⊓⊔
Corollary 1. There exists F ∈ V2 such that |N(F )| ≥ |V1|

2

Proof. By Lemmas 1 and 2, every x ∈ V1 has |N(x)| = |V2|/2 neighbours. By double counting, there exists
an F ∈ V2 satisfying the hypothesis of the corollary. ⊓⊔

Corollary 2. There exists F ⊂ X such that ||{i : |F ∩ Fi| even}| − N
2 | ≤

√
N
2

Proof. Let F be given by Corollary 1. Define t = |{i : |F ∩Fi| odd}| − N
2 . Then |N(F )| = (N

2 + t)(N
2 − t) =

N2

4 − t2 and by hypothesis on F :

N2

4
− t2 ≥ |V1|

2
=

N(N − 1)

4
=

N2 − N

4

which implies |t| ≤
√

N
2 . ⊓⊔

2.3 A simple deterministic polynomial time algorithm

We now present a very simple polynomial algorithm which finds a subset F achieving inequality (1) from
Theorem 1. We work from the point of view described in Subsection 2.2: given the subsets Fi, we need to
find a subset F that has an odd intersection with more than half of the Fi △ Fj (taking multiplicities into
account). Note that these symmetric differences are all nonempty since the Fi are distinct. The algorithm
goes this way.

1. We construct all the sets Fi △ Fj and denote by G the multiset obtained.
2. Let x ∈ X . Let G′ be the multiset of all elements of G not containing x.

Apply recursively the algorithm to X \ {x} and G′. Thus we get a subset F ′ of X \ {x} that has an odd
intersection with more than half of the elements of G′. Now there are two cases:
– F ′ has an odd intersection with more than half of the elements of G \ G′. In this case F = F ′ is a

solution to our problem.
– Otherwise, since x belongs to all elements of G \ G′, taking F = F ′ ∪ {x} gives a solution.

5



2.4 Discussion of the bounds

With the help of Theorem 1, we know that it is possible to reach the expected value within a range of order√
N . One can wonder whether it is possible to ensure a constant range. The following examples prove that

this is impossible.
Let us consider a set X with n = 4k2 + 1 elements and F be the set of all subsets of X of size 2. Let

N = |F| = n(n−1)/2. In this context, the problem is to partition X into two parts and count the number of
edges through the cut, which are precisely the sets of F with odd intersection. We want to find 0 ≤ a ≤ n/2
such that a(n − a) is as close as possible to N/2 = k2(4k2 + 1). But:

(2k2 − k)(2k2 + k + 1) = 4k4 + k2 − k

and

(2k2 − k + 1)(2k2 + k) = 4k4 + k2 + k.

The function a 7−→ a(n − a) being increasing on [0, n/2], this proves that these are the two best values and
that the error is at least k, which is of the order of N1/4. It is possible to refine this argument further. For
instance, the consideration of subsets with 3 elements instead of 2 yields the following result.

Proposition 2. Let Fn be the family of subsets of three elements of {1, . . . , n}. There exists a constant c > 0
such that for infinitely many n, for any subset G of {1, . . . , n},

∣

∣

∣

∣

|{F ∈ Fn : |F ∩ G| even}| − |Fn|
2

∣

∣

∣

∣

≥ c|Fn|1/3.

Proof. Let F ⊆ {1, . . . , n} be a subset of cardinality a. The number of elements of Fn whose intersection

with F is of odd cardinality is then a

(

n − a
2

)

+

(

a
3

)

. Therefore, let

f(a) =
a(n − a)(n − a − 1)

2
+

a(a − 1)(a − 2)

6
− n(n − 1)(n − 2)

12

be the difference with |Fn|/2. We aim at showing that f is far from zero on integer values, when n is well
chosen.

The zeros of f are n/2 and n/2±
√

3n − 2/2. From the variations of f , we see that the integers i so that
|f(i)| is minimal are among the six integers around the zeros. Intuitively, these values should be maximized
if the zeros are far from integers (that is, if they are near half-integers). This requires n to be odd and√

3n − 2/2 to be near an integer (i.e. 3n − 2 ≃ 4k2 for some k).
These considerations lead to the choice n = 4k2/3 + 1 where k ≡ 0 mod 3. The integer n is then odd, so

f(⌊n/2⌋) = f(n/2 − 1/2) = n/4 − 1/4

f(⌈n/2⌉) = f(n/2 + 1/2) = −n/4 + 1/4

Furthermore, if k ≥ 2 then
√

3n− 2 =
√

4k2 + 1 is at most 1/8 away from 2k, so that

f(⌊n/2 +
√

3n − 2/2⌋) = f(n/2 − 1/2 + k)
= f(n/2 − 1/2 +

√
3n − 3/2) = −n/2 + O(

√
n).

