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Complete Lattices and Up-to Techniques

Extended version (with proofs)⋆

Damien Pous

LIP: UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668, France

Abstract. We propose a theory of up-to techniques for proofs by coin-
duction, in the setting of complete lattices. This theory improves over
existing results by providing a way to compose arbitrarily complex tech-
niques with standard techniques, expressed using a very simple and mod-
ular semi-commutation property.
Complete lattices are enriched with monoid operations, so that we can
recover standard results about labelled transitions systems and their as-
sociated behavioural equivalences at an abstract, “point-free” level.
Our theory gives for free a powerful method for validating up-to tech-
niques. We use it to revisit up to contexts techniques, which are known
to be difficult in the weak case: we show that it is sufficient to check
basic conditions about each operator of the language, and then rely on
an iteration technique to deduce general results for all contexts.

Introduction

Coinductive definitions are frequently used in order to define operational or con-
textual equivalences, in settings ranging from process algebra [13] to functional
programming [10,12,11]. This approach relies on Knaster-Tarski’s fixpoint the-
orem [22]: “in a complete lattice, any order-preserving function has a greatest
fixpoint, which is the least upper bound of the set of its post-fixpoints”. Hence,
by defining an object x as the greatest fixpoint of an order-preserving function,
we have a powerful technique to show that some object y is dominated by x:
prove that y is dominated by some post-fixpoint. However, in some cases, the
least post-fixpoint dominating y can be a “large” object: when reasoning about
bisimilarity on a labelled transition system (LTS), the smallest bisimulation re-
lating two processes has to contain all their reducts. Hence, checking that this
relation is actually a bisimulation often turns out to be tedious. The aim of up-to
techniques, as defined in [13,18], is to alleviate this task by defining functions f

over relations such that any bisimulation “up to f” is contained in a bisimulation
and hence in bisimilarity. These techniques have been widely used [12,21,6,15,11],
and turn out to be essential in some cases.

In this paper, we generalise the theory of [18] to the abstract setting of
complete lattices [3]. This allows us to ignore the technicalities of LTSs and bi-
nary relations, and to obtain a homogeneous theory where we only manipulate
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objects and order-preserving functions (called maps). The key notion is that of
compatible maps, i.e., maps satisfying a very simple semi-commutation property.
These maps, which correspond to up-to techniques, generalise the “respectful”
functions of [18]. They enjoy the same nice compositional properties: we can
construct sophisticated techniques from simpler ones. On the other hand, there
are cases where compatible maps are not sufficient: we prove in [15] the cor-
rectness of a distributed abstract machine, where mechanisms introduced by an
optimisation cannot be taken into account by standard techniques relying on
compatible maps (e.g., up to expansion [1,20]); we have to resort to recent, and
more sophisticated techniques [17] relying on termination hypotheses.

The powerful techniques of [17] cannot be expressed by means of compatible
maps, which makes it difficult to combine them with other standard techniques:
we have to establish again correctness of each combination. Our first contri-
bution addresses this problem: we give a simple condition ensuring that the
composition of an arbitrarily complex correct technique and a compatible map
remains correct. While this result is not especially difficult, it greatly enhances
both [18], where only compatible maps are considered, and [17], where the lack of
compositionality renders the results quite ad-hoc, and their proofs unnecessarily
complicated. We illustrate the benefits of this new approach in Sect. 4, by es-
tablishing an uncluttered generalisation of one of the main results from [17], and
showing how to easily enrich the corresponding up-to technique with standard
techniques.

We then refine our framework, by adding monoidal operations to complete
lattices, together with a symmetry operator. In doing so, we obtain an abstract,
point-free presentation of binary relations, which is well-suited to proofs by di-
agram chasing arguments. In this setting, an LTS is a collection (

α
→)α∈L of

objects, indexed by some labels, and strong similarity is the largest object x

such that the semi-commutation diagram (S) below is satisfied:

(S) ·
α

��

x

⊑ α
��

x ·

(Sf ) ·
α

��

x

⊑ α
��

f(x) ·

There is an implicit universal quantification on all labels α, so that this diagram
should be read (S) : ∀α ∈ L,

α
←· x ⊑ x ·

α
← (where (·) is the law of the monoid,

⊑ is the partial order of the complete lattice, and
α
← denotes the converse of

relation
α
→). The second diagram, (Sf ), illustrates the use of a map f as an

up-to technique: “x satisfies (S) up to f”. Intuitively, if x ⊑ f(x), it will be
easier to check (Sf ) than (S); the correctness of f should then ensure that x is
dominated by some object satisfying (S).

By defining two other notions of diagrams, and using symmetry arguments,
we show how to recover in a uniform way the standard behavioural preorders
and equivalences (strong and weak bisimilarity, expansion [1]), together with
their associated up-to techniques. Notably, we can reduce the analysis of up-to
techniques for those two-sided games to the study of their one-sided constituents.
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Another advantage of working in this point-free setting is that it encompasses
various cases, where objects are not necessarily simple binary relations. This
includes typed bisimulations [21,8], where processes are related at a given type
and/or in a given typing environment; and environment bisimulations [11], where
environments are used to keep track of the observer’s knowledge. Therefore,
we obtain standard up-to techniques for these complicated settings, and more
importantly, this gives a clear theory to guarantee correctness of up-to techniques
that can be specific to these settings.

We then observe that maps over a complete lattice are an instance of com-
plete lattice equipped with monoidal operations satisfying our requirements. We
show that compatible maps, which are defined via a semi-commutation property,
can be seen as the post-fixpoints of a functor (a map over maps). Therefore, our
theory provides us for free with up-to techniques for compatible maps. We il-
lustrate the use of such “second-order” techniques by considering up to context
techniques; which are well-known for CCS or the π-calculus [21], and quite hard
for functional languages [10,12,11]. Even in the simple case of CCS, (polyadic)
contexts have a complex behaviour which renders them difficult to analyse. We
show how to use an “up to iteration” technique in order to reduce the analysis
of arbitrary contexts to that of the constructions of the language only. While we
consider here the case of CCS, the resulting methodology is quite generic, and
should be applicable to various other calculi (notably the π-calculus).

Outline. The abstract theory is developed in Sect. 1; we apply it to LTSs and
behavioural preorders in Sect. 2. Section 3 is devoted to up to context techniques
for CCS; we show in Sect. 4 how to combine a complex technique with compatible
maps. We conclude with directions for future work in Sect. 5.

1 Maps and Fixpoints in Complete Lattices

1.1 Preliminary Definitions

We assume a complete lattice, that is, a tuple 〈X,⊑,
∨
〉, where ⊑ is a partial

order over a set X (a reflexive, transitive and anti-symmetric relation), such that
any subset Y of X has a least upper bound (lub for short) that we denote by∨

Y .

∀y ∈ Y, y ⊑
∨

Y , ∀x ∈ X, (∀y ∈ Y, y ⊑ x)⇒
∨

Y ⊑ x .

A function f : X → X is order-preserving if ∀x, y ∈ X x ⊑ y ⇒ f(x) ⊑ f(y);
it is continuous if ∀Y ⊆ X, Y 6= ∅ ⇒ f(

∨
Y ) =

∨
f(Y ). We extend ⊑ and∨

pointwise to functions: f ⊑ g if ∀x ∈ X, f(x) ⊑ g(x), and
∨

F : x 7→∨
{f(x) | f ∈ F} for any family F of functions. In the sequel, we only consider

order-preserving functions, which we shall simply call maps. For any element
y and maps f, g, we define the following maps: idX : x 7→ x ; ŷ : x 7→ y ;
f ◦g : x 7→ f(g(x)) and fω ,

∨
{fn | n ∈ N}, where f0 , idX and fn+1 , f ◦fn.

We say that a map f is extensive if idX ⊑ f .
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We fix in the sequel a map s.

Definition 1.1. An s-simulation is an element x such that x ⊑ s(x). We denote
by Xs the set of all s-simulations, s-similarity (νs) is the lub of this set:

Xs , {x ∈ X | x ⊑ s(x)} , νs ,
∨

Xs .

Theorem 1.2 (Knaster-Tarski [22]). νs is the greatest fixpoint of s: νs = s(νs).

