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Rough crack fronts in a sheet of paper, obtained during a creep experiment, do not follow true scaling
laws. Local roughness exponents are estimated using the first order cumulant, a quantity recently
introduced in the turbulence literature [J. Delour, J. F. Muzy, and A. Arneodo, Eur. Phys. J. B 23, 243
(2001)]. Using a large data set (102 fronts), we find a significant difference in local roughness between the
slow (subcritical) and the fast growth regime.
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Since the early description of rough fractures as self-
affine surfaces [1], the existence of universal roughness
exponents has been strongly debated [2]. There are now
many experimental evidences for a nonuniversal value of
the roughness exponent of fracture surfaces. Different ex-
ponents can be found due to the anisotropy of the fractura-
tion process [3], the heterogenity of the material structure
[4], or anomalous scaling related to finite-size effects [5].
A recent observation suggests that, in rupture of paper, the
crack interface would be multifractal [6].

Roughness exponents appear usually independent of
crack velocity. For rather slow velocities, no effect of
the velocity on roughness has been observed in Plexiglas
(v � 10�7 � 5� 10�5 m s�1), glass (v � 10�9 � 5�
10�8 m s�1), intermetallic alloys (v � 10�8 � 5�
10�5 m s�1), or sandstone (v � 10�4 � 10�2 m s�1) [7].
There is also no effects of applied strain rate on crack
roughness in paper [8]. On the contrary, in dynamic frac-
ture of Plexiglas (v * 600 m s�1 ’ 0:45x Rayleigh wave
speed), variations of the roughness exponents with the
velocity have been observed [9]. As pointed out in a recent
review [10], there is a need for experimental studies con-
cerning the influence of fracture kinetics on roughening.

In this Letter, we study the roughness of a crack inter-
face in a sheet of paper [11] fractured in a creep experiment
[12]. During each experiment, crack growth starts in a
subcritical regime where the growth is slow (v �
10�5–10�2 m s�1) and reaches at a critical length a fast
growth regime (v� 300 m s�1). We compare the scaling
properties of moments [13] to the scaling properties of
cumulants, a new quantity recently introduced in the tur-
bulence literature [14]. We find that there is a systematic
difference between the scaling properties of the subcritical
and the fast rupture regime. In contrast to moments, the
first cumulant is insensitive to deviations from monofractal
behavior and allows us to extract reliably a roughness
exponent.

Experiments.—We recall briefly the experimental setup
described in [12]. We break bidimensional brittle samples
made of fax paper sheets (Alrey) with size 24� 21 cm2.
Each sample has an initial centered crack and is loaded in a
tensile machine with a constant force F perpendicular to

the crack direction (mode I). The stress intensity factor
K�L� / F

����
L
p

, where L is the crack length, determines the
stress magnitude near the crack tip and is the control
parameter of crack growth. For a given initial length Li,
subcritical crack growth is obtained by choosing F so that
K�Li� is smaller than a critical thresholdKc, corresponding
to the material toughness. During an experiment, L in-
creases, and so does K�L�. It will make the crack acceler-
ate until reaching the critical length Lc for which K�Lc� �
Kc and above which a sudden transition to fast crack
propagation occurs. Using a high speed camera (Photron
Ultima 1024), we have determined which part of the
post mortem crack interface corresponds to slow or fast
growth, and measure the velocity of the crack in each one.
In the subcritical regime, the velocity ranges from
10�5–10�2 m s�1. Recording at 4000 fps, we find a crack
velocity about 300 m s�1 in the fast regime. Note that there
are four to seven decades between the two growth regime
velocities.

Crack profiles.—Post mortem samples are digitized with
a scanner at 1600 dpi. The pixel size a0 � 16 �m is close
to the typical diameter of cellulose fibers. In Fig. 1, we
show an example of a digitized sample compared with the
extracted crack front s�x�. We distinguish between differ-
ent stages corresponding to: (a) the initial crack, (b) the
subcritical crack growth, and (c) the fast crack growth. We
have digitized 51 fractured samples, obtained for different
forces (200 N, 230 N, 250 N, 280 N) and initial crack sizes
(1, 2 cm). Since the initial crack is centered, each sample
give rise to two fronts. Thus, we have a total of 102 inde-
pendent fronts of about 103 points for slow growth and 104

points for fast growth.

c b a b cs(x)
x

FIG. 1. Digitized post mortem sample and corresponding ex-
tracted front showing three stages: (a) initial crack (Li � 2 cm),
(b) subcritical growth, (c) fast growth.
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Scale invariance.—Let fs�x�; x 2 Rg be a signal as a
function of a coordinate x. Scale invariance of s means
that there is no characteristic scales in the signal. The
scaling properties of s can be characterized by introducing
a multiresolution coefficient T�s��x; a� defined at scale a
and position x. Scale invariance implies that the qth order
moments of the multiresolution coefficient follow a power
law with exponents ��q�:

 Mq 	 hjT�s��x; a�jqi � Ca��q�; (1)

where the bracket denotes the average over the x space.
The increments over a scale a, T�s��x; a� � s�x
 a� �
s�x�, are standard multiresolution coefficients and the cor-
responding moments are the structure functions [15]. It has
been shown that a more general framework for defining
multiresolution coefficients is the wavelet transform [16–
18]. When the signal s follows Eq. (1) with ��q� propor-
tional to q, the signal is monofractal. The complete analy-
sis of the deviations of ��q� from monofractality can be
made through the multifractal formalism.

