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Abstract. The operationV → V ω is a fundamental operation over finitary lan-
guages leading toω-languages. Since the setΣω of infinite words over a finite
alphabetΣ can be equipped with the usual Cantor topology, the questionof the
topological complexity ofω-powers of finitary languages naturally arises and has
been posed by Niwinski [Niw90], Simonnet [Sim92] and Staiger [Sta97a]. It has
been recently proved that for each integern ≥ 1, there exist someω-powers of
context free languages which areΠ

0

n-complete Borel sets, [Fin01], that there ex-
ists a context free languageL such thatLω is analytic but not Borel, [Fin03], and
that there exists a finitary languageV such thatV ω is a Borel set of infinite rank,
[Fin04]. But it was still unknown which could be the possibleinfinite Borel ranks
of ω-powers.
We fill this gap here, proving the following very surprising result which shows
that ω-powers exhibit a great topological complexity: for each non-null count-
able ordinalξ, there exist someΣ0

ξ-completeω-powers, and someΠ0

ξ-complete
ω-powers.

Keywords: Infinite words;ω-languages;ω-powers; Cantor topology; topological complexity;
Borel sets; Borel ranks; complete sets.

1 Introduction

The operationV → V ω is a fundamental operation over finitary languages leading to
ω-languages. It producesω-powers, i.e. ω-languages in the formV ω, whereV is a
finitary language. This operation appears in the characterization of the classREGω of
ω-regular languages (respectively, of the classCFω of context freeω-languages) as the
ω-Kleene closure of the familyREG of regular finitary languages (respectively, of the
family CF of context free finitary languages) [Sta97a].
Since the setΣω of infinite words over a finite alphabetΣ can be equipped with the
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usual Cantor topology, the question of the topological complexity of ω-powers of fini-
tary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet
[Sim92], and Staiger [Sta97a]. A first task is to study the position of ω-powers with
regard to the Borel hierarchy (and beyond to the projective hierarchy) [Sta97a,PP04].

It is easy to see that theω-power of a finitary language is always an analytic set because
it is either the continuous image of a compact set{0, 1, . . . , n}ω for n ≥ 0 or of the
Baire spaceωω.

It has been recently proved, that for each integern ≥ 1, there exist someω-powers
of context free languages which areΠ0

n-complete Borel sets, [Fin01], and that there
exists a context free languageL such thatLω is analytic but not Borel, [Fin03]. Notice
that amazingly the languageL is very simple to describe and it is accepted by a simple
1-counter automaton.

The first author proved in [Fin04] that there exists a finitarylanguageV such thatV ω

is a Borel set of infinite rank. However the only known fact on their complexity is that
there is a context free languageW such thatWω is Borel above∆0

ω, [DF06].
We fill this gap here, proving the following very surprising result which shows thatω-
powers exhibit a great topological complexity: for each non-null countable ordinalξ,
there exist someΣ0

ξ-completeω-powers, and someΠ0
ξ-completeω-powers. For that

purpose we use a theorem of Kuratowski which is a level by level version of a theorem
of Lusin and Souslin stating that every Borel setB ⊆ 2ω is the image of a closed subset
of the Baire spaceωω by a continuous bijection. This theorem of Lusin and Souslin
had already been used by Arnold in [Arn83] to prove that everyBorel subset ofΣω,
for a finite alphabetΣ, is accepted by a non-ambiguous finitely branching transition
system with Büchi acceptance condition and our first idea was to code the behaviour of
such a transition system. This way, in the general case, we can manage to construct an
ω-power of the same complexity asB.

The paper is organized as follows. In Section 2 we recall basic notions of topology
and in particular definitions and properties of Borel sets. We proved our main result in
Section 3.

2 Topology

We first give some notations for finite or infinite words we shall use in the sequel,
assuming the reader to be familiar with the theory of formal languages and ofω-
languages, see [Tho90,Sta97a,PP04]. LetΣ be a finite or countable alphabet whose
elements are called letters. A non-empty finite word overΣ is a finite sequence of let-
ters:x = a0.a1.a2 . . . an where∀i ∈ [0; n] ai ∈ Σ. We shall denotex(i) = ai the
(i + 1)th letter ofx andx⌈(i + 1) = x(0) . . . x(i) for i ≤ n, is the beginning of length
i + 1 of x. The length ofx is |x| = n + 1. The empty word will be denoted by∅ and
has 0 letters. Its length is 0. The set of finite words overΣ is denotedΣ<ω. A (finitary)
languageL overΣ is a subset ofΣ<ω. The usual concatenation product ofu andv



will be denoted byu⌢v or justuv. If l∈ω and(ai)i<l ∈ (Σ<ω)l, then⌢
i<l ai is the

concatenationa0 . . . al−1.