Similarly, the other three integers around the zeros have Ω(n) as image. Since the total number N of subsets
of three elements among n is O(n3), the error is at least Ω(N1/3). ⊓⊔

The same kind of calculations for subsets with 5 elements yields an Ω(|Fn|2/5) lower bound. The best lower
bound that we have obtained is Ω(

√

|Fn|/(log |Fn|)1/4). As shown below, this almost optimal lower bound
is achieved by taking for Fn the set of all subsets of size (n − 1)/2.

6



Theorem 2. Let Fn be the family of subsets of (n− 1)/2 elements of {1, . . . , n}, where n is an odd integer.
There exists a constant c > 0 such that for infinitely many n, for any subset G of {1, . . . , n},

∣

∣

∣

∣

|{F ∈ Fn : |F ∩ G| even}| − |Fn|
2

∣

∣

∣

∣

≥ c
√

|Fn|/(log |Fn|)1/4.

Proof. Recall the definition of the binomial coefficient: for x ∈ R and k ∈ N,

(

x

k

)

=

∏k−1
i=0 (x − i)

k!
.

The special case when x is half an integer will be useful. Namely, for n < k − 1 we have

(

n + 1/2

k

)

=

∏k−1
i=0 (n + 1/2 − i)

k!
=

(−1)k−n+1(2n + 1)!(2k − 2n − 3)!

22k−2n!(k − n − 2)!k!
. (3)

Now, let us consider a set X with n = 4k +1 elements and let F be the set of all subsets of X of size 2k.
The number of sets in F that a set Y of cardinality j intersects an even number of times is:

f(j) =
∑

p even

(

j

p

)(

n − j

2k − p

)

.

The total number of sets is

|F| =

(

n

2k

)

=
∑

p

(

j

p

)(

n − j

2k − p

)

,

so that we are interested in the quantity

g(j) = f(j) − |F|
2

=
1

2

∑

p

(−1)p

(

j

p

)(

n − j

2k − p

)

.

Our immediate goal is to prove that

g(j) = −42k

((

(j − 1)/2

2k + 1

)

−
(

j/2

2k + 1

))

. (4)

We start from the following identity ([15], identity 3.42 or [13]):

∑

p

(−1)p

(

j

p

)(

2m − j

m − p

)

= (−4)m

(

(j − 1)/2

m

)

.

It is not difficult to check that
(

j

p

)(

4k + 1 − j

2k − p

)

−
(

j

p − 1

)(

4k + 1 − j

2k − (p − 1)

)

=

(

j

p

)(

4k + 2 − j

2k + 1 − p

)

−
(

j + 1

p

)(

4k + 2 − (j + 1)

2k + 1 − p

)

.

As a consequence,

2
∑

p(−1)p
(

j
p

)(

4k+1−j
2k−p

)

=
∑

p(−1)p
[

(

j
p

)(

4k+1−j
2k−p

)

−
(

j
p−1

)(

4k+1−j
2k−(p−1)

)

]

=
∑

p(−1)p
[

(

j
p

)(

4k+2−j
2k+1−p

)

−
(

j+1
p

)(

4k+2−(j+1)
2k+1−p

)

]

= (−4)2k+1
(

(

(j−1)/2
2k+1

)

−
(

j/2
2k+1

)

)

,

which proves (4). When j is even, g(j) reduces to

7



g(j) = −(−4)2k

(

(j − 1)/2

2k + 1

)

.

This is a product of half integers. This product is therefore minimal in absolute value when it is centered
around 0, that is when j = 2k or j = 2k + 2. In both cases, we have

|g(j)| = 42k

∣

∣

∣

∣

(

k − 1/2

2k + 1

)∣

∣

∣

∣

.

When j is odd, |g(j)| reduces to

|g(j)| = 42k

(

j/2

2k + 1

)

which is minimal when j = 2k − 1 or j = 2k + 1. The minimum is the same as in the even case. By (3), the
minimal absolute value that g takes is therefore

µ = 42k

∣

∣

∣

∣

(

k − 1/2

2k + 1

)∣

∣

∣

∣

=

(

2k − 1

k

)

∼ 22k−1

√
πk

whereas

|F| =

(

4k + 1

2k

)

∼ 24k+1

√
2πk

.