Proof. We show that both νs and s(νs) are a post-fixpoints:

∀x ∈ Xs, x ⊑ νs (by definition of νs)

∀x ∈ Xs, x ⊑ s(x) ⊑ s(νs) (s is order-preserving)

νs ⊑ s(νs) (lubs property)

s(νs) ⊑ s(s(νs)) (s is order-preserving)

s(νs) ∈ Xs (by definition of Xs)

s(νs) ⊑ νs . (by definition of νs)

�

1.2 Up-to Techniques for Proofs by Coinduction

The previous definition gives the powerful coinduction proof method: in order
to prove that y ⊑ νs, it suffices to find some y′ such that y ⊑ y′ ⊑ s(y′). The
idea of up-to techniques is to replace s with a map s′, such that:

– s ⊑ s′ so that there are more s′-simulations than s-simulations; and
– νs′ ⊑ νs so that the proof method remains correct.

At first, we restrict ourselves to maps of the form s ◦ f and focus on the map f .

Definition 1.3. A map f is s-correct if ν (s ◦ f) ⊑ νs .
A map f is s-correct via f ′ if f ′ is an extensive map and f ′(Xs◦f ) ⊆ Xs .
A map f is s-compatible if f ◦ s ⊑ s ◦ f .

Proposition 1.4. (i) Any s-compatible map f is s-correct via fω.
(ii) Any map is s-correct iff it is s-correct via some map.

Proof. Let f be a compatible map; fω is extensive by definition. Let then x ∈
Xs◦f : x ⊑ s(f(x)). We prove ∀n, fn(x) ⊑ s(fn+1(x)) by induction, using the
compatibility of f . We conclude with properties of lubs: fω(x) ⊑ s(fω(x)).

Any s-correct map f is correct via f ′ = idX ∨ ν̂s: if x ⊑ s(f(x)) then x ⊑ νs

since f is s-correct, and f ′(x) = νs ∈ Xs . Conversely, let f be an s-correct
map via another map f ′. We have ν (s ◦ f) ∈ Xs◦f , so that f ′(ν (s ◦ f)) ∈ Xs

and f ′(ν (s ◦ f)) ⊑ νs. Since f ′ is extensive, we have ν (s ◦ f) ⊑ νs. �

Intuitively, a map is correct via f ′ if its correctness can be proved using f ′

as a “witness function” – these witnesses will be required to establish Prop. 1.14
and Thm. 1.17 below. For example, in the case of an s-compatible map f , if
x ⊑ s(f(x)) then fω(x), which is an s-simulation, is the witness.
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Remark 1.5. For any s-compatible map f , f(νs) ⊑ νs. Hence s-compatible
maps necessarily correspond to closure properties satisfied by νs. This is not a
sufficient condition: there are maps satisfying f(νs) ⊑ νs that are not s-correct.

There also exist s-correct maps that do not preserve νs; we can however
prove that for any map f ′ such that there exists an extensive s-correct map via
f ′, f ′(νs) = νs.

Proposition 1.6. The family of s-compatible maps is stable under composition
and lubs. It contains the identity, and constant maps x̂ with x ∈ Xs.

These nice compositional properties are the main motivation behind com-
patible maps. They do not hold for correct maps (more generally, the map
t =

∨
{t | νt ⊑ νs} does not necessarily satisfy νt ⊑ νs). On the other hand,

correct maps allow more expressiveness: we can use any mathematical argument
in order to prove the correctness of a map; we will for example use well-founded
inductions in Sect. 4.

At this point, we have generalised to a rather abstract level the theory de-
veloped in [18] (this claim is justified by Sect. 1.4). Thm 1.8, which is our first
improvement against [18], allows one to compose correct and compatible maps:

Lemma 1.7. Let f, g be two maps.

If f is s-compatible and g-compatible, then f is (s ◦ g)-compatible.

Proof. We have s ◦ g ◦ f ⊑ s ◦ f ◦ g ⊑ f ◦ s ◦ g. �

Theorem 1.8. Let f be an s-compatible map, and g an s-correct map via g′.

If f is g-compatible, then (g ◦ f) is s-correct via (g′ ◦ fω).

Proof. By Lemma 1.7, f is (s ◦ g)-compatible, so that fω(Xs◦g◦f ) ⊆ Xs◦g, by
Prop. 1.4. Since g′(Xs◦g) ⊆ Xs, we can conclude: g′(fω(Xs◦g◦f )) ⊆ Xs. �

Notice that this theorem also holds without specifying the correction wit-
nesses. The following lemma will be used in Sect. 2.2.

Lemma 1.9. Let f, f ′, g′ be three maps. If f is s-correct via f ′, g′ is extensive,
and g′ preserves s-simulations (g′(Xs) ⊆ Xs), then f is s-correct via (g′ ◦ f ′).

As will be illustrated in Sect. 4, this important result allows one to focus on
the heart of a complex technique, so that its proof remains tractable; and then
to improve this technique with more standard techniques.

1.3 Conjunctions, Symmetry, and Internal Monoid

We now add some structure to complete lattices: conjunctions, which are already
supported, symmetry, and monoidal laws.
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Conjunctions. A complete lattice has both lubs and glbs: we denote by Y l the
set of lower bounds of a subset Y of X. The greatest lower bound of Y (glb for
short), is the lub of this set:

Y l , {x ∈ X | ∀y ∈ Y, x ⊑ y} ,
∧

Y ,
∨

Y l .

We extend this definition pointwise to maps.

Lemma 1.10. For any x ∈ X and Y ⊆ X, x ⊑
∧

Y iff x ∈ Y l .

Lemma 1.11. For any family Y of subsets of X,
∨ ⋂

Y ⊑
∧
{
∨

Y | Y ∈ Y} .

Proof. For any Y ∈ Y, we have
⋂
Y ⊆ Y and hence,

∨ ⋂
Y ⊑

∨
Y . Therefore,

by Lemma 1.10,
∨ ⋂

Y ⊑
∧
{
∨

Y | Y ∈ Y}. �

We fix in the sequel a set S of maps and focus on proof techniques for
∧

S.
As will be illustrated in Sect. 2.2, this kind of maps corresponds to coinductive
definitions based on a conjunction of several properties.

Lemma 1.12. We have XV

S =
⋂
{Xs | s ∈ S} and ν

∧
S ⊑

∧
{νs | s ∈ S} .

Proof. Lemma 1.10 gives

x ∈ XV

S ⇔ x ⊑
∧

S(x)⇔ ∀s ∈ S, x ⊑ s(x)

⇔ ∀s ∈ S, x ∈ Xs ⇔ x ∈
⋂
{Xs | s ∈ S} .

Then, with Lemma 1.11, we have:

ν

∧
S =

∨
XV

S =
∨ ⋂

{Xs | s ∈ S} ⊑
∧ {∨

Xs | s ∈ S
}

=
∧
{νs | s ∈ S} .

�

In general, ν

∧
S 6=

∧
{νs | s ∈ S}; for example, in process algebras, 2-simu-

lation and bisimulation do not coincide. Therefore, to obtain results about ν

∧
S,

it is not sufficient to study the fixpoints (νs)s∈S separately.

Proposition 1.13. Any map that is s-compatible for all s in S is
∧

S-compatible.

Notice that this is actually the dual of one point of Prop. 1.6: “the lub of a
family of s-compatible maps is s-compatible”.

Proof. For any such map f , we have

f ◦
∧

S ⊑
∧
{f ◦ s | s ∈ S} ⊑

∧
{s ◦ f | s ∈ S} =

∧
S ◦ f .

�

Prop. 1.13 deals with compatible maps, and requires that the same map is
used for all the components of S. We can relax these restrictions by working
with correct maps, provided that they agree on a common witness: Again, this
is related to the difference between 2-simulation and bisimulation:
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Proposition 1.14. Let (fs)s∈S be a family of maps indexed by S and let f ′ be
an extensive map; let Sf , {s ◦ fs | s ∈ S}.

If fs is s-correct via f ′ for all s of S, then ν

∧
Sf ⊑ ν

∧
S.