The first infinite ordinal isω. An ω-word overΣ is anω -sequencea0a1 . . . an . . .,
where for all integersi ≥ 0 ai ∈ Σ. When σ is an ω-word overΣ, we write
σ = σ(0)σ(1) . . . σ(n) . . . andσ⌈(n+1) = σ(0)σ(1) . . . σ(n) the finite word of length
n + 1, prefix of σ. The set ofω-words over the alphabetΣ is denoted byΣω. An ω-
language over an alphabetΣ is a subset ofΣω. If ∀i∈ω ai ∈Σ<ω, then⌢

i∈ω ai is
the concatenationa0a1 . . .. The concatenation product is also extended to the product
of a finite wordu and anω-word v: the infinite wordu.v or u⌢v is then theω-word
such that:(uv)(k) = u(k) if k < |u| , and(u.v)(k) = v(k − |u|) if k ≥ |u|.
The prefix relation is denoted≺: the finite wordu is a prefix of the finite wordv (re-
spectively, the infinite wordv), denotedu ≺ v, if and only if there exists a finite word
w (respectively, an infinite wordw), such thatv = u⌢w.
If s≺α=α(0)α(1)..., thenα−s is the sequenceα(|s|)α(|s|+1)...

For a finitary languageV ⊆ Σ<ω, theω-power ofV is theω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }

We recall now some notions of topology, assuming the reader to be familiar with basic
notions which may be found in [Kur66,Mos80,Kec95,LT94,Sta97a,PP04].
There is a natural metric on the setΣω of infinite words over a countable alphabetΣ
which is called the prefix metric and defined as follows. Foru, v ∈ Σω andu 6= v let
d(u, v) = 2−lpref(u,v) wherelpref(u,v) is the first integern such that the(n+1)th letter
of u is different from the(n + 1)th letter of v. The topology induced onΣω by this
metric is just the product topology of the discrete topologyon Σ. For s ∈ Σ<ω, the
setNs := {α∈Σω | s≺ α} is a basic clopen (i.e., closed and open) set ofΣω. More
generally open sets ofΣω are in the formW⌢Σω, whereW ⊆ Σ<ω.

The topological spaces in which we will work in this paper will be subspaces ofΣω

whereΣ is either finite having at least two elements or countably infinite.
WhenΣ is a finite alphabet, the prefix metric induces onΣω the usual Cantor topology
andΣω is compact.
The Baire spaceωω is equipped with the product topology of the discrete topology on
ω. It is homeomorphic toP∞ := {α∈ 2ω | ∀i∈ω ∃j ≥ i α(j)= 1}⊆ 2ω, via the map
defined onωω by H(β) :=0β(0)10β(1)1 . . .

We define now theBorel Hierarchy on a topological spaceX :

Definition 1. The classesΣ0
n(X) andΠ

0
n(X) of the Borel Hierarchy on the topologi-

cal spaceX are defined as follows:
Σ

0
1(X) is the class of open subsets ofX .

Π
0
1(X) is the class of closed subsets ofX .

And for any integern ≥ 1:
Σ

0
n+1(X) is the class of countable unions ofΠ

0
n-subsets ofX .



Π
0
n+1(X) is the class of countable intersections ofΣ

0
n-subsets ofX .

The Borel Hierarchy is also defined for transfinite levels. The classesΣ0
ξ(X) and

Π
0
ξ(X), for a non-null countable ordinalξ, are defined in the following way:

Σ
0
ξ(X) is the class of countable unions of subsets ofX in ∪γ<ξΠ

0
γ .

Π
0
ξ(X) is the class of countable intersections of subsets ofX in ∪γ<ξΣ

0
γ .

Suppose now thatX⊆Y ; thenΣ
0
ξ(X)={A ∩ X | A∈Σ

0
ξ(Y )}, and similarly forΠ0

ξ,
see [Kec95, Section 22.A]. Notice that we have defined the Borel classesΣ0

ξ(X) and
Π

0
ξ(X) mentioning the spaceX . However when the context is clear we will sometimes

omit X and denoteΣ0
ξ(X) by Σ

0
ξ and similarly for the dual class.

The Borel classes are closed under finite intersections and unions, and continuous
preimages. Moreover,Σ0

ξ is closed under countable unions, andΠ
0
ξ under countable

intersections. As usual the ambiguous class∆
0
ξ is the classΣ0

ξ ∩ Π
0
ξ.

The class ofBorel setsis ∆
1
1 :=

⋃

ξ<ω1
Σ

0
ξ =

⋃

ξ<ω1
Π

0
ξ, whereω1 is the first un-

countable ordinal.

TheBorel hierarchy is as follows:

Σ
0
1 =open Σ

0
2 . . . Σ

0
ω . . .

∆
0
1 =clopen ∆

0
2 ∆

0
ω ∆

1
1

Π
0
1 =closed Π

0
2 . . . Π

0
ω . . .

This picture means that any class is contained in every classto the right of it, and the
inclusion is strict in any of the spacesΣω.

For a countable ordinalα, a subset ofΣω is a Borel set ofrank α iff it is in Σ
0
α ∪ Π

0
α

but not in
⋃

γ<α(Σ0
γ ∪Π

0
γ).

We now define completeness with regard to reduction by continuous functions. For a
countable ordinalα ≥ 1, a setF ⊆ Σω is said to be aΣ0

α (respectively,Π0
α)-complete

setiff for any setE ⊆ Y ω (with Y a finite alphabet):E ∈ Σ
0
α (respectively,E ∈ Π

0
α)

iff there exists a continuous functionf : Y ω → Σω such thatE = f−1(F ). Σ
0
n

(respectively,Π0
n)-complete sets, withn an integer≥ 1, are thoroughly characterized

in [Sta86].
Recall that a setX ⊆ Σω is aΣ

0
α (respectivelyΠ0

α)-complete subset ofΣω iff it is in
Σ

0
α but not inΠ

0

α (respectively inΠ0
α but not inΣ

0
α), [Kec95].