Hence µ = Ω(
√

|F|/ 4

√

log |F|).
⊓⊔

3 The linear algebraic point of view

In this section we are concerned with a parallel algorithm for our problem. More precisely, we shall build a
logspace-uniform family of circuits of polylogarithmic depth for our problem. In the meantime we are led to
exhibit another polynomial-time sequential algorithm, which is a first step towards the parallel one.

We use here techniques of linear algebra, dealing now with 0-1 vectors instead of sets. Let us first formulate
Theorem 1 in these terms.

Corollary 3. Let u1, . . . , uN ∈ E = (F2)
d be distinct nonzero vectors. There exists a vector v ∈ E such that

−
√

N

2
≤ |{1 ≤ i ≤ N : ui.v = 0}| − N

2
≤

√
N

2
.

In what follows, a vector v ∈ E as in the corollary is called “good” for u1, . . . , uN . We now turn to two
algorithms for finding a good vector. As input we have N distinct nonzero vectors u1, . . . , uN of E, given
by their coordinates (hence the size of the input is of order Nd). The output will be a good vector for
u1, . . . , uN . The principle of the algorithms is to restrict the search to a small set V where a suitable vector
v is guaranteed to exist. If this “sample space” is small enough, we will then be able to find the vector by
exhaustive search.

3.1 Existence of a small sample space

Lemma 3. Let V be a subspace which is orthogonal to none of the ui − uj (i.e. for all 1 ≤ i < j ≤ N , there
is v ∈ V so that v.(ui −uj) = 1) and to none of the ui. Then there exists a good vector v ∈ V for u1, . . . , uN .
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Proof. Let v1, . . . , vk be a basis of V . The condition that V is orthogonal to none of the ui − uj implies that

the new vectors u′
i defined by u′

i =
∑k

l=1(ui.vl)vl are pairwise distinct. This is because for all i 6= j, there
exists l such that ui.vl 6= uj.vl. Moreover, the condition that V is orthogonal to none of the ui implies that
none of the u′

i is equal to zero. In geometric terms, u′
i may be thought of as the projection of ui onto V .

We now define on V a new product ⊙ : V ×V → F2 (associated to the basis (v1, . . . , vk)) by the formula
(
∑

l λlvl) ⊙ (
∑

l µlvl) =
∑

l λlµl. For this new product (which comes just from a change of basis compared
to the original inner-product), Corollary 3 asserts the existence of w =

∑

l λlvl which is ⊙-orthogonal to at

least N/2 −
√

N/2 vectors u′
i and at most N/2 +

√
N/2. But w ⊙ u′

i =
∑

l λlvl ⊙ u′
i =

∑

l λl(ui.vl) = w.ui,
and thus w is also suitable for E as a whole (with the usual product on E). ⊓⊔

Remark 3. The above lemma can also be derived from the set theoretic point of view as a consequence of
Lemma 1. Note in particular that in Lemma 1, the hypothesis on A of stability under symmetric differences
simply means from the linear algebra viewpoint that A is a linear subspace.

We now show that the subspace of Lemma 3 can have small dimension. Recall that E is a vector space
over F2 of dimension d.

Lemma 4. Let U be a subset of E not containing 0. Then there exists a subspace W of E, of dimension
≥ d − log(|U | + 1), which does not intersect U .

Proof. By induction on the dimension d of E. For d = 0, |U | = 0 and the result trivially follows.
Assume d > 0. If |U | = 2d − 1, i.e. U = E \ {0}, we can choose W = {0}. Hence we shall assume that

there exists a nonzero vector w0 in E \ U . Let W0 be the subspace (with two elements) generated by w0. If
|U | ≥ 2d−1 − 1, then W0 suits our needs. Otherwise, E/W0 is a vector space of dimension d − 1 and we can
apply the induction hypothesis to the set Ū of the classes of elements of U , which are all different from zero.
This set satisfies |Ū | ≤ |U |, hence there exists a subspace W̄1 of E/W0 of dimension ≥ d − 1 − log(|U | + 1),
which does not intersect Ū .

Call W1 the subspace of E of dimension 1 + dim(W̄1), consisting of all elements of all classes of W̄1. By
definition of E/W0, W1 does not intersect U , and is of dimension ≥ d − log(|U | + 1). ⊓⊔

We now apply Lemma 4 to U = {ui−uj : 1 ≤ i < j ≤ N}∪{ui : 1 ≤ i ≤ N}: we have |U | = N(N +1)/2.
Hence there exists a subspace W of E of dimension at least d − 2 logN that does not contain any of the
ui − uj and of the ui

5. The orthogonal space V of W is then of dimension ≤ 2 log N and is orthogonal to
none of the ui − uj and to none of the ui (because V ⊥ = W⊥⊥ = W , as is easily verified). Note that V
contains at most N2 elements.