Proof. We have ν

∧
Sf =

∧
Sf (ν

∧
Sf ) and then

∀s ∈ S, ν

∧
Sf ⊑ (s ◦ fs) (ν

∧
Sf ) (Lemma 1.10)

∀s ∈ S, f ′(ν
∧

Sf ) ∈ Xs (fs is s-correct via f ′)

f ′(ν
∧

Sf ) ∈ XV

S (Lemma 1.12)

f ′ being extensive, we can conclude: ν

∧
Sf ⊑ f ′(ν

∧
Sf ) ⊑ ν

∧
S . �

Although Prop. 1.14 does not define a
∧

S-correct map, it actually defines
an up-to technique for

∧
S: a priori,

∧
S ⊑

∧
Sf , so that

∧
Sf -simulations are

easier to construct than
∧

S-simulations.

Symmetry. Let · be an order-preserving involution (∀x, x = x). For any map f ,
we define

Y , {y | y ∈ Y } , f , · ◦ f ◦ · : x 7→ f(x) ,
←→
f , f ∧ f .

We call x the converse of x and we say that an element x (resp. a map f) is
symmetric if x = x (resp. f = f).

Lemma 1.15. Let x, y ∈ X, f, g : X →֒ X and Y ⊆ X. We have:

(i) f = f ;
(ii) f(x) = f(x); f ◦ g = f ◦ g; idX = idX ; x̂ = x̂.
(iii) x ⊑ y iff x ⊑ y; f ⊑ g iff f ⊑ g;

∨
Y =

∨
Y .

Using the previous properties, we can relate up-to techniques for s and s :

Proposition 1.16. We have Xs = Xs, νs = νs and for any maps f, f ′,

(i) f is s-correct (via f ′) if and only if f is s-correct (via f ′),
(ii) f is s-compatible if and only if f is s-compatible.

Proof. We have x ∈ Xs ⇔ x ⊑ s(x)⇔ x ⊑ s(x)⇔ x ⊑ s(x)⇔ x ∈ Xs . Then,
νs ,

∨
Xs =

∨
Xs =

∨
Xs , νs . By Lemma 1.15(i), it suffices to show the

direct implication in last two points

(i) If ν (s ◦ f) ⊑ νs then ν

(
s ◦ f

)
= ν

(
s ◦ f

)
= ν (s ◦ f) ⊑ νs = νs .

If f ′(Xs◦f ) ⊆ Xs then f ′(Xs◦f ) = f ′(Xs◦f ) = f ′(Xs◦f ) ⊆ Xs = Xs .

(ii) If f ◦ s ⊑ s ◦ f then f ◦ s = f ◦ s ⊑ s ◦ f = s ◦ f . �

We can finally combine these properties with Prop. 1.14 and reduce the prob-
lem of finding up-to techniques for ←→s to that of finding up-to techniques for s.
We illustrate this in Sect. 2.2, by deriving up-to techniques for weak bisimulation
from techniques for weak simulation. An immediate corollary of Prop. 1.13 is that
any map symmetric s-compatible map is ←→s -compatible. This result extends to
correct maps as follows:
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Theorem 1.17. For any s-correct map f via a symmetric map f ′, we have

f ′
(
X←→

s◦f

)
⊆ X←→s , and ν

←−→
s ◦ f ⊑ ν

←→s .

Proof. By using Prop. 1.16, we check that
{
f, f

}
and f ′ = f ′ satisfy the hy-

potheses of Prop. 1.14, for S = {s, s}. �

Corollary 1.18. Let f be an s-correct map via a symmetric map.
If x is symmetric, and x ⊑ s(f(x)), then x ⊑ ν

←→s .

Internal monoid. Suppose that the complete lattice 〈X,⊑,
∨
〉 is actually a

monoidal complete lattice, i.e., that X is equipped with an associative product
(·) with neutral element e, such that:

∀x, y, x′, y′ ∈ X, x ⊑ x′ ∧ y ⊑ y′ ⇒ x · y ⊑ x′ · y′ . (1)

The iteration (resp. strict iteration) of an element x is defined by x⋆ ,
∨

n∈N
xn

(resp. x+ ,
∨

n>0
xn), where x0 , e and xn+1 , x · xn. Iterations and product

are extended pointwise to maps: f ·̂ g : x 7→ f(x) · g(x), and f⋆ : x 7→ f(x)⋆.

Definition 1.19. An element x is reflexive if e ⊑ x; it is transitive if x · x ⊑ x.
We say that s preserves the monoid 〈X, ·, e〉 if e is an s-simulation and

∀x, y ∈ X, s(x) · s(y) ⊑ s(x · y) . (2)

Proposition 1.20. If s preserves the monoid, then:

(i) the product of two s-simulations is an s-simulation;
(ii) s-similarity (νs) is reflexive and transitive;
(iii) for any s-compatible maps f, g, f ·̂ g and f⋆ are s-compatible.

Proof. (i) If x ⊑ s(x) and y ⊑ s(y), then x · y ⊑ s(x) · s(y) ⊑ s(x · y) by (1)
and (2).

(ii) By the previous point, νs · νs is an s-simulation, so that νs · νs ⊑ νs.
Moreover, e ⊑ νs by hypothesis.

(iii) If f ◦ s ⊑ s ◦ f and g ◦ s ⊑ s ◦ g, then we have

(f ·̂ g) ◦ s = (f ◦ s) ·̂ (g ◦ s) ⊑ (s ◦ f) ·̂ (s ◦ g) ⊑ s ◦ (f ·̂ g)

by (1) and (2), so that f ·̂ g is s-compatible. The fact that f⋆ is s-compatible
follows from Prop. 1.6. �

1.4 Progressions

We now reformulate the theory of [18] in the abstract setting of complete lattices,
and we relate it to our theory.
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Definition 1.21. A progression is a binary relation over X, such that:

∀x, y, z ∈ X, x y and y ⊑ z entail x z , (3)

∀Y ⊆ X, ∀z ∈ X, if ∀y ∈ Y, y z, then
∨

Y  z . (4)

A progression is closed if it moreover satisfies:

∀x, y, z ∈ X, x ⊑ y and y z entail x z . (5)

We fix in the sequel a progression .

Definition 1.22. An element x ∈ X is a-simulation if x x.

The -similarity is the lub of all-simulations: ν ,
∨

xx x .

Proposition 1.23. -similarity is the greatest -simulation.

Definition 1.24. Let f be a map.

– f is -correct if ∀x ∈ X, x f(x) entails x ⊑ ν ;

– f is -respectful if ∀x, y ∈ X, x y entails f(x) f(y) .

–  preserves the monoid 〈X, ·, e〉 if e e and

∀x, x′, y, y′ ∈ X, x x′, y y′ ⇒ x · y x′ · y′ . (2’)

Notice that our notion of respectful map slightly differs from that found
in [18,21]: the two notions coincide when the progression we consider is contained
in the partial order (x y ⇒ x ⊑ y).

Lemma 1.25. Let f be a -respectful map and x an element of X.

If x f(x), then fω(x) is a -simulation.

The following result correspond to [18, Thm. 2.11]:

Theorem 1.26. Any -respectful map is -correct.

The result below correspond to Thm. 1.8, which has no equivalent in [18].

Theorem 1.27. Let f be a -respectful map, and let g be a -correct map.

If f is g-compatible, then (g ◦ f) is -correct.

Proof sketch. We define g , {〈x, y〉 | x g(y)}, which is a progression since
g is order-preserving. We prove that f is g-respectful:

xg y ⇔ x g(y)⇒ f(x) f(g(y)) ⊑ g(f(y))⇔ f(x)g f(y) .

Hence, f is g-correct by Thm. 1.26, and the correction of g gives νg
⊑ ν

so that we can conclude. �
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From maps to progressions

Definition 1.28. We call progression associated to s the following relation:

s , {〈x, y〉 | x ⊑ s(y)} .

Proposition 1.29. (i) s is a closed progression;
(ii) For all x, y ∈ X, xs y iff x ⊑ s(y).
(iii) the s-simulations are the s-simulations; ν = νs;
(iv) the s-respectful maps are the s-compatible maps;
(v) the s-correct maps are the s-correct maps;
(vi) s preserves the monoid iff s preserves the monoid.