For example, the singletons of2ω areΠ
0
1-complete subsets of2ω. The setP∞ is a well

known example of aΠ0
2-complete subset of2ω.

If Γ is a class of sets, theňΓ :={¬A | A∈Γ} is the class of complements of sets inΓ.
In particular, for every non-null countable ordinalα, Σ̌0

α = Π
0
α andΠ̌0

α = Σ
0
α.

There are some subsets of the topological spaceΣω which are not Borel sets. In par-
ticular, there exists another hierarchy beyond the Borel hierarchy, called the projective



hierarchy. The first class of the projective hierarchy is theclassΣ1
1 of analytic sets. A

setA ⊆ Σω is analytic iff there exists a Borel setB ⊆ (Σ × Y )ω , with Y a finite
alphabet, such thatx ∈ A ↔ ∃y ∈ Y ω such that(x, y) ∈ B, where(x, y) ∈ (Σ ×Y )ω

is defined by:(x, y)(i) = (x(i), y(i)) for all integersi ≥ 0.
A subset ofΣω is analytic if it is empty, or the image of the Baire space by a con-
tinuous map. The class of analytic sets contains the class ofBorel sets in any of the
spacesΣω. Notice that∆1

1 = Σ
1
1 ∩ Π

1
1, whereΠ1

1 is the class of co-analytic sets, i.e.
of complements of analytic sets.

Theω-power of a finitary languageV is always an analytic set because ifV is finite and
hasn elements thenV ω is the continuous image of a compact set{0, 1, . . . , n − 1}ω

and if V is infinite then there is a bijection betweenV andω andV ω is the continuous
image of the Baire spaceωω, [Sim92].

3 Main result

We now state our main result, showing thatω-powers exhibit a very surprising topolog-
ical complexity.

Theorem 2. Let ξ be a non-null countable ordinal.

(a) There isA⊆2<ω such thatAω is Σ
0
ξ-complete.

(b) There isA⊆2<ω such thatAω is Π
0
ξ-complete.

To prove Theorem 2, we shall use a level by level version of a theorem of Lusin and
Souslin stating that every Borel setB ⊆ 2ω is the image of a closed subset of the Baire
spaceωω by a continuous bijection, see [Kec95, p.83]. It is the following theorem,
proved by Kuratowski in [Kur66, Corollary 33.II.1]:

Theorem 3. Let ξ be a non-null countable ordinal, andB ∈Π
0
ξ+1(2

ω). Then there is
C ∈ Π

0
1(ω

ω) and a continuous bijectionf : C → B such thatf−1 is Σ
0
ξ-measurable

(i.e.,f [U ] is Σ
0
ξ(B) for each open subsetU of C).

The existence of the continuous bijectionf : C → B given by this theorem (without
the fact thatf−1 is Σ

0
ξ-measurable) has been used by Arnold in [Arn83] to prove that

every Borel subset ofΣω, for a finite alphabetΣ, is accepted by a non-ambiguous
finitely branching transition system with Büchi acceptance condition. Notice that the
sets of states of these transition systems are countable.
Our first idea was to code the behaviour of such a transition system. In fact this can
be done on a part ofω-words of a special compact setK0,0. However we shall have
also to consider more general setsKN,j and then we shall need the hypothesis of the
Σ

0
ξ-measurability of the functionf .

We now come to the proof of Theorem 2.

Let Γ be the classΣ0
ξ, orΠ0

ξ. We assume first thatξ≥3.



Let B ⊆ 2ω be aΓ-complete set. ThenB is in Γ(2ω) but not inΓ̌(2ω). As B∈Π
0
ξ+1,

Theorem 3 givesC ∈Π
0
1(P∞) andf . By Proposition 11 in [Lec05], it is enough to find

A⊆4<ω. The languageA will be made of two pieces: we will haveA=µ ∪ π. The set
π will code f , andπω will look like B on some nice compact setsKN,j. Outside this
countable family of compact sets we will hidef , so thatAω will be the simple setµω.

• We setQ := {(s, t) ∈ 2<ω×2<ω | |s| = |t|}. We enumerateQ as follows. We start
with q0 := (∅, ∅). Then we put the sequences of length1 of elements of2×2, in the
lexicographical ordering:q1 := (0, 0), q2 := (0, 1), q3 := (1, 0), q4 := (1, 1). Then we
put the16 sequences of length2: q5 := (02, 02), q6 := (02, 01), . . . And so on. We will
sometimes use the coordinates ofqN := (q0

N , q1
N ). We putMj :=Σi<j 4i+1. Note that

the sequence(Mj)j∈ω is strictly increasing, and thatqMj
is the last sequence of length

j of elements of2×2.

