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Sub-critical statistics in rupture of fibrous materials : experiments and model.
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Laboratoire de physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon,
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(Dated: June 24, 2007)

We study experimentally the slow growth of a single crack in a fibrous material and observe
stepwise growth dynamics. We model the material as a lattice where the crack is pinned by elastic
traps and grows due to thermally activated stress fluctuations. In agreement with experimental
data we find that the distribution of step sizes follows sub-critical point statistics with a power law
(exponent 3/2) and a stress-dependent exponential cut-off diverging at the critical rupture threshold.

PACS numbers: 62.20.Mk, 46.50.+a, 81.40.Np

Understanding fracture in solid materials is paramount
for a safe engineering design of structures and many ef-
forts are still needed to obtain a better physical picture.
A puzzling observation is the slow rupture of a material
when loaded with a constant external stress below a crit-
ical threshold. Then, the delay time before rupture (or
lifetime of the material) strongly depends on the applied
stress. Thermodynamics has slowly emerged as a possi-
ble framework to describe slow rupture since early exper-
iments have shown temperature dependence of lifetime
with an Arrhenius law [1, 2]. Statistical physics models
assuming perfect elasticity have recently proposed sev-
eral predictions for lifetime [3, 4, 5, 6, 7, 8] as well as
for the average dynamics of a slowly growing crack [9].
Efforts are also made to describe slow rupture dynam-
ics from rheological properties of the material such as
viscoelasticity and plasticity [10, 11].

To be able to distinguish between various theoreti-
cal descriptions, more experimental work is needed. We
present in this letter an experiment on slow crack growth
in a fibrous material. We have observed that the crack
grows by steps of various sizes whose distribution is
rather complex and evolves as a function of the crack
speed. This behavior can be explained modelling the
material as an elastic square lattice where the crack is
pinned by elastic traps and adapting the model presented
in [9] to describe thermally activated growth of the crack
in an energy landscape with multiple metastable states.
The model predicts statistical distribution of step sizes
in very reasonable agreement with the experiments and
has the typical functional form obtained for sub-critical
point statistics. We stress that the material heterogene-
ity appears in the model only as a characteristic meso-
scopic length scale. The effect of disorder in the material
properties and the rheological behavior have not been
explicitly included in this simple model.

The experimental system we consider is a two-
dimensional sheet with a macroscopic initial crack sub-
mitted to a constant load. This geometry is very use-
ful to follow the crack advance using direct observation
while this would be difficult in a three-dimensional geom-
etry because a roughening instability of the crack front

line usually occurs. We have used a sheet of fax paper
(width w = 21cm, length 24cm, thickness e = 50µm)
for which a natural mesoscopic length scale is the fiber
size. Scanning electron microscopy has revealed a size
distribution of fibers between 4 and 50µm, with an av-
erage 20µm. In order to obtain reproducible results, the
fax paper was kept in a controlled low level humidity at
least one day at ≃ 10%, and also during the experiment
at 5%. In these conditions, the paper Young modulus
is Y = 3.5GPa. The paper sheet is mounted on a ten-
sile machine with both ends attached with glue tape and
rolled several times over rigid tubes. The crack is initi-
ated at the center of the sheet using a calibrated blade.
The force F applied to the sample by the tensile ma-
chine is measured by a force gage and is perpendicular to
the crack direction which corresponds to a crack open-
ing in a mode I configuration. During an experiment,
the crack grows and a feedback mechanism keeps F con-
stant with a precision 0.1 to 0.5N and a typical time re-
sponse 10ms. As a consequence, the stress amplitude at
the crack tip increases due to stress concentration effects
and the motion of the crack accelerates. A high reso-
lution and high speed digital camera (Photron Ultima
1024) is used to follow the crack growth. Image analy-
sis is performed to extract the length of the crack pro-
jected on the main direction of propagation. Although
the crack actually follows a sinuous trajectory, its pro-
jected length gives the main contribution to the stress
intensity factor which measures the amplitude of stress
divergence near the tip and verifies: K ∝ σ

√
ℓ, with σ

the external constant stress applied to the sheet and ℓ
the projected crack length. The stress σ is estimated
from F and the area A of a cross-section of the sheet,
A being approximatively constant: σ = F/A. Due to
the small thickness of the paper a slight buckling occurs
but it has been shown that the scaling with stress and
crack length is not significantly modified [12]. On the
other hand, finite width corrections on stress intensity
factor have been taken into account: K = g(ℓ/w)σ

√
ℓ

with g(ℓ/w) = [(w/ℓ) tan(πℓ/2w)]1/2 [13].