Proof. (i), (ii) and (iii) are straightforward.
(iv) – let f be a s-respectful map. Let x ∈ X, we have:

s(x) ⊑ s(x) (reflexivity)

s(x)s x (by definition)

f(s(x))s f(x) (f respectful)

f(s(x)) ⊑ s(f(x)) . (by definition)

Hence, f ◦ s ⊑ s ◦ f .
– Conversely, suppose that f is s-compatible, and xs y:

x ⊑ s(y) (by definition)

f(x) ⊑ f(s(y)) (f is order-preserving)

f(x) ⊑ s(f(y)) (compatibility of f)

f(x)s f(y) . (by definition)

(v) By (ii), we have x f(x) iff x ⊑ s(f(x)).
(vi) – Suppose that s preserves the monoid, and let x, y ∈ X. We have

s(x)s x and s(y)s y, so that s(x) · s(y)s x · y, i.e., s(x) · s(y) ⊑
s(x · y) .

– Conversely, if s preserves the monoid, x s x′ and y s y′, then
x · y ⊑ s(x′) · s(y′) by (1), and x · y ⊑ s(x′ · y′) by transitivity, i.e.,
x · ys x′ · y′ . �

From progressions to maps

Definition 1.30. For all x ∈ X, we denote by ⌊x⌋ the set {y ∈ X | y x}. We
call map associated to  the map s : y 7→

∨
⌊x⌋ .

Notice that if we apply this construction tos, we recover s: s = ss
.

Lemma 1.31. The map s is order-preserving; for all x ∈ X,
∨
⌊x⌋ x .

Lemma 1.32. We have  =s
if and only if  is closed.

10



Proof. (⇐) By Proposition 1.29(i)s
is always closed.

(⇒) If x y then x ∈ ⌊y⌋, whence x ⊑
∨
⌊y⌋, i.e., xs

y. Conversely, if
xs

y then x ⊑
∨
⌊y⌋ y, whence x y since  is closed. �

Proposition 1.33. If  is closed, then:

(i) the -simulations are the s-simulations; νs = ν;
(ii) the -respectful maps are the s-compatible maps;
(iii) the -correct maps are the s-correct maps.
(iv)  preserves the monoid iff s preserves the monoid.

Proof. By Prop. 1.32,  = s
. Therefore, it is sufficient to go through

Prop. 1.29. For example, for the first point, the s-simulations are the s
-

simulations, which are the-simulations. �

1.5 Up-to Techniques for Compatible Maps

Denoting by X〈X〉 the set of (order-preserving) maps over X,
〈
X〈X〉,⊑,∪, ◦, idX

〉

forms a monoidal complete lattice. Therefore, we can apply the previous theory
in order to capture certain properties of maps. In particular, that of being s-
compatible: for any map s, define the following relation over maps:

f
s
 f ′ if f ◦ s ⊑ s ◦ f ′ .

Since s is order-preserving,
s
 is a progression relation, whose simulations are

exactly the s-compatible maps. Moreover, when s comes from a progression

(s = s), we have f
s f ′ iff ∀x, y ∈ X, x y ⇒ f(x) f ′(y) .

Lemma 1.34. For any map s,
s
 preserves the monoid

〈
X〈X〉, ◦, idX

〉
.

Proof. If f
s
 f ′ and g

s
 g′, then f ◦ g ◦ s ⊑ f ◦ s ◦ g′ ⊑ s ◦ f ′ ◦ g′, i.e.,

f ◦ g
s
 f ′ ◦ g′; moreover, we clearly have idX

s
 idX . �

Theorem 1.35. Let f, g be two maps.

(i) If the product (·) preserves s and f
s
 f⋆, then f⋆ is s-compatible.

(ii) If f
s
 fω and f is continuous, then fω is s-compatible.

(iii) If f
s
 g◦fω, where g is s-compatible, extensive and idempotent (g◦g = g),

and f is g-compatible, then g ◦ fω is s-compatible.

Proof. Call functor any (order-preserving) map ϕ over maps; we say that a

functor is respectful when it is compatible w.r.t.
s
 . Recall that ĝ is the constant

functor to g, and that (◦̂) is the pointwise extension of (◦) to functors.

(i) By Lemma 1.34 and Prop. 1.20, ϕ = îd⋆
X ◦̂ idX〈X〉 : f 7→ f⋆ is respectful,

being the product of two respectful functors:
– the constant functor to id⋆

X , this map being s-compatible by Prop. 1.20;
– and the identity functor idX〈X〉 , which is always respectful.

11



Therefore, f is “s-compatible up to the respectful functor ϕ”, so that ϕω(f)
is s-compatible, by Prop. 1.4. We finally check that ϕω(f) = f⋆.

(ii) By Lemma 1.34 and Prop. 1.20, the functor ω , id⋆
X〈X〉 : f 7→ fω is respect-

ful (iteration (⋆) is done w.r.t (◦)). By Prop. 1.4, ωω(f) is s-compatible,
and we check that ωω(f) = fω, f being continuous.

(iii) Using similar arguments, ϕ = ĝ ◦̂ ω : f 7→ g ◦fω is respectful, and ϕω(f) is
s-compatible. We then have to check that ϕω(f) = ϕ(f) = g ◦ fω: f being
g-compatible, we have fω◦g ⊑ g◦fω ; which entails (g◦fω)ω = g◦fω since
g is extensive and idempotent. Therefore, we have ϕ2(f) = g ◦ (g ◦ fω)ω =
g ◦ fω = ϕ(f), which leads to ϕω(f) = ϕ(f). �

The first point generalises [21, Lemma 2.3.16]; we illustrate the use of (ii)
and (iii) in Sect. 3. In (iii), the main hypotheses are the progression property
and s-compatibility of g: other hypotheses are only used in order to simplify
computations, so that the actual s-compatible map we obtain is g ◦ fω.

2 Bisimilarity in Monoidal Lattices with Symmetry

We assume a monoidal complete lattice with symmetry, that is, a monoidal com-
plete lattice 〈X,⊑,

∨
, ·, e〉 equipped with a map · such that ∀x, x = x and

∀x, y, x · y = y · x .
Although we denote by x, y . . . the elements of X, they should really be

thought of as “abstract relations” so that we shall call them relations in the
sequel (we employ letters R,S for “set-theoretic relations” of Sect. 3 and 4).

We let α range over the elements of a fixed set L of labels, and we assume a
labelled transition system (LTS), that is, a collection (

α
→)α∈L of relations indexed

by L. Intuitively,
α
→ represents the set of transitions along label α. Among the

elements of L, we distinguish the silent action, denoted by τ ; we let a range
over the elements of Lv , L \ {τ}, called visible labels. For α ∈ L we define the
following weak transition relations:

bα
→ ,

{
τ
→∨ e if α = τ ,
α
→ otherwise ;

α
⇒ ,

τ
→

⋆
·

α
→ ·

τ
→

⋆
;

bα
⇒ ,

τ
→

⋆
·

bα
→ ·

τ
→

⋆
.

Notice the following properties:
bτ
⇒ =

τ
→

⋆
,

τ
⇒ =

τ
→

+

,
ba
⇒ =

a
⇒. The converses of

such relations will be denoted by the corresponding reversed arrows.

2.1 One-Sided Behavioural Preorders

In order to define behavioural preorders, we construct four maps in Fig. 1, based
on four different progressions. Their meaning can be recovered by considering
the simulations they define: s yields strong simulation games, where actions are
exactly matched (diagram (S) in the introduction); e yields games corresponding
to the left-to-right part of an expansion [1,20] game, where it is allowed not to
move on silent challenges; and w yields weak simulations games, where one can

12



s : x s y if x ⊑ y and ∀α ∈ L,
α
← · x ⊑ y ·

α
← ;

e : x e y if x ⊑ y and ∀α ∈ L,
α
← · x ⊑ y ·

bα
← ;

w : x w y if x ⊑ y and ∀α ∈ L,
α
← · x ⊑ y ·

bα
⇐ ;

wt : x wt
y if x ⊑ y,

τ
← · x ⊑ y ·

bτ
⇐ , and ∀a ∈ Lv

,
a
← · x ⊑ y

⋆ ·
ba
⇐ .