• Now we define the “nice compact sets”. We will sometimes view2 as an alphabet, and
sometimes view it as a letter. To make this distinction clear, we will use the boldface
notation2 for the letter, and the lightface notation2 otherwise. We will have the same
distinction with3 instead of2, so we have2 = {0, 1}, 3 = {0, 1,2}, 4 = {0, 1,2,3}.
Let N, j be non-negative integers withN ≤Mj . We set

KN,j := { γ = 2
N ⌢ [ ⌢

i∈ω mi 2
Mj+i+1 3 2

Mj+i+1 ]∈4ω | ∀i ∈ ω mi ∈ 2 = {0, 1}}.

As the mapϕN,j : KN,j → 2ω defined byϕN,j(γ) := ⌢
i∈ωmi is a homeomorphism,

KN,j is compact.

• Now we will define the sets that “look likeB”.

- Let l∈ω. We define a functioncl : B →Q by cl(α) := [f−1(α), α]⌈l. Note thatQ is
countable, so that we equip it with the discrete topology. Inthese conditions, we prove
thatcl is Σ

0
ξ-measurable.

If l 6= |q0| = |q1| thenc−1
l (q) is the empty set. And for anyq ∈ Q, andl = |q0| =

|q1|, it holds thatc−1
l (q) = {α ∈ B | [f−1(α), α]⌈l = q} = {α ∈ B | α⌈l =

q1 andf−1(α)⌈l = q0}. But α⌈l = q1 means thatα belongs to the basic open set
Nq1 and f−1(α)⌈l = q0 means thatf−1(α) belongs to the basic open setNq0 or
equivalently thatα = f(f−1(α)) belongs tof(Nq0) which is aΣ

0
ξ-subset ofB. So

c−1
l (q) = Nq1 ∩ f(Nq0) is aΣ

0
ξ-subset ofB andcl is Σ

0
ξ-measurable.

- Let N be an integer. We put

EN :={ α∈2ω | q1
Nα∈B and c|q1

N
|(q

1
Nα)=qN }.

Notice thatE0 = { α∈2ω | α∈ B andc0(α) = ∅} = B.

As c|q1
N
| is Σ

0
ξ-measurable and{qN}∈∆

0
1(Q), we getc−1

|q1
N
|
({qN})∈∆

0
ξ(B)⊆Γ(B).

Therefore there isG ∈ Γ(2ω) with c−1
|q1

N
|
({qN}) = G ∩ B. Thusc−1

|q1
N
|
({qN}) ∈ Γ(2ω)



sinceΓ is closed under finite intersections. Note that the mapS associatingq1
Nα with

α is continuous, so thatEN =S−1[c−1
|q1

N
|
({qN})] is in Γ(2ω).

• Now we define the transition system obtained fromf .

- If m∈2 andn, p∈ω, then we writen
m
→ p if q0

n≺q0
p andq1

p =q1
nm.

- As f is continuous onC, the graph Gr(f) of f is a closed subset ofC×2ω. As C
is Π

0
1(P∞), Gr(f) is also a closed subset ofP∞×2ω. So there is a closed subsetF

of 2ω×2ω such that Gr(f) = F ∩ (P∞×2ω). We identify2ω×2ω with (2×2)ω, i.e.,
we view (β, α) as [β(0), α(0)], [β(1), α(1)], ... By [Kec95, Proposition 2.4], there is
R⊆ (2×2)<ω, closed under initial segments, such thatF = {(β, α)∈ 2ω×2ω | ∀k ∈
ω (β, α)⌈k ∈ R}; notice thatR is a tree whose infinite branches form the setF . In
particular, we get

(β, α)∈Gr(f) ⇔ β∈P∞ and ∀k∈ω (β, α)⌈k∈R.

- SetQf := {(t, s)∈R | t 6= ∅ and t(|t|−1)=1}. Notice thatQf is simply the set of
pairs(t, s)∈R such that the last letter oft is a1.

We have in fact already defined the transition systemT obtained fromf . This transition
system has a countably infinite setQ of states and a setQf of accepting states. The
initial state isq0 := (∅, ∅). The input alphabet is2 = {0, 1} and the transition relation
δ ⊆ Q × 2 × Q is given by: if m ∈ 2 andn, p ∈ ω then(qn, m, qp) ∈ δ iff n

m
→ p.

Recall that a run ofT is said to be Büchi accepting if final states occur infinitelyoften
during this run. Then the set ofω-words over the alphabet2 which are accepted by the
transition systemT from the initial stateq0 with Büchi acceptance condition is exactly
the Borel setB.

• Now we define the finitary languageπ.

- We set

π :=







































































s∈4<ω | ∃j, l∈ω ∃(mi)i≤l∈2l+1 ∃(ni)i≤l, (pi)i≤l, (ri)i≤l∈ωl+1

n0≤Mj

and
∀i≤ l ni

mi→ pi and pi+ri = Mj+i+1

and
∀i<l pi = ni+1

and
qpl

∈Qf

and
s = ⌢

i≤l 2
ni mi 2

pi 2
ri 3 2

ri







































































.

• Let us show thatϕN,j[π
ω ∩ KN,j]=EN if N ≤Mj .



Let γ∈πω ∩ KN,j, andα :=ϕN,j(γ). We can write

γ = ⌢
k∈ω [ ⌢

i≤lk 2
nk

i mk
i 2

pk
i 2

rk
i 3 2

rk
i ].