Multifractal analysis.—Multifractal formalism is based
on the mathematical definition of a local singularity ex-
ponent h�x�. Using the multiresolution coefficient T�s��
�x; a�, we write at each position x [17]

 jT�s��x; a�j � Cah�x�; (2)

where h�x� is the Hölder exponent or local roughness
exponent describing how singular the signal is at position
x: the larger h�x�, the smoother s�x�. The statistical distri-
bution of the Hölder exponents is quantified by the singu-
larity spectrum D�h� defined as [15,17]

 D�h� � dHfxjh�x� � hg; (3)

where dH is the Haussdorf dimension. The probability to
observe an exponent h at scale a is then proportional to
a1�D�h�. Thus, the ��q� spectrum can be related to the
singularity spectrum D�h� by a Legendre transform, i.e.,
��q� � minh�1
 qh�D�h��. When s�x� is monofractal,
h�x� is a constant H independent of x, D�H� � 1, and
��q� � qH is proportional to q. Conversely, if s�x� is
multifractal, h�x� takes different values at different posi-
tions x, and ��q� is not proportional to q.

In practice, the values ��q� are obtained by fitting
straight lines (when power law behavior is observed) on
log-log plots of Mq versus scale a for different moment
orders q. The singularity spectrum D�h� is then deducted
from ��q�. To verify if ��q� differs from a linear mono-
fractal behavior, one needs to obtain ��q� for a large range
of q values and then proceed to fit the ��q� curve (for
instance, 1 � q � 8 in [6]; see also [19]).

While this has been the traditional way of estimating
��q�, an alternate method introduced recently in the turbu-
lence literature [14,20], involves only a few straight line
fits (as low as 3) while still accurately estimating the non-
linear behavior of the ��q� spectrum. To summarize this
method, we start with the general expansion [14]:

 lnMq �
X1

n�1

Cn�a�
qn

n!
; (4)

where Cn�a� are the cumulants ofQa 	 lnjT�s��x; a�j. One
can demonstrate that the first two cumulants are the mean
and standard deviation Qa:

 C1�a� � hQai; C2�a� � hQ2
ai � hQai

2: (5)

Identifying the first derivative of Eq. (4) and of the loga-
rithm of Eq. (1) with respect to ln�a�, one finds

 ��q� � c1q
 c2q2=2!
 � � � ; (6)

where ci 	 dCi�a�=d ln�a� are constants in the case of
scale invariant signals. It turns out that the average value
of the Hölder exponent is hhi � c1 and its variance hh2i �
hhi2 � �c2= ln�a�. When the multiresolution coefficient
T�s��x; a� has Gaussian statistics (for example, when s is
a Brownian motion), C2�a� � �2=8 and c2 � 0.

The above developments imply that ��q� can be esti-
mated from linear regressions of the cumulants
Cn�a�vs ln�a� [14]. For a monofractal signal, cn � 0,
8n 
 2 and only one linear regression is needed. For a
multifractal signal, a quadratic ��q� approximation re-
quires only two linear regressions. In comparison with
the standard method based on the qth order moments, the
efficiency of the cumulant method becomes apparent.

If one simply wants a reliable estimate of the roughness
exponent without questioning whether the signal is multi-
fractal or not, it is best to measure c1 rather than the
commonly used exponent ��2�. Indeed, any deviations
from monofractality leading to a nonzero value of c2

(either the signal is actually multifractal or is perturbed
by experimental errors) will strongly influence the value of
��2�. Note that a better estimator based on moment analy-
sis would be ��1�, proportionally less influenced by c2 than
��2�. In the following, we will illustrate these remarks
looking at moments and cumulants obtained with the incre-
ments as multiresolution coefficients.

Influence of force and initial length.—In Fig. 2, we plot
log10M1 and C1= ln�10� versus log10�a=a0� for five differ-
ent couples of values (F, Li) during the fast growth stage.
First, we see that near the discretization scale a0 the slope
is close to unity. This effect can be attributed to the

FIG. 2 (color online). (a) log10M1 and (b) C1= ln�10� versus
scale calculated by the increments method for five different
couples (F, Li) during fast (slow in inset) crack growth.
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discreteness of the signal [21]. In the following, we will
concentrate on larger scales a > 4a0 (’ maximum fiber
diameter) where this effect can be neglected. Second, we
see no dependence of M1 and C1 on the force or the initial
crack size. The same independence is observed for the slow
growth stage. Thus, we can average the moments or cu-
mulants over all the 102 crack fronts whatever are the
forces or initial crack lengths. For each front, we also
compute the derivative of the moments or cumulants and
average over all the fronts to get the mean local slope and
statistical error of the mean as a function of scale. The large
number of crack fronts allows us to greatly improve the
precision of the statistical analysis.