This gives a polynomial sequential algorithm for finding a good vector (we only sketch it since we have
already described a simpler sequential algorithm in Section 2.3):

1. Find a basis e1, . . . , eb of a subspace W of dimension ≥ d − 2 logN which does not contain any of the
ui − uj and of the ui (for 1 ≤ i < j ≤ N). This is done by induction, taking the quotient space at each
step as in the proof of Lemma 4.

2. Find the orthogonal space V of W . This is done by solving the linear system (ei.x = 0)1≤i≤b.
3. Find a good vector v in V . This is done by exhaustive search.

3.2 A parallel algorithm

As in the sequential algorithm sketched above, we plan to perform an exhaustive search in a small sample
space. The use of Lemma 4 for finding a sample space is unfortunately intrinsically sequential, since the
proof works inductively in a quotient space.

In fact, there is no reason to restrict the search to only one subspace: an exhaustive search can also be
performed in polynomially many subspaces of small dimension in parallel. An idea to overcome the difficulty

5 This follows from the inequality log(N(N + 1)/2 + 1) ≤ 2 log N , which holds true for N ≥ 2. There is no loss of
generality in assuming that N ≥ 2 since any vector v ∈ E will satisfy Corollary 3 for N = 1.
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of using Lemma 4 then consists in the following. At the beginning of the algorithm, we build a family of
subspaces of large dimension W = {W1, . . . , Wk} that is “generic” in the sense that for all subsets U ⊆ E\{0}
of cardinality N(N + 1)/2, there exists Wl ∈ W for which U ∩ Wl = ∅.

For the particular choice U = {ui − uj : 1 ≤ i < j ≤ N} ∪ {ui : 1 ≤ i ≤ N} we see that at least one Wl

contains none of the ui − uj or of the ui, so by Lemma 3 W⊥
l must contain a good vector. If the Wl’s are of

sufficiently large dimension, W⊥
l has only polynomially many elements and can be searched efficiently. This

yields the following theorem, which is proved in the sequel.

Theorem 3. There is a parallel algorithm which, given two positive integers N and d with N ≤ 2d, builds
in time O(log N + log d log log(dN)) a family F of d2N2(N + 1)2 elements of (F2)

d that contains, for any
distinct nonzero vectors u1, . . . , uN ∈ (F2)

d, a vector v such that

N/2 −
√

N/2 ≤ |{1 ≤ i ≤ N : ui.v = 0}| ≤ N/2 +
√

N/2.

An exhaustive search in this family can therefore be performed in O(log(dN)) parallel time, enabling us
to find a good vector v on input u1, . . . , uN in polylogarithmic parallel time O(log N + log d log log(dN)).

In Section 3.3, we show that a generic family W = {W1, . . . , Wk} for sets U of size N(N + 1)/2 indeed
exists and can be built efficiently. Our family is of cardinality k ≤ 2d|U | and each subspace Wl of dimension
at least d − 1 − log(d|U |). The Wl’s will be given as intersection of hyperplanes, so that a spanning family
of W⊥

l is immediately found. In Section 3.3, U denotes an arbitrary subset of E \ {0}. As explained above,
a typical choice for U will be {ui − uj : 1 ≤ i < j ≤ N} ∪ {ui : 1 ≤ i ≤ N}.

3.3 A generic family of subspaces

To allow more room, we first work in a field extension of F2. More precisely, we fix an extension K of degree
e > log((d− 1)|U |), so that there are more than (d − 1)|U | elements in K. Note that for |U | = N(N + 1)/2,
a suitable choice is e = ⌊log(dN(N + 1))⌋. This is the choice which will be made in Section 3.4.

We look at K as F2[X ]/(P (X)) where P (X) is an irreducible polynomial of F2[X ] of degree e. Thus the
elements of K will be viewed as classes of polynomials modulo P . Once the polynomial P is found, it is easy
to calculate in K, by manipulating polynomials of degree less than e with coefficients in F2 (details will be
given in Section 3.5).