As this decomposition ofγ is in π, we havenk
i

mk
i→ pk

i if i≤ lk, pk
i =nk

i+1 if i< lk, and
qpk

lk

∈Qf , for eachk∈ω. Moreover,pk
lk

=nk+1
0 , for eachk∈ω, sinceγ∈KN,j implies

thatpk
lk

+ rk
lk

= rk
lk

+ nk+1
0 = Mj+1+m for some integerm. So we get

N
α(0)
→ p0

0

α(1)
→ . . .

α(l0)
→ p0

l0

α(l0+1)
→ p1

0

α(l0+2)
→ . . .

α(l0+l1+1)
→ p1

l1
. . .

In particular we have

q0
N ≺ q0

p0
0
≺ . . . ≺ q0

p0
l0

≺ q0
p1
0
≺ . . . ≺ q0

p1
l1

. . .

becausen
m
→ p implies thatq0

n ≺ q0
p. Note that|q1

pk
lk

|= |q1
N |+Σj≤k (lj +1) because

n
m
→ p implies that|q1

p| = |q1
n|+1, so that the sequence(|q0

pk
lk

|)k∈ω is strictly increasing

since|q0
n| = |q1

n| for each integern. This implies the existence ofβ ∈ P∞ such that
q0
pk

lk

≺ β for eachk ∈ ω. Note thatβ ∈ P∞ because, for each integerk, qpk
lk

∈ Qf .

Note also that(β, q1
Nα)⌈k ∈ R for infinitely manyk’s. As R is closed under initial

segments,(β, q1
Nα)⌈k∈R for everyk∈ω, so thatq1

Nα=f(β)∈B. Moreover,

c|q1
N
|(q

1
Nα)=(β⌈|q1

N |, q1
N )=(q0

N , q1
N )=qN ,

andα∈EN .

Conversely, letα∈EN . We have to see thatγ := ϕ−1
N,j(α)∈ πω . As γ ∈KN,j, we are

allowed to writeγ = 2
N ⌢ [ ⌢

i∈ω α(i) 2
Mj+i+1 3

Mj+i+1 ]. Setβ := f−1(q1
Nα).

There is a sequence of integers(kl)l∈ω such thatqkl
=(β, q1

Nα)⌈l. Note thatN
α(0)
→

k|q1
N
|+1

α(1)
→ k|q1

N
|+2 . . . As N ≤ Mj we getk|q1

N
|+i+1 ≤ Mj+i+1. So we can define

n0 := N , p0 := k|q1
N
|+1, r0 := Mj+1−p0, n1 := p0. Similarly, we can definep1 :=

k|q1
N
|+2, r1 :=Mj+2−p1. We go on like this until we find someqpi

in Qf . This clearly
defines a word inπ. And we can go on like this, so thatγ∈πω .

Thusπω ∩ KN,j is in Γ(KN,j)⊆ Γ(4ω). Notice that we proved, among other things,
the equalityϕ0,0[π

ω ∩ K0,0]=B. In particular,πω ∩ K0,0 is not inΓ̌(4ω).

Notice thatπω codes onK0,0 the behaviour of the transition system acceptingB. In a
similar wayπω codes onKN,j the behaviour of the same transition system but starting
this time from the stateqN instead of the initial stateq0. But someω-words inπω are not
in K0,0 and even not in anyKN,j and we do not know what is exactly the complexity
of this set ofω-words. However we remark that all words inπ have the same form
2

N ⌢ [ ⌢
i≤l mi 2

Pi 3 2
Ri ].



• We are ready to defineµ. The idea is that an infinite sequence containing a word inµ
cannot be in the union of theKN,j’s. We set

µ0:=







































s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ωl+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
Pl 6=Rl

and
s = 2

N ⌢ [ ⌢
i≤l+1 mi 2

Pi 3 2
Ri ]







































,

µ1:=







































s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ωl+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
∃j∈ω (Pl =Mj and Pl+1 6=Mj+1)

and
s = 2

N ⌢ [ ⌢
i≤l+1 mi 2

Pi 3 2
Ri ]







































,

µ:=µ0 ∪ µ1.

All the words inA will have the same form2N ⌢ [ ⌢
i≤l mi 2

Pi 3 2
Ri ]. Note that

any finite concatenation of words of this form still has this form. Moreover, such a
concatenation is inµi if its last word is inµi.

• Now we show thatµω is “simple”. The previous remarks show that

µω ={ γ∈4ω | ∃i∈2 ∀j∈ω ∃k, n∈ω ∃t0, t1, . . . , tn∈µi n≥j and γ⌈k=⌢
l≤n tl }.

This shows thatµω∈Π
0
2(4

ω).

Notice again that all words inA have the same form2N ⌢ [ ⌢
i≤l mi 2

Pi 3 2
Ri ]. We

set

P :={2N ⌢ [ ⌢
i∈ω mi 2

Pi 3 2
Ri ]∈4ω | N ∈ω and∀i ∈ ω mi∈2, Pi, Ri ∈ ω

and∀i∈ω ∃j∈ω Pi =Mj}.