Fig. 1. Maps and progressions for left-to-right simulation-like games.

answer “modulo silent transitions”. The map (wt) is a variant of w, which allows
one to answer up to transitivity on visible challenges. We have s ⊑ e ⊑ w ⊑ wt,
so that Xs ⊆ Xe ⊆ Xw ⊆ Xwt

, and νs ⊆ νe ⊆ νw ⊆ νwt.
In these definitions, the requirement x ⊑ y may seem worthless; it is however

required in almost all compatibility results we shall prove below; the absence of
this requirement is notably the source of unnecessary complications in [18].

Lemma 2.1. Maps s and e preserve the monoid.

Proof. Straightforward diagram chasing arguments. �

The following proposition collects standard up-to techniques that can be
used with these maps. Maps s and e preserve the monoid, so that they enjoy the
properties stated in Prop. 1.20: the corresponding greatest fixpoints are reflexive
and transitive, and they support the powerful “up to transitivity” technique (i).
This is not the case for w: if it was preserving the monoid, the “weak up to weak”
technique would be correct, which is not true [20]. We can however show directly
that w-simulations are closed under composition (·), and that they support “up
to expansion” on the left, and “up to weak” on the right (ii). Map wt is actually
an up-to technique for w: the similarities associated to those maps coincide (iii).
Intuitively, transitivity can be allowed on visible actions, since these are played
in a one-to-one correspondence.

Proposition 2.2. (i) The reflexive transitive map id⋆
X is s- and e-compatible.

(ii) For any xe ∈ Xe and xw ∈ Xw, the map y 7→ xe · y · xw is w-compatible;
this map is wt-compatible whenever xe and xw are reflexive.

(iii) For any wt-simulation x, x⋆ is a w-simulation; νwt = νw.

Proof. (i) From Prop. 1.20, and Lemma 2.1.

(ii) We first show that any w-simulation x satisfies ∀α ∈ L,
bα
⇐· x ⊑ x ·

bα
⇐, the

result follows easily.

(iii) By two inductions on n, we prove that ∀n ∈ N,
bτ
⇐ · xn ⊑ xn ·

bτ
⇐ and

∀n ∈ N,
a
⇐ · xn ⊑ x⋆ ·

a
⇐ . �

2.2 Handling Two-Sided Games

To study “reversed games” we just use the converses of the previous maps; for
example, the map w defines the same games as w, from right to left: x is a
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w-simulation iff x w x. Using the results of Sect. 1.3 we can then combine
left-to-right maps with right-to-left maps and obtain standard two-sided games:

∼ , ν
←→s ≍ , ν

←→e % , ν(e ∧w) ≈ , ν
←→w

Strong bisimilarity (∼), bi-expansion (≍) [5] and weak-bisimilarity (≈) are sym-
metric, reflexive and transitive; expansion [1,20] (%) is reflexive and transitive;
we have

∼ ⊑ ≍ ⊑ % ⊑ ≈ .

Remark 2.3. Here we chose to follow the definition of bisimilarity where a bisim-
ulation is a relation x such that x and x are simulations. Another standard defini-
tion consists in restricting the notion of bisimulations to symmetric simulations.
We could mimic this definition by letting ←→s , s ∧ i (we have that a relation x

is an i-simulation (x ⊑ x) if and only if it is symmetric). Although this choice
slightly restrict the set of compatible maps, we could adapt Thms. 2.5 and 4.5
to work with this definition.

Before transferring our techniques from one-sided to two-sided games, we
introduce the notion of closure, that we use as an abstraction in order to cope
with the up-to context techniques we shall define in Sect. 3. Notice that the
continuity and extensivity hypotheses are not required for Thm. 2.5 to hold.

Definition 2.4. A closure is a continuous, extensive and symmetric map C,
such that ∀x, y ∈ X, C(x · y) ⊑ C(x) · C(y) .

We now can recover standard techniques for behavioural preorders/equivalences;
we explain them below.

Theorem 2.5. Let C be a closure.

(i) If C is s-compatible, x 7→ (C(x) ∨ ∼)⋆ is ←→s -compatible
(ii) If C is e-compatible, x 7→ (C(x) ∨ ≍)⋆ is ←→e -compatible

(iii) If C is e- and w-compatible, then ν

(
e ◦ (C ∨ %̂)⋆ ∧w ◦ (%̂ ·̂ C ·̂ ≍̂)

)
= %.

(iv) If C is w-compatible, x 7→ % · C(x) ·- is ←→w -compatible.
(v) If C is w-compatible, x 7→ % · C(x) · ≈ is w-correct via a symmetric map.
(vi) ν

←→wt = ≈ . If C is wt-compatible, x 7→ % · C(x) · ≈ is wt-correct via a
symmetric map.

Proof. (i) By Props. 1.6 and 2.2, this map is s-compatible; being symmetric,
it is also s-compatible. We conclude with Prop. 1.13.

(ii) Identical to the previous point.

(iii) Let fe = (C ∨ %̂)⋆; fe is e-compatible and hence, e-correct via fω
e . Let

fw = ≍̂ ·̂ C ·̂ -̂ ; fw is w-compatible, and hence, w-correct via fω
w . We then

obtain that fw is w-correct via f ′ = (idX ∨ %̂)⋆ ◦ fw

ω
, by Lemma 1.9, We

check that f ′ = fω
e and we apply Prop. 1.14.

(iv) This map is symmetric and w-compatible.
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α ∈ L a ∈ Lv

τ = τ a = a

p ::= 0 | α.p | p|p | (νa)p | !p

p
α
→ p

′

p | q
α
→ p

′ | q

q
α
→ q

′

p | q
α
→ p | q′

p
a
→ p

′

q
a
→ q

′

p | q
τ
→ p

′ | q′

α.p
α
→ p

p
α
→ p

′

(νa)p
α
→ (νa)p′

α 6= a, a
!p | p

α
→ p

′

!p
α
→ p

′

Fig. 2. Calculus of Communicating Systems (CCS)

(v) Let f : x 7→ % · C(x) · ≈ ; f is w-compatible, and hence w-correct via fω.
by Lemma 1.9, it is also correct via the map (≈̂ ·̂ idX) ◦ fω = ≈̂ ·̂ Cω ·̂ ≈̂ ,
which is symmetric.

(vi) If x is a ←→wt-simulation, then x⋆ is a ←→w -simulation; the second point is
similar to the previous one. �

Intuitively, we may think of C(R) as being the closure of R under some set
of contexts. (i) states that up-to transitivity and contexts is allowed for strong
bisimilarity. This corresponds to the left diagram below: if x is symmetric and
satisfies this diagram, then x is contained in ∼. The standard up to expansion
and contexts for weak bisimulation is stated in (iv) and slightly improved in (v);
notice that we need for that to use the notion of correct map: this map is not
←→w -compatible. Technique (v) appears on the second diagram below. Finally,
(vi) allows us to work up to transitivity on visible actions; which is depicted on
the last two diagrams below

·

α

��

x

⊑ α
��

(C(x) ∨ ∼)⋆ ·

·

α

��

x

⊑
bα

��
% · C(x) · ≈·

·

τ

��

x

⊑
bτ

��
% · C(x) · ≈·

·

a

��

x

⊑ a
��

(C(x) ∨ ≈)⋆ ·

3 Congruence and Up to Context Techniques in CCS

We now look at “up to context” techniques, which provide an example of appli-
cation of the results from Sect. 1.5. We need for that to instantiate the previous
framework: contexts do not make sense in a point-free setting.

3.1 The case of sum-free CCS

We first restrict ourselves to the case of sum-free CCS [13], whose syntax and
semantics are recalled in Fig. 2. The sum operator is the source of irregularities
in the weak case; we show how to handle this operator in Sect.3.2. Moreover, we
chose replication (!) rather than recursive definitions in order to get an algebra
which is closer the π-calculus.