In Kd, we are able to find |K| hyperplanes so that every set of cardinality |U | has an empty intersection
with at least one of them. For every θ ∈ K, let us indeed consider the hyperplane Hθ of Kd defined by the
equation x1 + θx2 + θ2x3 + · · ·+ θd−1xd = 0. There are |K| > (d− 1)|U | different hyperplanes in this family
(Hθ)θ∈K , and a point a ∈ Kd \ {0} belongs to at most d− 1 distinct hyperplanes: this is due to the fact that
there are at most d − 1 distinct roots of the polynomial P (θ) = a1 + a2θ + · · · + adθ

d−1. Thus among these
hyperplanes, at least one does not intersect U .

To obtain our family over F2 (instead of K), we now consider the trace of Hθ on F
d
2. For (x1, . . . , xd) ∈ F

d
2,

the equation of the hyperplane Hθ can be rewritten according to the powers of X :

x1 + θx2 + · · · + θd−1xd ≡
e−1
∑

i=0

µi(x1, . . . , xd)X
i (mod P)

where the µi are F2-linear combinations of the xj (the coefficient of xj in µi is equal to the X i-coordinate
of θj−1 in the F2-basis 1, X, . . . , Xe−1 of K). The intersection Wθ = Hθ ∩ F

d
2 is then defined by the system

of equations µi(x) = 0 where i ranges over {0, 1, . . . , e − 1}. It is therefore a subspace of E = (F2)
d of

codimension at most e.
This construction yields a family W = {W1, . . . , Wk} of k ≤ 2e subspaces with the expected genericity

property: for all subsets U ⊆ E \ {0} of cardinality N(N + 1)/2, there exists Wl ∈ W for which U ∩Wl = ∅.
Since e can be taken ≤ 1+ log(d|U |)), we get at most 2d|U | subspaces, of dimension at least d−1− log(d|U |)
each. As promised, these subspaces are given as intersections of hyperplanes.

10



3.4 High level description of the algorithm

Let us sum up the main steps of this parallel algorithm. Its implementation and analysis are discussed in
the next section. The input is a set {u1, . . . , uN} of N distinct nonzero vectors of E = (F2)

d, and the output
is a vector orthogonal to at least N/2 −

√
N/2 and at most N/2 +

√
N/2 of them.

1. Let e = ⌊log(dN(N + 1))⌋. By enumerating in parallel all the polynomials of F2[X ] of degree e, find an
irreducible polynomial P . Let K = F2[X ]/(P (X)).

2. Consider the family F of hyperplanes in Kd consisting of the |K| = 2e hyperplanes (Hθ)θ∈K described
in Section 3.3. Rewrite the equation of each hyperplane of F as a system of e equations in F2. This is
only a rearrangement of terms. We obtain one subspace Wθ of (F2)

d of codimension at most e for each
hyperplane Hθ. As a whole, this generic family thus contains at most 2e subspaces of (F2)

d.
3. Search in parallel in W⊥, for all W in the generic family. A good vector must exist in at least one of

them (note that it is only this third step which actually depends on the input).

As explained in the next section, the execution time of this algorithm is polylogarithmic in the size dN
of the input.

3.5 Implementation and analysis

We need now explain how to perform this procedure quickly in parallel. First, in order to find an irreducible
polynomial P ∈ F2[X ] of degree e, we merely enumerate in parallel all polynomials A ∈ F2[X ] of degree e and
test their irreducibility. There are 2e ≤ dN(N + 1) such polynomials. The polynomial A is irreducible if and
only if it is not divisible by another non-constant polynomial of degree ≤ e/2. This yields a straightforward
irreducibility test: compute in parallel the division with remainder of A by all non-constant polynomials B
of degree ≤ e/2 and test whether one of the remainders is zero. Finding P therefore takes parallel time
O(e) + T (e), where T (e) is the cost of a division in F2[X ]. Hence we only need to use a division algorithm
of parallel complexity O(e). Within that generous time bound we may even try in parallel all possible
quotients Q, and check whether A = BQ. Some parallel division algorithms are of course much faster (but
overcomplicated for the problem at hand), see for instance [3]. One could also use Berlekamp’s algorithm in
order to find an irreducible polynomial.

We now proceed to the second step of the algorithm, which we begin with a preliminary computation.
Let P be the irreducible polynomial found at the first step, and let K = F2[X ]/(P (X)) be the field with
2e elements. We first compute X i mod P for all i ∈ [e, 2(e − 1)]. The first element of this sequence is
obtained immediately from P , and X i+1 mod P can be obtained in constant parallel time from Xe mod P
and X i mod P (basically by a shift of coefficients followed by at most one addition in F2[X ]). The whole
sequence can therefore be constructed in time O(e).