We define a mapF :P \µω→ ({∅} ∪ µ)×ω2 as follows.
Let γ := 2

N ⌢ [ ⌢
i∈ω mi 2

Pi 3 2
Ri ] ∈ P \µω, andj0 ∈ ω with P0 = Mj0 . If

γ ∈KN,j0−1, then we putF (γ) := (∅, N, j0). If γ /∈KN,j0−1, then there is an integerl
maximal for whichPl 6=Rl or there isj∈ω with Pl =Mj andPl+1 6=Mj+1. Let j1∈ω
with Pl+2 =Mj1 . We put

F (γ) :=(2N ⌢ [ ⌢
i≤l mi 2

Pi 3 2
Ri ] ⌢ ml+1 2

Pl+1 3, Rl+1, j1).

• Fix γ∈Aω. If γ /∈µω, thenγ∈P \µω, F (γ) :=(t, S, j) is defined. Note thatt 2
S ≺γ,

and thatj >0. Moreover,γ−t 2
S ∈K0,j−1. Note also thatS≤Mj−1 if t=∅, and that



t 2
S γ(|t|+S) 2

Mj 3 /∈µ. Moreover, there is an integerN ≤min(Mj−1, S) (N =S if
t=∅) such thatγ−t 2

S−N ∈πω∩KN,j−1, since the last word inµ in the decomposition
of γ (if it exists) ends beforet 2

S .

• In the sequel we will say that(t, S, j)∈({∅} ∪µ)×ω2 is suitable if S≤Mj if t=∅,
t(|t|−1)=3 if t∈µ, andt 2

S m 2
Mj+1 3 /∈µ if m∈2. We set, for(t, S, j) suitable,

Pt,S,j :=
{

γ∈4ω | t 2
S ≺γ and γ−t 2

S ∈K0,j

}

.

Note thatPt,S,j is a compact subset ofP \µω, and thatF (γ)=(t, S, j+1) if γ∈Pt,S,j.
This shows that thePt,S,j ’s, for (t, S, j) suitable, are pairwise disjoint. Note also that
µω is disjoint from

⋃

(t,S,j) suitablePt,S,j.

• We set, for(t, S, j) suitable andN ≤min(Mj , S) (N =S if t=∅),

At,S,j,N :=
{

γ∈Pt,S,j | γ−t 2
S−N ∈πω ∩ KN,j

}

.

Note thatAt,S,j,N ∈Γ(4ω) sinceN ≤Mj.

• The previous discussion shows that

Aω =µω ∪
⋃

(t,S,j) suitable

⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N .

As Γ is closed under finite unions, the set

At,S,j :=
⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N

is in Γ(4ω). On the other hand we have proved thatµω ∈Π
0
2(4

ω)⊆Γ(4ω), thus we get
Aω ∈Γ(4ω) if Γ=Σ

0
ξ .

Consider now the caseΓ=Π
0
ξ. We can write

Aω =µω\





⋃

(t,S,j) suitable

Pt,S,j



 ∪
⋃

(t,S,j) suitable

At,S,j ∩ Pt,S,j.

Thus

¬Aω =¬



µω ∪





⋃

(t,S,j) suitable

Pt,S,j







 ∪
⋃

(t,S,j) suitable

Pt,S,j\At,S,j.

Here¬
[

µω ∪
(

⋃

(t,S,j) suitablePt,S,j

)]

∈ ∆
0
3(4

ω) ⊆ Γ̌(4ω) becauseµω is a Π
0
2-

subset of4ω and(
⋃

(t,S,j) suitablePt,S,j) is aΣ
0
2-subset of4ω as it is a countable union



of compact hence closed sets. On the other handPt,S,j\At,S,j∈ Γ̌(4ω), thus¬Aω is in
Γ̌(4ω) andAω∈Γ(4ω). Moreover, the setAω ∩P∅,0,0 =πω ∩P∅,0,0 =πω ∩K0,0 is not
in Γ̌. This shows thatAω is not inΓ̌. ThusAω is in Γ(4ω)\Γ̌.

We can now end the proof of Theorem 2.

(a) If ξ = 1, then we can takeA := {s ∈ 2<ω | 0 ≺ s or ∃k ∈ ω 10k1 ≺ s} and
Aω =2ω\{10ω} is Σ

0
1\Π

0
1.

• If ξ = 2, then we will see in Theorem 4 the existence ofA ⊆ 2<ω such thatAω is
Σ

0
2\Π

0
2.

• So we may assume thatξ≥3, and we are done.

(b) If ξ=1, then we can takeA :={0} andAω ={0ω} is Π
0
1\Σ

0
1.

• If ξ=2, then we can takeA :={0k1 | k∈ω} andAω =P∞ is Π
0
2\Σ

0
2.

• So we may assume thatξ≥3, and we are done. �

As we have said above it remains a Borel class for which we havenot yet got a complete
ω-power: the classΣ0

2. Notice that it is easy to see that the classical example ofΣ
0
2-

complete set, the set2ω \ P∞, is not anω-power. However we are going to prove the
following result.

Theorem 4. There is a context-free languageA⊆2<ω such thatAω ∈Σ
0
2\Π

0
2.

Proof. By Proposition 11 in [Lec05], it is enough to findA⊆3<ω. We set, forj <3 and
s∈3<ω,

nj(s):= Card{i< |s| | s(i)=j},

T := {α∈3≤ω | ∀l<1+|α| n2(α⌈l)≤n1(α⌈l)}.