A typical growth curve is shown on Fig.1. It clearly ap-
pears that the crack does not grow smoothly: essentially,
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there are periods of rest where the crack tip does not
move and periods where it suddenly opens and advances
of a certain step size s. We have extensively studied the
growth varying the initial crack length (1cm < ℓi < 4cm)
and the applied force (140N < F < 280N), equivalent to
an initial stress intensity factor Ki between 2.7MPa.m1/2

and 4.2MPa.m1/2. The resulting measured lifetime var-
ied from a few seconds to a few days depending on the
value of the applied stress or the temperature. Even
for the same experimental conditions (same stress, ini-
tial crack length and temperature) a strong dispersion
in lifetime was observed as expected in a model of ther-
mally activated growth [9]. Furthermore, the average
growth dynamics shows an exponential approach of life-
time in good agreement with the model (see insert) [9].
Results from the average dynamics will be detailed else-
where. Here, we want to study more extensively the step
size statistics.

It is commonly observed that the crack velocity is an
increasing function of the stress intensity factor K. Thus,
it is natural to look at the step statistics for a given value
of K. In practice, the step size distributions have been
obtained for various ranges of K. Fig.2 shows the step
size distributions determined from all the data we have
collected using a logarithmic binning. Typically, 700 data
points are used to obtain each distribution. Two regimes
are observed. For small step sizes, the distribution does
not depend on the value of K, while for larger step sizes
there is a cut-off size increasing with K. In practice, the
toughness of the material, i.e. its critical stress intensity
factor Kc = 6.5 ± 0.05MPa.m1/2, has been obtained as
the value of K beyond which the probability to detect a
jump vanishes.

The behavior observed for the step size distributions
can be predicted using minimal physical properties. Let
us assume that the material is mainly elastic but that
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FIG. 1: Time versus crack length for a single experiment
showing crack jumps and crack arrest. In insert, average time
to reach L (10 experiments with F = 270N and Li = 1cm).
The dotted curve is obtained from integration of eq.(1) [9].

there is a scale at which the material becomes discontin-
uous. In a perfect cristal, the only such scale would be
the atomic scale but in a fibrous material like paper, we
have an intermediate mesoscopic scale, the typical fiber
size. The elastic description of a material at a discrete
level leads to a lattice trapping effect [14] with an energy
barrier which has been estimated analytically [15]. To
get a physical picture of the trapping in our geometry, we
have modelled numerically a 2D square lattice of linear
springs where the crack corresponds to a given number of
adjacent broken springs as described in [9]. The lattice
is loaded with a constant force and we estimate the min-
imum increase in potential energy needed to bring the
first spring at the crack tip at the breaking threshold.
This energy is obtained by applying an external force on
the spring at the crack tip and computing the change in
elastic energy of the whole lattice as well as the work
done by the constant force at the boundaries. We find
an energy barrier per unit volume: Ec ≃ (σc −σm)2/2Y ,
where Y is the Young modulus, σc the material stress
threshold for rupture and σm(< σc) the equilibrium lo-
cal stress at the crack tip estimated at the discrete scale
λ, i.e. σm = K/