We denote by P the set of processes, and we let R,S range over the set R of
binary relations over P. We write p R q when 〈p, q〉 belongs to R. We denote by I
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the reflexive relation: {〈p, p〉 | p ∈ P}. The composition of R and S is the relation
R · S , {〈p, r〉 | ∃q, p R q and q S r}; the converse of R is R , {〈p, q〉 | q R p}.
We finally equip relations with set-theoretic inclusion (⊆) and union (

⋃
), so that

〈R,⊆,
⋃

, ·, I, ·〉 forms a monoidal complete lattice with symmetry.
For any natural number n, a context with arity n is a function c : Pn → P,

whose application to a n-uple of processes p1, . . . , pn is denoted by c[p1, . . . , pn].
We associate to such context the following map (which is actually a closure):

⌊c⌋ : R 7→ {〈c[p1, . . . , pn], c[q1, . . . , qn]〉 | ∀i ≤ n, pi R qi}

This notation is extended to sets C of contexts, by letting ⌊C⌋ ,
⋃

c∈C ⌊c⌋ .

Definition 3.1. We define the following initial contexts:

0 : p 7→ 0 | : p, q 7→ p|q α. : p 7→ α.p (νa) : p 7→ (νa)p ! : p 7→ !p

We gather these in the set Ci , {idP ,0, |, !}∪{α. | α ∈ L}∪{(νa) | a ∈ Lv}, and
we call closure under CCS contexts the map Cccs , ⌊Ci⌋

ω .

Initial vs. Monadic Contexts. Cccs(R) is actually the closure of R under arbitrary
polyadic CCS contexts: we can show that p Cccs(R) q iff p and q can be obtained
by replacing some occurrences of 0 in a process with processes related by R. A
different approach is adopted in [21]: the family Cm of monadic CCS contexts
is defined; it consists in arbitrary CCS contexts, where the argument is used at
most once. The map Cccs can then be recovered by transitive closure: we have
Cccs ⊆ ⌊Cm⌋

⋆. It has to be noticed that polyadic contexts cannot be avoided
when we study the correctness of such maps: the monadic replication context (!)
“evolves” by reduction into a polyadic context. In order to be able to consider
only monadic contexts, a lemma corresponding to Thm 1.35(i) is used in [21], so
that the proof in the strong case – reformulated into our setting – amounts to
proving ⌊Cm⌋

s

 ⌊Cm⌋
⋆, i.e., ∀c ∈ Cm, ⌊c⌋

s

 ⌊Cm⌋
⋆, which is done by structural

induction on context c (recall that f
s

 f ′ iff R s S entail f(R) s f ′(S)).
This approach does not scale to the weak case however, where up to transitivity
is not correct, so that Thm 1.35(i) cannot no longer be used. Therefore, [21]
suggests to work with polyadic contexts from the beginning, which is tedious
and happens to require more attention than expected, as will be shown below.

Focusing on initial contexts makes it possible to reach Cccs by iteration
(Thm 1.35(ii)) rather than transitive closure, so that the extension to the weak
case is not problematic. Moreover, initial contexts are much simpler than monadic
contexts: the argument is almost at the top of the term, so that it is really easy
to figure out the transitions of c[p1, . . . , pn]. We give a detailed proof of the
following theorem to illustrate the benefits of this approach.

Theorem 3.2. The closure Cccs is s-compatible.

Proof. By Thm.1.35(ii), it suffices to show ⌊Ci⌋
s

 Cccs, i.e., ∀c ∈ Ci, ⌊c⌋
s

 Cccs.
We study each context of Ci separately, and we show

⌊idP⌋ = idR
s

 idR ⌊0⌋
s

 ⌊0⌋ ⌊α.⌋
s

 idR

⌊(νa)⌋
s

 ⌊(νa)⌋ ⌊|⌋
s

 ⌊|⌋ ⌊!⌋
s

 ⌊|⌋ω ◦ (⌊!⌋ ∪ idR)
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(all maps used on the right of the above progression are contained in Cccs). Let

R,S such that R s S, in each case, we suppose u ⌊c⌋(R) v and u
α
→ u′, and

we have to find some v′ such that v
α
→ v′ and u′ ⌊c′⌋(S) v′.

idR, ⌊0⌋: straightforward.

⌊α.⌋: u = α′.p
α
→ u′, v = α′.q with p R q. Necessarily, α = α′ and u′ = p. We hence

have v = α.q
α
→ q, with p idR(S) q, (recall that Rs S entails R ⊆ S).

⌊(νa)⌋: u = (νa)p
α
→ u′, v = (νa)q with p R q. Inferences rules impose u′ = (νa)p′

where p
α
→ p′ and α 6= a, a. Since p R q, we obtain q′ such that q

α
→ q′ and

p′ S q′, and we check that v
α
→ v′ = (νa)q′, with u′ ⌊(νa)⌋(S) v′.

⌊|⌋: u = p1|p2

α
→ u′, v = q1|q2 with p1 R q1 and p2 R q2. According to the

inference rules in the case of a parallel composition, there are three cases:

• u′ = p′1|p2 with p1

α
→ p′1. Since Rs S, q1

α
→ q′1 with p′1 S q′1. We check

that v
α
→ v′ = q′1|q2 and u′ ⌊|⌋(S) v′ (again we use Rs S ⇒ R ⊆ S).

• u′ = p1|p
′
2 with p2

α
→ p′2, which is identical to the previous case.

• u′ = p′1|p
′
2 with p1

a
→ p′1, p2

a
→ p′2, and α = τ . We have q1

a
→ q′1 q2

a
→ q′2

with p′1 S q′1 and p′2 S q′2; so that v
τ
→ v′ = q′1|q

′
2 and u′ ⌊|⌋(S) v′.

⌊!⌋: u =!p
α
→ u′, v =!q with p R q. By structural induction on inferences rules,

there are two cases:

• u′ = !p|pk|p′|pk′

with p
α
→ p′ (pk denotes the parallel composition of

k copies of p). We deduce q
α
→ q′ with p′ S q′, and we check that

v
α
→ v′ = !q|qk|q′|qk′

and u′ ⌊|⌋k+k′
+1 ◦ (⌊!⌋ ∪ idR)(S) v′.

• u′ = !p|pk|p0|p
k′

|p1|p
k′′

with p
a
→ p0, p

a
→ p1 and α = τ . We deduce

q
a
→ q0 and q

a
→ q1 with p0 S q0 and p1 S q1. We check that v

τ
→ v′ =

!q|qk|q0|q
k′

|q1|q
k′′

, where u′ ⌊|⌋k+k′
+k′′

+1 ◦ (⌊!⌋ ∪ idR)(S) v′. �

Contrarily to what is announced in [21, Lem. 2.4.52], Cccs is not w-compatible:
consider for example R = {〈τ.a, a〉} ∪ I; although Re R, Cccs(R)e Cccs(R)

does not hold: the challenge !τ.a|a
τ
← !τ.a ⌊!⌋(R) !a cannot be answered in Cccs(R)

since !a cannot move; we first have to rewrite !a into !a|a. This is possible up to
∼ : unfolding of replications is contained in strong similarity. [21] should thus be
corrected by working modulo unfolding of replications, the corresponding proof
would be really tedious however. In our setting, it suffices to use Thm.1.35(iii):
we work “up to iteration and a compatible map”.

Theorem 3.3. R 7→ ∼ · Cccs(R) · ∼ is an e- and w-compatible closure.

Proof (w-compatibility). Take g : r 7→ ∼ · R · ∼ ; g is w-compatible, extensive
and idempotent; moreover, Cccs being s-compatible, Cccs(∼) ⊆ ∼, and Cccs is g-

compatible. Hence, by Thm.1.35(iii), it suffices to show ∀c ∈ Ci, ⌊c⌋
w

 g ◦ Cccs.

Like previously, ⌊0⌋
w

 ⌊0⌋, ⌊|⌋
w

 ⌊|⌋, ⌊α.⌋
w

 idR, and ⌊(νa)⌋
w

 ⌊(νa)⌋; we
detail the case of the replication, for which we need the map g. Consider R,S

such that R w S, we have to show ⌊!⌋(R) w ∼ · Cccs(S) · ∼ . Suppose that

p R q and !p
α
→ p′; there are two cases:
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R =
˘˙

a, (νb)(b.a|b)
¸

, 〈b.a, b〉 ,
˙

(νb)(b|b),0
¸

, 〈(νb)0,0〉
¯

c : p 7→ (νb)(p|b)

b.a
b

{{ww
ww

w
R b

b

""DD
DD

D

a R c[b.a] Cccs(R) c[b] R 0

Fig. 3. Closure Cccs is not wt-correct.

