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We study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial
and constant imposed stress. For this viscoplastic material, we uncover a dynamical law that describes the
dependence of the instantaneous crack velocity with experimental parameters. The law involves a
Dugdale-Barenblatt static description of crack tip plastic zones associated to an Eyring’s law and an
empirical dependence with the crack length that may come from a residual elastic field.
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Stressed solids commonly break apart once a critical
stress threshold is reached. However, many experiments
[1–5] show that a given solid submitted to a subcritical
stress breaks after a certain amount of time. Therefore,
understanding the mechanisms of subcritical rupture of
solids has become an important goal of fracture physics
in order to improve the resistance of structures to delayed
failure that may have catastrophic consequences. Accord-
ing to reported experimental works [1,2], the dependence
of the rupture time with applied stress � can be described
in many kinds of materials (polymers, metal alloys, semi-
conductors, rocks. . .) by an Arrhenius law with an energy
barrier decreasing linearly with �. This proposed univer-
sality is disturbing since these materials have microstruc-
tures and rheological properties very different from one
another, and the rupture dynamics is certainly expected to
be dependent on those properties. To lift this paradox, one
must go beyond characterization of global properties such
as rupture time and instead study experimentally the full
time-resolved rupture dynamics, from the stress applica-
tion to the final breakdown of the sample. A convenient
system to start with is a two-dimensional solid with a
single macroscopic initial crack submitted to a uniaxial
constant load.

In this context, recent experimental studies [5] have
shown that subcritical crack growth in paper sheets can
be successfully described by a thermally activated mecha-
nism inspired from previous theoretical works in elastic
brittle media [6,7]. Experimental study of slow crack
growth in a viscoplastic material under stress is a very
active topic [8]. General theoretical frameworks [9–11]
have been proposed to predict the dependence of the crack
growth velocity with experimental parameters using char-
acteristic material time-response functions such as its com-
pliance. However, these models involve complex integro-
differential equations which are hardly tractable in practi-
cal situations where viscoplastic effects are strong.
Consequently, the experimental time evolution of the in-
stantaneous crack growth dynamics cannot be captured
easily by current models.

In order to provide more experimental insight in our
understanding of viscoplastic effects during slow crack

growth, we have performed an experimental study of the
slow growth of a single crack in amorphous polymer films
made of polycarbonate, a highly nonbrittle viscoplastic
material. The experiments consist of the growth of a single
linear crack in a polycarbonate film submitted to uniaxial
and constant imposed force. The polycarbonate films used
are Bayer Makrofol® DE and have the properties of bulk
material. Before each experiment, a crack of length ‘i
(from 0.5 to 3 cm) is initiated at the center of the poly-
carbonate sample (height H � 21 cm (same direction as
the crack), length L � 24 cm, thickness e � 125 �m).
Then, a constant force F is applied to the film perpendic-
ularly to the crack direction, so that we get a mode 1 crack
opening configuration. Using a camera, we follow the
growth of the crack length ‘ under constant applied stress
� � F=eH until the total rupture of the sample. The
applied stress � is chosen such that crack growth is slow,
i.e., smaller than a critical one �c, above which crack
propagation occurs in a few seconds. More details about
the experimental setup can be found in [12].

In each crack growth experiment, during the loading
phase of the film, a macroscopic flame-shaped plastic
zone appears at each tip of the crack [13] and grows with
the applied stress (cf. Fig. 1 where is defined the plastic
zone length from tip to tip ‘pz). In the late loading stage,
the crack may also start to grow at a time that appears to be
statistical. It is probably a consequence of the dispersion in
the local toughness of the material or in the initial crack tip
shape. Consequently, the real experimental initial condi-
tion, obtained when the constant stress � is reached, is not
exactly ‘ � ‘i. Depending on the moment when the crack
starts to grow during the loading phase, the true initial
condition of the creep experiment will be a couple of

FIG. 1. Image of a crack in a polycarbonate film with its
macroscopic plastic zone at each tip.
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values for the crack and plastic zone length (Fig. 1): (‘�,
‘�pz). Finally, during the imposed stress stage, the plastic
zones and the crack are both growing until the final break-
down of the sample in a way that the crack never catches up
to the plastic zone tip. Inside the plastic zone, the film is
subjected to a thinning which brings its thickness down to
75� 5 �m.