√
λ. To each position of the crack tip

corresponds a different value of the energy barrier since
the stress at the tip increases with the crack length. Once
the spring breaks, the crack moves by at least one lattice
spacing λ. The equilibrium potential energy of the whole
system is given by the Griffith energy per unit thickness
of the sheet [16]: EG = E0 −πℓ2σ2/4Y + 2γℓ, where γ is
the surface energy. On Fig.3 we schematically represent
the energy barrier of trapping and the Griffith energy. In
agreement with previous analysis [15], we find that the
crack length ℓc at which the energy barrier becomes zero
is about twice the Griffith length ℓG where the equilib-
rium potential energy reaches its maximal value.
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FIG. 2: Probability distribution of step sizes for various values
of stress intensity factor. Choosing λ = 50µm, the different
curves are the best fits of eq.3 giving an average value V =
5± 1 Å3.
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In order to model crack rupture as a thermally acti-
vated process, we recall first ideas that were presented
in [9]. Due to thermal noise at finite temperature T
in a fixed volume V , there are statistical stress fluctu-
ations σf around the equilibrium value σm with a gaus-
sian distribution: p(σf ) ∝ exp[−(σf − σm)2V/2Y kBT ].
The material will break if the stress fluctuation σf be-
comes larger than the threshold σc with a probability :
P (σf > σc) =

∫

∞

σc
p(σf )dσf . Assuming the rupture pro-

cess is irreversible, the velocity v of the crack tip is set
proportional to the probability P (σf > σc) which gives:

v =
λ

τ0

∫

∞

Uc

e−Uf dUf
√

πUf

(1)

where Uf = (σf − σm)2V/2Y kBT , Uc = Uf (σf = σc)
and τ0 is an elementary time scale (typically, an inverse
vibrational frequency). Integration of eq.(1) gives the
average growth curve in insert of Fig.1.

We extend now this model to describe thermally ac-
tivated and irreversible motion of a crack in the rugged
potential energy landscape introduced above. Below ℓc,
the energy barriers Ec(σm) trap the crack in a metastable
state for an average time τp depending on the barrier
height. Irreversible crack growth is a very reasonable
assumption when ℓ > ℓG since the decrease in equilib-
rium potential energy makes more likely for the crack
to open than to close. When a fluctuation σf occurs, it
will increase locally the free energy per unit volume by
Ef (σm) ≃ (σf − σm)2/2Y (this comes from a Taylor ex-
pansion of the bulk elastic free energy in agreement with
the numerical estimate of Ec and the gaussian form of the
stress fluctuations). The energy Ef can be used by the
crack to overcome the barrier. If there are no dissipative
mechanisms the crack will grow indefinitely when ℓ > ℓG

as the barriers get smaller and smaller and the release of
elastic energy helps to reach a more energetically favor-

FIG. 3: Sketch of the Griffith potential energy EG as a func-
tion of crack length ℓ with constant applied stress (solid line).
The energy barriers EC and the discretization scale λ are rep-
resented by the dashed curve.

able position. We introduce a simple mechanism of crack
arrest assuming that after overcoming the energy barrier
the crack looses an energy identical to the barrier size and
does not gain any momentum from the elastic release of
energy (experimentally, dissipation will come from acous-
tic wave emissions, viscous or plastic flow, etc.). When
the crack reaches the next trap it still has an energy
Ef − Ec which might be sufficient to overcome the next
barrier. For a given fluctuation energy Ef , the crack will
typically have enough energy to overcome a number of
barriers n = Ef (σm)/Ec(σm) and make a jump of size
s = nλ (the decrease of Ec(σm) with σm during a jump
of size s has been neglected). The probability distribu-
tion for Ef is explored at each elementary step τ0, while
the probability distribution of step size is explored after
each average time τp spent in the trap. In order to relate
the two probabilities, we express the mean velocity in a
different way as the ratio of the average step size to the
average trapping time:

v =

∫

∞

λ
sp(s)ds

τp
(2)

From the identity between eq.(1) and eq.(2), and the nor-
malization condition of the probability (

∫

∞

λ p(s)ds = 1),
we obtain the probability distribution :

p(s) = N(Uc)

√
λe−s/ξ

2s3/2
(3)

where N(Uc) =
[

e−Uc −
√

πUcerfc(
√

Uc)
]

−1

and ξ =
λ/Uc. We find a power law with an exponent 3/2
and an exponential cut-off with a characteristic length
ξ ∼ (σc − σm)−2 diverging at the critical stress σc. Inci-
dently, we note that this probability has a form similar
to sub-critical point probability distributions in percola-
tion theory [17]. From eq.(3), we can compute from this
distribution the average and variance of step sizes:

〈s〉 = N(Uc)
λ
√

π

2
√

Uc

erfc(
√

Uc) (4)

〈s2〉 = N(Uc)
λ2

√
π

4U
3/2

c

(

erfc(
√

Uc) + 2

√

Uc

π
e−Uc

)

(5)

We obtain two asymptotical behaviors. When the rel-
ative energy barrier is high (Uc ≫ 1), 〈s〉 ≃ λ and
〈s2〉 ≃ λ2. In this limit, there is only one step size
possible. When the relative energy barrier becomes low
(Uc ≪ 1), we predict a divergence at critical point :
〈s〉 ∼ (σc − σm)−1 and 〈s2〉 ∼ (σc − σm)−3. Then, the
crack velocity is expected to be dominated by the critical
divergence of crack jumps.

To compare with our experimental data, we use an es-
timate of the stress near the crack tip by assuming as
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FIG. 4: The mean and cubic root of the variance from raw
measurements of step sizes is well reproduced by the model
(eq.(4) and eq.(5)) plotted with λ = 50µm and V = 5Å3.

above that σm = K/
√

λ. In addition, the normalization
condition of the distribution actually reduces the model
to one parameter, the ratio V/λ2. In our model, λ rep-
resents the mesoscopic scale of discretization in paper.
Setting λ = 50µm, V is the only unknown. One pa-
rameter fits of step size distributions in Fig.2 for each
range of stress intensity factors give very robust results:
V = 5±1 Å3. To check the asymptotic limit close to the
critical point, we have plotted in Fig.4 〈s〉 and 〈s2〉1/3

as a function of Kc/(Kc − Km). Here, the mean and
the variance of step sizes have been computed from the
raw measurements in a given range of K. Because it re-
quires less statistics to estimate the first two moments of
the distribution than the distribution itself, we are able
to narrow the width of the K range for each data point
without changing the global trend. The solid lines rep-
resents the model prediction using the fitted value of V
from the distributions of Fig.2. Not only the model re-
produces reasonably well the evolution of the step size
distributions with σm (V is essentially constant and all
the other parameters are fixed), but the asymptotic di-
vergence of the first two moments of the distribution are
also well reproduced. For the mean step size, the scaling
is observed up to K values very close to Kc (1%). In the
model, we see that the ratio of the standard deviation
of the distribution over the mean size is diverging at Kc.
Thus, close to Kc, the measure of variance becomes more
inaccurate than the measure of the mean.

The value obtained for the volume V is at the atomic
scale (V 1/3 ≃ 1.7Å). Its small value gives an idea of the
microscopic scale at which the thermodynamical stress
fluctuations have the proper amplitude to trigger rup-
ture in our model. It should be realized that the model
actually predicts a lower limit for this microscopic scale.
First, it assumes a strong dissipation of energy during
crack advance since none of the elastic release of energy

is used to keep the crack moving. This is certainly an
overestimation of a real dissipative mechanism, would it
be viscoelastic or plastic. Decreasing dissipation in the
model will permit larger steps of the crack. In order to
obtain the same experimental velocity, the trapping time
must also be larger which will happen if the rupture oc-
curs at a larger microscopic scale. Second, disorder in the
material properties has been completely neglected. It has
been shown recently that disorder effectively reduce the
energy cost for breaking and this will also permit rup-
ture at a larger microscopic scale [8]. Further theoretical
work needs to be done to introduce a more realistic dissi-
pative mechanism and take into account disorder in the
material properties. As the model stands now, we believe
that it should apply to any elastic materials for which a
structure at a mesoscopic scale exists. For example, it
would be interesting to understand if the model can ex-
plain crack jump dynamics observed in semi-cristalline
polymers [18]. To conclude, we have shown that a simple
model of thermally activated crack dynamics is able to
reproduce with a good accuracy the step size distribution
of the crack growth. This is quite interesting because it
may open new perspectives in the description of rupture
as a thermally activated process.

We acknowledge illuminating discussions with E.
Bouchaud, J.-P. Bouchaud, M. Ciccotti, and M. Marder.
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