– p′ = !p|pk|p0|p
k′

with p
α
→ p0 (pk denotes the parallel composition of k copies

of p). Since R
w

 S, we deduce q
bα
⇒ q0 with p0 S q0. There are two cases:

• q
α
⇒ q0, and we check that !q

α
⇒ q′ = !q|qk|q0|q

k′

, where p′ Cccs(S) q′.
• q = q0 (and α = τ), in that case, !q cannot move, this is where we have

reason modulo ∼ : !q ∼ q′ = !q|qk+1+k′

, and p′ Cccs(S) q′ ∼ !q.

– p′ = !p|pk|p0|p
k′

|p1|p
k′′

with p
a
→ p0 and p

a
→ p1 (α = τ). Since R

w

 S,

we deduce q
a
⇒ q0 and q

a
⇒ q1 with p0 S q0 and p1 S q1. We check that

!q
τ
⇒ q′ = !q|qk|q0|q

k′

|q1|q
k′′

, where p′ Cccs(S) q′. �

The proof of e-compatibility follows exactly the same lines; notice that the
problematic situation, requiring to use g, cannot arise in the strong case.

A negative result. Rather surprisingly, Cccs is not wt-correct: a counterex-
ample [19] is depicted on Fig. 3.1, where R is not contained in wt-similarity

while R is a (wt ◦ Cccs)-simulation. The point is that ⌊|⌋
wt Cccs does not hold:

since parallel composition is able to “transform” two visible actions into a silent
action, up to transitivity is brought from visible challenges – where it is allowed
by wt, to silent challenges – where it is not

More precisely, we are stuck in the case of a communication, when we try to
show that Rwt

S entail ⌊|⌋(R)wt
Cccs(S): using notations from the proof

of Thm. 3.2, we have u′ = p′1|p
′
2 with p1

a
→ p′1, p2

a
→ p′2, and α = τ ; however,

the hypothesis R wt
S gives q1

a
⇒ q′1 q2

a
⇒ q′2 with p′1 S⋆ q′1 and p′2 S⋆ q′2

(rather than p′1 S q′1 and p′2 S q′2 with w); therefore we have v
τ
⇒ v′ = q′1|q

′
2 with

u′ ⌊|⌋(S⋆) v′; being in a silent challenge, this is not sufficient: we have to prove
that u′ ⌊|⌋(S) v′.

This shows that maps inducing the same fixpoint (recall that νw = νwt)
may define different sets of compatible or correct maps. At a pragmatic level, this
reveals the existence of a trade-off between the ability to use up to context and
up to transitivity. More importantly, it shows that from the point of view of up-to
techniques, weak bisimilarity is different from “strong bisimilarity on the weak

LTS (
bα
⇒)”: the relation R from Fig. 3.1 also satisfies ∀α,

bα
⇐ ·R ⊆ Cccs(R)⋆ ·

bα
⇐ .

3.2 Handling the sum operator.

We omitted the sum operator in order to obtain a rather uniform presentation.
We show how to deal with this operator, which is known to be slightly problem-
atic in the weak case, due to the preemptive power of silent action. We therefore
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extend our syntax of CCS with the sum (p + q), and we add the following two
rules to those from Fig. 2:

p ::= . . . | p + p
p

α
→ p′

p + q
α
→ p′

q
α
→ q′

p + q
α
→ q′

The initial context corresponding to this construction is + : p, q 7→ p+ q, so that
we can define C+

i , Ci ∪ {+}, and C+ccs , ⌊C
+

i ⌋
ω. For the strong case, we have

⌊+⌋
s

 idR, so that we immediately obtain the s-compatibility of C+ccs.
This cannot be the case in the weak case: it is well-known that ≈ is not a

congruence w.r.t. the sum operator. In our approach, the problem arise when
we try to prove ⌊+⌋

w

 C+ccs: if p1 + p2 ⌊+⌋(R) q1 + q2, and p1 + q1

τ
→ p′1 with

p1

τ
→ p′1, then q1 may not move: q1 = q′1 with p′1 S q′1, and we cannot relate p′1

with a reduct of q1 + q2.
We actually have to use non-degenerate contexts [21], where all arguments

are “protected” by a prefix. In order to obtain the corresponding closure, we
introduce the following (initial) contexts, for any process r and prefixes (αi)i≤n:

r + Σi αi. : p1, . . . , pn 7→ r + α1.p1 + · · ·+ αn.pn .

We can then define Cnd
i , Ci ∪ {r + Σi αi. | ∀r, (αi)i}, and Cnd

ccs , ⌊C
nd
i ⌋

ω. We

check that ⌊r + Σi αi.⌋
w

 idR ∪ Î, so that Cnd
ccs is w-compatible (map Î : R 7→ I

is contained in Cnd
ccs). The same argument leads to the e-compatibility of Cnd

ccs.

Notice that an immediate consequence of the previous results is that ∼ is
closed under all CCS contexts (C+ccs), and that ≍, % and ≈ are closed under all
non degenerate CCS contexts (Cnd

ccs).

4 Going Beyond Expansion: Termination Hypotheses.

In recent work [17], we proved that we can use up to transitivity and go be-
yond expansion – even on silent challenges – provided that some termination
hypotheses are satisfied. In this section, we generalise the most important of
these techniques (that has actually been used in [15]), and show how to inte-
grate it with previously defined techniques. We say that a relation ≻ terminates
if there exists no infinite sequence (pi)i∈N such that ∀i ∈ N, pi ≻ pi+1 .

We start by a technical lemma expressing the commutation property on which
the technique relies.

Lemma 4.1. Let R,S,→ and →֒ be four relations. If S ⊆ R, and S+ · →+

terminates, then

{
← · R ⊆ S⋆ · R · ←⋆ (H)

←֓ · R ⊆ R⋆ · ←֓ · ←⋆ (H′)
entail ←֓ · ←⋆ · R⋆ ⊆ R⋆ · ←֓ · ←⋆ .
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Proof. We actually prove ←֓ · ←⋆ · R ⊆ R⋆ · ←֓ · ←⋆, which leads to the desired
result by a simple induction. We proceed by well-founded induction over 〈P, N〉,

equipped with the lexicographic product of
τ
⇒ · S+ and the standard ordering

of natural numbers, which are two well-founded relations (the termination of
τ
⇒ · S+ is equivalent to that of S+ ·

τ
⇒). We use the predicate ϕ(u, n):

“for any p, p′0, q, u→⋆ p→n · →֒ p′0 and p R q entail p′0 R⋆ · ←֓ · ←⋆ q.”

– if n = 0, then ϕ(u, n) holds by using the commutation hypothesis (H’);
– otherwise, take p0 such that p → p0 →

n−1 · →֒ p′0, and apply the first
commutation hypothesis (H) to p0 ←֓ · ← p R q: there exist k > 0 and
p1, . . . , pk such that q →⋆ · →֒ pk, pk−1 R pk and ∀i ∈ [1; k − 1], pi−1 S pi.
We now define by an internal induction a sequence (p′i)0<i≤k such that we
have ∀i ∈ [1; k], pi−1 R⋆ p′i ←֓ · ←

⋆ pi.
• if i = 1, we apply the external induction hypothesis: ϕ(u, n − 1), to

p′0 ←֓ · ←n−1 p0 R p1 (recall that S ⊆ R): there exists p′1 such that
p′0 R⋆ p′1 and p1 →

⋆ · →֒ p′1.
• otherwise, i > 1, we suppose that the sequence is constructed until i−1,

and we remark that u →+ · S+ pi−1, so that we can obtain p′i by
applying the external induction hypothesis, ϕ(pi−1,mi−1), to p′i−1 ←֓
· ←mi−1 pi−1 R pi (mi−1 is the number of steps between pi−1 and p′i−1).

We can conclude: we have p′0 R⋆ p′k ←֓ · ←
⋆ q.