Typical growth curves of the fracture and plastic zone
are shown in Fig. 2. Both curves show a quite similar
smooth shape. This regular shape lets us think that the
crack growth in polycarbonate films is a deterministic
phenomenon. However, for identical experimental condi-
tions, we notice a large dispersion of the rupture times and
more generally of the crack growth dynamics. There is
actually up to a factor five between the rupture time of the
fastest and slowest experiments. We suggest that the ex-
planation for this statistics in the crack growth dynamics
does not come from the growth mechanism itself, but is a
consequence of the dispersion in the effective initial con-
ditions at the beginning of the constant stress phase of the
experiment (‘�, ‘�pz). These initial conditions are clearly
statistical and hardly controllable in our experiment. They
are dependent on the moment when the crack starts grow-
ing during the loading stage of the sample and they deter-
mine all the rest of the experiment.

In Fig. 3, we show the evolution of the average rupture
time hTri (averaged over at least ten experiments) as a
function of the applied stress for a series of experiments
with ‘i � 1:5 cm. We see a linear dependence of loghTri
with the applied stress that corresponds well to an expo-
nential description of the rupture time as proposed by
Zhurkov [1]. The linear fit of the data is of quite good
quality and suggests that hTri � T0e���. In Zhurkov’s
approach, the stress dependence of hTri is interpreted as
an Eyring’s law [14] with � � V=kBT, where V is assumed
to be a characteristic volume of the material. However, in
our experiments, the parameter V cannot be a constant
since a different initial crack length ‘i gives a completely

different rupture time for the same applied stress. Thus, the
external applied stress � cannot be the single control
parameter of the rupture dynamics. Then, it is clear that
Zhurkov’s description needs to be improved to take into
account the specific geometry of the problem. In particular,
the stress �y holding in the plastic zone close to the crack
tips most probably participates in the dynamical processes
leading to the crack growth.

The Dugdale-Barenblatt cohesive zone model [15,16] is
a good and simple means to estimate the stress �y. This
quantity appears intuitively as a possible control parameter
for the crack dynamics just like the stress intensity factor is
for brittle materials. The model predicts

 �y �
�
2

�

arcos� ‘‘pz
�
: (1)

This plastic stress �y can be computed at each moment
using Eq. (1) with the instantaneous values of �, ‘ and ‘pz.
To account for the global dynamics during an experiment,
we compute the time-averaged growth velocity on the
whole experiment v and compare it to the time-averaged
plastic stress �y (see Fig. 4). Each point of this Figure
represents the mean behavior over an experiment. The data
are compatible with a linear law that predicts an exponen-
tial dependence of the average growth velocity with the
mean stress in the plastic zone

 v � v0e
a�y; (2)

with a�6:3�10�7 m2 N�1 and v0 � 7:8� 10�21 m s�1.
We now go beyond a simple analysis of the average

growth dynamics by looking at the dependence of the crack
velocity with the stress in the plastic zone at each time
during the crack growth. We plot in Fig. 5(a) the instanta-
neous crack velocity v � d‘=dt as a function of the in-
stantaneous value of the Dugdale-Barenblatt stress �y for
eight experiments performed with various experimental
conditions. Here, the description of the instantaneous ve-
locity by an exponential law fails, especially when the
crack length becomes larger than ‘x at which the minimum

FIG. 2. Time as a function of both the crack and process zone
lengths for an imposed stress experiment (‘i � 1:5 cm, F �
900 N). We indicate the position of the inflection point (tx, ‘x) of
the crack growth curve.
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FIG. 3 (color online). Natural logarithm of the average rupture
time as a function of the applied stress for a series of experiments
performed for ‘i � 1:5 cm.
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crack velocity is reached (‘x is also the inflexion point of
the growth curve in Fig. 2). In fact, the law given by Eq. (2)
describes well the behavior only when ‘ ’ ‘x. We discov-
ered that introducing a correction to �y linear with the
crack length ‘ allows us to collapse the experimental data
on a straight line [cf. Fig. 5(b)]. This correction can be
written as

 �corr
y �

�
2

�

arcos� ‘‘pz
�
� ��‘� ‘x�: (3)

For each experiment, we determine the value � � �3:4�
0:6� � 108 N m�3. The dispersion of � values seems to be
statistical as no systematic dependence with � or ‘i could
be found. This rescaling means that the crack growth
velocity seems to follow

 v � v0e��
corr
y ; (4)

where � � 6:810�7 m2 N�1. The collapse of the data for
various experimental conditions means that v0 can be
considered as a constant.

In Eq. (3), the crack length at the inflexion point in the
growth curve plays a particular role. It turns out that its
value depends on the experimental conditions. This can be
seen in Fig. 6(a) where the product �‘x, with � � 3:4�
108 N m�3, is plotted as a function of the applied stress �.
Remarkably, the dependence of �‘x with � is well ap-
proximated by a linear fit: �‘x � �x � �, where �x �
4:2� 107 N m�2 is only an estimate of �‘x for � � 0.