• We inductively define, fors∈T ∩ 3<ω, s←֓ ∈2<ω as follows:

s←֓ :=























∅ if s=∅,

t←֓ ε if s= tε and ε<2,

t←֓ , except that its last 1 is replaced with 0, ifs= t2.

• We will extend this definition to infinite sequences. To do this, we introduce a notion
of limit. Fix (sn)n∈ω a sequence of elements in2<ω. We define lim

n→∞
sn ∈ 2≤ω as

follows. For eacht∈2<ω,

t≺ lim
n→∞

sn ⇔ ∃n0∈ω ∀n≥n0 t≺sn.



• If α ∈ T ∩ 3ω, then we setα←֓ := lim
n→∞

(α⌈n)←֓ . We definee : T ∩ 3ω → 2ω by

e(α) :=α←֓ . Note thatT ∩ 3ω ∈Π
0
1(3

ω), ande is aΣ
0
2-measurable partial function on

T ∩ 3ω, since fort∈2<ω we have

t≺e(α) ⇔ ∃n0∈ω ∀n≥n0 t≺(α⌈n)←֓ .

• We setE :={s∈T ∩ 3<ω | n2(s)=n1(s) and s 6=∅ and 1≺ [s⌈(|s|−1)]←֓}. Note
that∅ 6= s←֓ ≺0ω, and thats(|s|−1)=2 changess(0)= [s⌈(|s|−1)]←֓ (0)=1 into 0 if
s∈E.

• If S⊆3<ω, thenS∗ :={⌢
i<l si∈3<ω | l∈ω and ∀i < l si ∈ S}. We put

A :={0}∪E∪{⌢
j≤k (cj1)∈3<ω | [∀j≤k cj ∈({0}∪E)∗] and [k>0 or (k=0 and c0 6=∅)]}.

• In the proof of Theorem 2.(b) we met the set{s∈2<ω | 0≺s or ∃k∈ω 10k1≺s}.
We shall denoted it byB in the sequel. We have seen thatBω =2ω\{10ω} is Σ

0
1\Π

0
1.

Let us show thatAω =e−1(Bω).

- By induction on|t|, we get(st)←֓ = s←֓ t←֓ if s, t ∈ T ∩ 3<ω. Let us show that
(sβ)←֓ =s←֓β←֓ if moreoverβ∈T ∩ 3ω.

Assume thatt≺(sβ)←֓ . Then there ism0≥|s| such that, form ≥ m0,

t≺ [(sβ)⌈m]←֓ =[sβ⌈(m−|s|)]←֓ =s←֓ [β⌈(m−|s|)]←֓ .

This implies thatt ≺ s←֓β←֓ if |t|< |s←֓ |. If |t|≥ |s←֓ |, then there ism1∈ω such that,
for m≥m1, β←֓ ⌈(|t|−|s←֓ |)≺ [β⌈(m−|s|)]←֓ . Here again, we gett≺ s←֓β←֓ . Thus
(sβ)←֓ =s←֓β←֓ .

Let (si)i∈ω be a sequence such that for each integeri ∈ ω, si ∈ T ∩ 3<ω. Then
⌢

i∈ω si∈T , and(⌢
i∈ω si)

←֓ =⌢
i∈ω s←֓i , by the previous facts.

- Let (ai)i∈ω be a sequence such that for each integeri ∈ ω, ai ∈ A\{∅} andα :=
⌢

i∈ω ai. As A⊆T , e(α)=(⌢
i∈ω ai)

←֓ =⌢
i∈ω a←֓i .

If a0∈{0} ∪ E, then∅ 6=a←֓0 ≺0ω, thuse(α)∈N0⊆2ω\{10ω}=Bω.
If a0 /∈{0} ∪ E, thena0 =⌢

j≤k (cj1), thusa←֓0 =⌢
j≤k (c←֓j 1).

If c0 6=∅, thene(α)∈Bω as before.
If c0 =∅, thenk>0, so thate(α) 6=10ω sincee(α) has at least two coordinates
equal to1.

We proved thatAω ⊆e−1(Bω).

- Assume now thate(α)∈Bω . We have to find(ai)i∈ω ⊆A\{∅} with α=⌢
i∈ω ai. We

split into cases:

1. e(α)=0ω.
1.1.α(0)=0.
In this caseα−0∈T ande(α−0)=0ω. Moreover,0∈A. We puta0 :=0.



1.2.α(0)=1.
In this case there is a coordinatej0 of α equal to2 ensuring thatα(0) is replaced with
a0 in e(α). We puta0 :=α⌈(j0+1), so thata0∈E⊆A, α−a0∈T ande(α−a0)=0ω.

Now the iteration of the cases 1.1 and 1.2 shows thatα∈Aω .

2. e(α)=0k+110ω for somek∈ω.

As in case 1, there isc0 ∈ ({0} ∪ E)∗ such thatc0 ≺ α, c←֓0 = 0k+1, α−c0 ∈ T and
e(α−c0) = 10ω. Note thatα(|c0|) = 1, α−(c01) ∈ T ande[α−(c01)] = 0ω. We put
a0 :=c01, and argue as in case 1.

3. e(α)=(⌢
j≤l+1 0kj 1)0ω for somel∈ω.