This case of the proof is summed up below in a diagrammatic way:

u
⋆
// p

��

R

(H)

q

⋆��
p0

n−1��

S
ϕ(u, n − 1)

p1

m1
��

S
ϕ(p1, m1)

p2

m2
��

...

. . . S pk−1

mk−1��

R
ϕ(pk−1, mk−1)

pk

⋆��� _

��

� _

��

� _

��

� _

��

� _

��

p′

0 R⋆ p′

1 R⋆ p′

2
. . . R⋆ p′

k−1 R⋆ p′

k

�

Theorem 4.2. Let R,S be two relations; suppose that S+ ·
τ
⇒ terminates.

If S ⊆ R and

{
τ
← · R ⊆ S⋆ · R ·

bτ
⇐

∀a ∈ Lv,
a
← · R ⊆ R⋆ ·

a
⇐

then R⋆ is a w-simulation.

Proof. We first apply Lemma 4.1 with → =
τ
→ and →֒ = I, so that we obtain

bτ
⇐ · R⋆ ⊆ R⋆ ·

bτ
⇐ .

This leads to
bτ
⇐ ·

a
← · R ⊆ R⋆ ·

ba
⇐ , so that we can apply Lemma 4.1 again,

with → =
τ
→ and →֒ =

a
→ ·

bτ
⇒, to obtain

ba
⇐ · R⋆ ⊆ R⋆ ·

ba
⇐ . �

The proof is given in appendix; intuitively, this theorem allows reasoning up
to transitivity, provided that the pairs used in transitivity position in silent chal-
lenges (those collected in relation S) satisfy a termination property. Restricted
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to the case R = S ∪ I, this corresponds to [17, Thm. 3.13]. This generalisation,
which may seem useless, makes the result much more tractable in practise: the
termination requirement refers only to the part of R that is actually used in silent
challenges, to rewrite the left-hand-side process. Therefore, we can enlarge R ac-
cording to our need, without having to bother with the termination of S+ ·

τ
⇒ .

Notably, and unlike in [17], S⋆ is not required to be a w-simulation by itself.
Also remark that the termination requirement does not entail the termination
of S or

τ
→, which makes it realistic in practise. An application, where this kind

of requirement comes from the termination of
τ
→ and the fact that S does not

interfere with the termination argument is described in [15].

In order to integrate this technique into our setting, we have to define a map
that enforce the termination hypothesis. We achieve this by using an external
relation that will satisfy the termination hypothesis: let ≻ be a transitive relation
and define t≻ : R 7→ (R ∩ ≻)

⋆ ·R.

Corollary 4.3. If ≻ ·
τ
⇒ terminates, then t≻ is w- and wt-correct via id⋆

R.

Proof. Given a (wt ◦ t≻)-simulation R, we apply Thm. 4.2 to R and S = R∩≻:
R⋆ is a w-simulation. Furthermore, wt-correctness via id⋆

R entails w-correctness
id⋆
R. �

It, then suffices to establish the following (elementary) properties, so that we
can combine this correct map with standard compatible maps, using Thm. 1.8.

Lemma 4.4. Let C be a closure such that C(≻) ⊆ ≻ , let S be a reflexive relation.
The maps C, R 7→ S and R 7→ R · S are t≻-compatible.

Proof. – C(R ∩ ≻) ⊆ C(R) ∩ C(≻) ⊆ C(R) ∩ ≻, and C is a closure, hence:

C ◦ t≻(R) = C
(
(R ∩ ≻)

⋆ ·R
)
⊆ (C(R ∩ ≻))

⋆ · C(R)

⊆ (C(R) ∩ ≻)
⋆ · C(R) = t≻ ◦ C(R) ;

– Ŝ ◦ t≻(R) = S ⊆ (S ∩ ≻)⋆ · S = t≻(S) = t≻ ◦ Ŝ(R).
– S being reflexive, we have R ⊆ R · S, so that t≻(R) · S = (R ∩ ≻)⋆ ·R · S ⊆

((R · S) ∩ ≻)⋆ ·R · S = t≻(R · S). �

Theorem 4.5. Let C be a w-compatible closure such that C(≻) ⊆ ≻ . If ≻ ·
τ
⇒

terminates, R 7→ ((C(R)∪≈)∩≻)⋆ · C(R) · ≈ is w-correct via a symmetric map.

Proof. Let f : R 7→ (C(R) ∪≈) · ≈ . Using Props. 1.6, 2.2, Cor. 4.3, Lemma 4.4
and Thm. 1.8, t≻ ◦ f is w-correct via (fω)

⋆
= (Cω ∪ ≈̂)⋆, which is symmetric.

Then, we have ((C(R) ∪ ≈) ∩ ≻)⋆ · C(R) · ≈ ⊆ t≻ ◦ f(R). �

This theorem also holds for wt; it is however unclear whether there are inter-
esting wt-compatible closures, as explained in Sect. 3. We conclude by consider-
ing elaboration (v) [2], which is another coinductively defined preorder contained
in ≈ . We have shown in [16] that this preorder can be used as an up-to tech-

nique for ≈ , when
τ
→ terminates. Using our theory, we can combine this result
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with up to context: if
τ
→ terminates, so does v ·

τ
⇒ [16, Lemma 2.5]; we can

moreover show that elaboration is a congruence w.r.t CCS contexts, so that v
naturally satisfies the requirements of Thm. 4.5. Notice that we could encompass
up-to techniques for elaboration in our theory, using similar arguments as for
expansion.

Corollary 4.6. In finite (replication free) CCS, map R 7→ v · Cccs(R) · ≈ is
w-correct via a symmetric map.

Proof. We have ((Cccs(R) ∪ ≈) ∩v)⋆ · Cccs(R) · ≈ = v · Cccs(R) · ≈ . �

5 Related and Future Work

Termination in the point-free setting. We would like to investigate whether
the presentation of the techniques exploiting termination arguments and well-
founded induction (Sect. 4) can be lifted to the point-free setting of Sect. 2.
Results from [4], in the setting of relation algebras, are really encouraging: ter-
minating relations can be characterised at a point-free level, and this property
can be related to corresponding well-founded induction principles. Notably, New-
man’s Lemma, whose proof uses the same ingredients as our proof of Lemma 4.1
(e.g., diagram chasing and well-founded induction), can be proved at the corre-
sponding abstraction level. Relation algebras are slightly more restrictive than
our setting however: they require that the product distributes over lubs, and a
“modular identity law”.

Termination and contexts. In order to use Thm 4.5 with a closure (C), we have

to check that relation ≻, which ensures the termination requirement (≻ ·
τ
⇒), is

closed under C (C(≻) ⊆ ≻). This hypothesis is automatically satisfied by elab-
oration, which is a pre-congruence; however, we would like to investigate more
generally how to obtain such pre-congruences satisfying the termination require-
ment. This is a common question in rewriting theory; we plan to study whether
tools from this domain (rewrite orders, dependency pairs, interpretations) can
be adapted to our case, where the termination property is about the composition
of the relation with silent transitions, rather than about the relation itself.

Congruence properties. In the case of sum-free CCS, which we studied in Sect. 3,
bisimilarities are congruences w.r.t all contexts. Such situations are not so com-
mon in concurrency theory, where we often have to close bisimilarity under some
contexts, in order to obtain a congruence [14,21,7]. Our setting seems well-suited
to analyse such situations at a rather abstract level: given a closure C, repre-
senting the congruence property to be satisfied, we can define its adjoint as the
map C◦ : x 7→

∨
{y | C(y) ⊑ x}. We have C◦ ◦ C = C, C ◦ C◦ = C◦, so that

C(x) ⊑ y iff x ⊑ C◦(y); therefore, C◦ maps any element x to the largest congru-
ence dominated by x. For example, C◦(ν←→w ) is the largest congruence contained
in weak bisimilarity. Another standard approach consists in closing the relation
under contexts, after each step of the bisimulation games; in doing so, we obtain
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barbed congruence [9,7], which is both a congruence, and a bisimulation. We
can capture this approach by considering ν

(←→w ∧ C◦
)
. We would like to study

whether up-to techniques can be developed in order to reduce the number of
contexts to be considered in such cases, and to have a better understanding of
the interactions between “game maps” like w and “congruent maps” like C◦.
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