A way to clarify the meaning of this relation is to look at
the dependence of the critical stress �c needed to break
instantaneously a sample with a crack of initial length ‘i. In
brittle materials, we would expect this critical stress to
decrease in 1=

����
‘i

p
since the rupture criterion is reached

when the initial stress intensity factor equals the toughness
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FIG. 5 (color online). Natural logarithm of the instantaneous
crack growth velocity as a function of (a) the Dugdale-Barenblatt
stress, (b) the corrected Dugdale-Barenblatt stress �corr

y accord-
ing to Eq. (3) for eight experiments performed with various
experimental conditions (‘i � 1:5, 2, 3 cm and 2:9<�< 3:8�
107 N m�2). In Fig. (b), the black line is the result of a linear data
fit.
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FIG. 6 (color online). (a) �‘x for various experimental con-
ditions (‘i � 1:5, 2, 3 cm and 2:9<�< 3:8� 107 N m�2) as a
function of the applied stress �. (b) Critical rupture stress �c as a
function of the initial crack length ‘i. The dotted lines are a
linear fit of the data.
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FIG. 4 (color online). Natural logarithm of the average crack
growth velocity v as a function of the average plastic stress
during the growth. Each point represents the average dynamical
behavior during an experiment. Experimental conditions are
various (‘i � 1:5, 2, 3 cm and 2:9<�< 3:8� 107 N m�2).
Each experimental condition corresponds to different symbols.
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of the material Kc [5]: �c
�������������
�‘i=2

p
� Kc. For an amorphous

viscoplastic material such as polycarbonate, we do not get
the same functional dependence. Indeed, as we can see in
Fig. 6(b), the relation between �c and ‘i can be approxi-
mated by a linear equation: �‘i � �s � �c, where �s �
4:07� 107 N m�2 and � � 3:57� 108 N m�3. We note
that � ’ � and �x ’ �s and will consider these quantities
to be the same material constants. So, we find that the
quantity ���c; ‘i� � �c � �‘i may play a role similar to
the initial stress intensity factor in brittle materials.
Furthermore, it allows us to interpret the value of the crack
length at the inflexion point as defined by a characteristic
value of the quantity ���; ‘x� � �x ’ �s that corresponds
to an intrinsic property of polycarbonate. Indeed, �s is
simply the value of the critical rupture stress �c when
there is no initial crack.

Finally, the effective stress �corr
y may be rewritten as

 �corr
y �

�
2

�

arcos� ‘‘pz
�
� �‘� �� �s; (5)

where we clearly see that it is composed of, the Dugdale-
Barenblatt estimation of the crack tip plastic zone stress
�y, a linear dependence with the crack length �‘ and the
applied stress at the borders of the sample �.

Furthermore, one can interpret the exponential depen-
dence of the velocity as a function of �corr

y [cf. Eq. (4)] in a
rather simple and physical way. Indeed, polycarbonate
creep is known to obey an Eyring’s law relating its strain
rate _� to the applied stress �: _� � _�1 exp��V=kBT� [17].
Creep experiments performed at room temperature on
our own polycarbonate samples give V=kBT � 7:6 �
10�7 m2 N�1 [18]. The fact this prefactor V=kBT is of
the same magnitude than � in the exponential law for the
crack velocity [cf. Eq. (4)] suggests that the Eyring’s law
plays an important role in the mechanisms of crack growth.
In order to possibly identify � with V=kBT, it remains to
check the dependence of � on temperature. This will be
discussed in more detail in [18].

Conclusion.—We have studied experimentally the slow
growth of a single crack in polycarbonate films submitted
to uniaxial and constant imposed stress. The main result of
this analysis is that the instantaneous crack velocity ap-
pears to be ruled, during an experiment, by an exponential
law [cf. Eq. (4)] with an effective stress �corr

y given by
Eq. (5).

In this equation, the viscous relaxation is taken into
account by the experimentally measured evolution of the
ratio ‘=‘pz as the crack grows. Indeed, if this ratio was
constant, the stress in the plastic zone would also be
constant and the velocity would increase monotonously
due to the linear term in crack length. In that case, the
behavior would actually be qualitatively the same as the
one for crack growth in brittle facture [5]. To predict fully
the viscous dynamics of the crack, we need a second

equation that will prescribe ‘pz:

 

d‘pz

dt
� f�‘pz; ‘; _‘; �; . . .�: (6)

An original theoretical approach recently developed by
Bouchbinder [19] based on the shear-transformation-zone
theory proposed by Falk and Langer [20] is certainly useful
for deriving an equation of the plastic zone velocity
[cf. Eq. (6)]. Additionally, numerical simulations that can
reproduce the complex viscoplastic behavior of polycar-
bonate may help in going further in the interpretation of
our experimental results [21–23].
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