First and second order moments.—Figures 3(a) and 3(b)
show log-log plots of M1 and M2 versus a=a0 for slow and
fast growth, and Figs. 3(c) and 3(d) the corresponding
mean local slopesm1�a� andm2�a�. Whatever are the exact
scaling properties of M1 and M2, a systematic difference,
larger than the error bars, between the slopes of the two
growth regimes is observed in a wide range of scales. Since
M1 and M2 are not perfect straight lines, we can question
the existence of true scaling laws. Assuming scaling laws
do exist would mean that the signal is not monofractal
since hm1i � hm2=2i. In the present case, it is better to
estimate the roughness exponent by looking at the first
order cumulant, which is by construction insensitive to
deviations from monofractality.

First and second order cumulants.—In Figs. 4(a) and
4(b), we plot C1�a� and C2�a� divided by ln�10� versus
log10�a=a0� for the two growth regimes. For later use, the
mean local slope of C1�a� [Fig. 4(c)] will be noted cF1 �a�
for the fast regime, cS1�a� for the slow one, and �c1�a� �
cS1�a� � c

F
1 �a� the slope difference. There is a clear differ-

ence between slow and fast crack growth [Fig. 4(c)] and

much less overlap between the values of cF1 �a� and cS1�a�
than for m1 or m2. As for M1 or M2, C1�a� is not perfectly
linear and, in a certain range of scales (10< a=a0 < 102),
C2 is close to the theoretical value for a signal with
Gaussian statistics [22]. The local extremum observed in
both regimes for a=a0 ’ 101:5 (a ’ 500 �m) in Fig. 4(c),
3(c) and 3(d) might correspond to a characteristic scale of
the material. Indeed, this scale is of the same order than the
fiber length in paper.

Scaling laws.—From the various plots, we can already
conclude that it is not so easy to find a range of scales for
which true scaling laws are observed. For a=a0 & 10, the
slope of C1�a� is changing a lot because we start to feel the
discretization effect previously discussed [21]. We clearly
see that for a=a0 * 102, the slope of C1�a� is again chang-
ing significantly and seems to go towards 0.5. Thus, if a
scaling law exists, it is observed mainly at intermediate
scales where the slope values are the most stable. The same
conclusion can be reached by looking at C2�a�. At large
scale, C2�a� decreases to values lacking physical meaning
since they become smaller than the Gaussian value and is
very sensitive to discretization effects at small scales.
Trying to estimate the slope of C2�a� at intermediate scales
(10< a=a0 < 102), one finds that c2 is very close to zero
for the fast crack growth and between�0:08 and�0:02 for
the slow part. However, given the large error bars [see
Fig. 4(d)], we can neither conclude that there is a differ-
ence between the two growth regimes for c2, nor that there
is a mono- or multifractal behavior. For that reason, we will
focus only on the first order cumulant to estimate the
roughness exponent.

Roughness exponent.—In the range of scales where the
scaling is reasonably good (10< a=a0 < 102), the rough-
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FIG. 3 (color online). (a),(b): M1 and M2 for slow (circles) and
fast (squares) crack growth; (c),(d): Corresponding local slope.
The error bars are determined as statistical errors of the mean
( 	 standard deviation =

����
N
p

with N � 102).
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FIG. 4 (color online). (a),(b): C1 and C2 versus scale with
statistical error bars. In (b), the horizontal solid line corresponds
to a signal with Gaussian statistics. (c),(d): Corresponding local
slope of cumulants. Error bars give the statistical error of the
mean.
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ness exponents cF1 and cS1 , as well as their errors, are
computed as the mean and standard deviation of cF1 �a� or
cS1�a�. The error on cF1 or cS1 is indeed dominated by the
variations across scale not by the statistical errors
[Fig. 4(c)]. In the same scale range, we also compute the
mean difference �c1. The variations of �c1�a� across scale
are very small and the error on �c1 is then dominated by
the statistical errors [Fig. 4(c)]. Thus, the error on �c1 will
be significantly smaller than the ones on cF1 and cS1 . We
show in Table I the measured exponents and their differ-
ence as well as the corresponding errors using various
methods [structure functions (SF), continuous wavelet
transform (CWT) [15], and wavelet transform modulus
maxima (WTMM) [16] using the 1st derivative of
Gaussian]. They all give a difference between the two
growth regimes. For instance, SF give a difference of
0:06� 0:01 with a roughness exponent of 0:64� 0:02
for the fast regime and 0:70� 0:02 for the slow regime
[23].

Conclusion.—Fracture fronts in paper do not follow true
scaling laws, either mono- or multifractal. However, we
find a drop in the local roughness when the crack goes from
subcritical to fast growth. In the subcritical regime, the
physical mechanism for crack growth is thermal activation
[12], while in the fast growth regime, the system is me-
chanically unstable. Dynamical instabilities during fast
crack growth were shown to decrease the roughness [9]
which could explain our observations. In the slow regime,
roughness is probably controlled more by the material
disorder than by dynamical effects. There is a character-
istic scale a ’ 500 �m, close to the fiber length, which
could come from fiber pullout rather than breakage. Easier
pullout in the slow growth regime, compared to the fast
growth regime, might also play a role in the roughness
difference.
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