The previous cases show the existence of(cj)j≤l+1, where for eachj ≤ l + 1 cj ∈
({0} ∪ E)∗ such that :
a0 :=⌢

j≤l+1 cj1≺α, α−a0∈T ande(α−a0)=0ω. We are done sincea0∈A.

4. e(α)=⌢
j∈ω 0kj 1.

An iteration of the discussion of case 3 shows that we can takeai of the form⌢
j≤l+1 cj1.

• The previous discussion shows thatAω = e−1(Bω). As Bω is an open subset of2ω

ande is Σ
0
2-measurable, theω-powerAω = e−1(Bω) is inΣ

0
2(3

ω).

It remains to see thatAω = e−1(Bω) /∈Π
0
2. We argue by contradiction.

Assume on the contrary thate−1(Bω) ∈ Π
0
2(3

ω). We know thatBω = 2ω \{10ω} so
e−1({10ω}) = (T ∩ 3ω) \ e−1(Bω) would be aΣ0

2-subset of3ω sinceT ∩ 3ω is closed
in 3ω. Thuse−1({10ω}) would be a countable union of compact subsets of3ω.

Consider now thecartesian product({0}∪E)N of countably many copies of({0}∪E).
The set({0} ∪E) is countable and it can be equipped with the discrete topology. Then
the product({0} ∪ E)N is equipped with the product topology of the discrete topology
on ({0} ∪ E). The topological space({0} ∪ E)N is homeomorphic to the Baire space
ωω.
Consider now the maph : ({0} ∪ E)N → e−1({10ω}) defined byh(γ) := 1[⌢i∈ω γi]
for eachγ = (γ0, γ1, . . . , γi, . . .) ∈ ({0} ∪ E)N. The maph is a homeomorphism by
the previous discussion. As({0} ∪ E)N is homeomorphic to the Baire spaceωω, the
Baire spaceωω is also homeomorphic to the spacee−1({10ω}), so it would be also a
countable union of compact sets. But this is absurd by [Kec95, Theorem 7.10].

It remains to see thatA is context-free. It is easy to see that the languageE is in fact
accepted by a1-counter automaton: it is the set of wordss∈3<ω such that :

∀l∈ [1;|s|[ n2(s⌈l)<n1(s⌈l) andn2(s)=n1(s) ands(0)= 1 ands(|s|−1)=2.



This implies thatA is also accepted by a1-counter automaton because the class of1-
counter languages is closed under concatenation and star operation. In particularA is
a context-free language because the class of languages accepted by1-counter automata
form a strict subclass of the class of context-free languages, [ABB96]. �

Remark 5. The operationα → α←֓ we have defined is very close to the erasing op-
eration defined by Duparc in his study of the Wadge hierarchy,[Dup01]. However we
have modified this operation in such a way thatα←֓ is always infinite whenα is infinite,
and that it has the good property with regard toω-powers and topological complexity.

4 Concluding remarks and further work

It is natural to wonder whether theω-powers obtained in this paper are effective. For
instance could they be obtained asω-powers of recursive languages ?

In the long version of this paper we prove effective versionsof the results presented
here. Using tools of effective descriptive set theory, we first prove an effective version
of Kuratowski’s Theorem 3. Then we use it to prove the following effective version of
Theorem 2, whereΣ 0

ξ andΠ
0
ξ denote classes of the hyperarithmetical hierarchy and

ωCK
1 is the first non-recursive ordinal, usually called the Church-kleene ordinal.

Theorem 6. Let ξbe a non-null ordinal smaller thanωCK
1 .

(a) There is a recursive languageA⊆2<ω such thatAω ∈Σ
0
ξ \Π

0
ξ.

(b) There is a recursive languageA⊆2<ω such thatAω ∈Π
0
ξ \Σ

0
ξ.

The question, left open in [Fin04], also naturally arises toknow what are all the pos-
sible infinite Borel ranks ofω-powers of finitary languages belonging to some natural
class like the class of context free languages (respectively, languages accepted by stack
automata, recursive languages, recursively enumerable languages, . . . ).
We know from [Fin06] that there areω-languages accepted by Büchi1-counter au-
tomata of every Borel rank (and even of every Wadge degree) ofan effective analytic
set. Everyω-language accepted by a Büchi1-counter automaton can be written as a
finite unionL =

⋃

1≤i≤n U⌢
i V ω

i , where for each integeri, Ui andVi are finitary lan-
guages accepted by1-counter automata. And the supremum of the set of Borel ranks
of effective analytic sets is the ordinalγ1

2 . This ordinal is defined by A.S. Kechris, D.
Marker, and R.L. Sami in [KMS89] and it is proved to be strictly greater than the or-
dinal δ1

2 which is the first non∆1
2 ordinal. Thus the ordinalγ1

2 is also strictly greater
than the first non-recursive ordinalωCK

1 . From these results it seems plausible that there
exist someω-powers of languages accepted by1-counter automata which have Borel
ranks up to the ordinalγ1

2 , although these languages are located at the very low level in
the complexity hierarchy of finitary languages.

Another question concerns the Wadge hierarchy which is a great refinement of the Borel
hierarchy. It would be interesting to determine the Wadge hierarchy ofω-powers. In the
full version of this paper we give many Wadge degrees ofω-powers and this confirms
the great complexity of theseω-languages.
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