At step 2, our main task is to compute θi for all i = 0, . . . , d− 1 and all θ ∈ K. By fast exponentiation θi

can be obtained from θ by O(log d) multiplications in K, each of boolean cost O(log e). Indeed, to perform
such a multiplication we multiply two polynomials of degree ≤ e − 1 with coefficients in F2 and take the
remainder modulo P (X). The cost of the multiplication in F2[X ] is O(log e), and yields a polynomial of
degree at most 2(e − 1). At the beginning of step 2 we have precomputed a representation modulo P (X) of
all the monomials which can possibly occur in this polynomial. Hence it simply remains to add up at most e
polynomials of degree ≤ e−1. This can be done in parallel time O(log e). The parallel cost of generating our
generic family of 2e subspaces is therefore O(log d log e), which is O(log d log log dN) The orthogonal space of
each subspace Wθ contains at most 2e points since it is of dimension at most e. Altogether, we have at most
(2e)2 points in the union of all orthogonal spaces. Since 2e ≤ dN(N +1), this yields the bound d2N2(N +1)2

of Theorem 3. The additional cost of the explicit enumeration of all those points is O(log e) since each point
is the sum of at most e spanning vectors of some orthogonal space.

Finally, we can find a good vector among the d2N2(N +1)2 candidates in time O(log(dN)) by exhaustive
search. First, we compute in parallel the inner products ui.v for all inputs ui and all candidate vectors v.
This is done in depth O(log d). Then for fixed v, we have to sum over all ui to obtain the number of i
such that ui.v = 1. It is well known that such an iterated addition can be performed in depth O(log N)
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(see for instance [2], proof of Theorem 1.7.2). To that sum we substract N/2 and take the absolute value,
so that for every candidate v we have computed ||{1 ≤ i ≤ N : ui.v = 1}| − N/2|. We now have to find the
minimum among the d2N2(N + 1)2 values; this can be done in depth O(log(d2N2(N + 1)2)) = O(log(dN))
since computing the minimum is an AC0 problem (see for instance [2], example 6.2.2). Thus the exhaustive
search requires parallel time O(log(dN)) as claimed in Theorem 3.

The overall parallel execution time of our algorithm is therefore O(log N +log d log log(dN)), which proves
the theorem.

Remark 4. This parallel algorithm can be implemented by a family of logspace uniform boolean circuits of
polynomial size and polylogarithmic depth since each of the three steps of the algorithm can (note that there
is some redundancy in this statement since a logspace bounded Turing machine can only construct circuit
families of polynomial size).

3.6 Logarithmic space

This section proves that the problem at hand is also in the complexity class L of problems decided by a
Turing machine using O(log n) work space. The three steps of the algorithm in Section 3.4 can indeed be
performed in logarithmic space:

– Step 1 first consists in an enumeration of polynomials of logarithmic degree e and with coefficient in F2.
This takes O(e) work space. Then there is another enumeration of polynomials together with a divisibility
test. This still requires O(e) work space.

– Step 2 consists in arithmetic operations in K in order to compute θi for i from 0 to d. This amounts
to multiplications of polynomials of degree e and reduction modulo P (X): logarithmic space is again
enough.

– Step 3 computes the orthogonal space of a vector space W given by its e equations (wi.x = 0)i≤e. The
orthogonal space W⊥ is merely the vector space spanned by the wi’s. Enumerating the e coefficients for
these vectors therefore suffices to enumerate all the vectors of W⊥. This is done in work space O(e).
Now, checking whether a vector is good can once again be performed in logarithmic space.

This proves the following result.

Theorem 4. There is an algorithm working in space O(log(dN)) which, when given a family of N vectors
of (F2)

d, ouputs a good vector v for this family.

Remark 5. Considering again circuit complexity, we see that the circuit depth obtained in Theorem 3 is
by no means optimal. We have indeed chosen to describe the construction of the list of all d2N2(N + 1)2

candidate vectors explicitly as a part of our parallel algorithm, but if we work with logspace uniform circuits
any precomputation requiring only logarithmic space is allowed. We have seen that we can construct in
logarithmic space the whole list of candidate vectors. After that one simply has to perform an exhaustive
search, which can be realized in depth O(log dN) as explained above. This shows that our problem is in
logspace uniform NC1 (it can be argued, however, that logspace uniformity is not the right uniformity
condition for NC1; see for instance [17], chapter 4).
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