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Résumé – L’analyse multifractale devient un outil classique de traitement du signal communément utilisé pour des tâches usuelles telles que

détection, identification ou classification. En pratique, elle consiste essentiellement en la mesure d’exposants de lois d’échelle. Il a longtemps

été considéré que ces exposants s’identifiaient exactement à ceux impliqués dans le détail de la construction multiplicative de la plupart des

processus multifractals connus ou utilisés. Il a cependant été observé récemment que ces exposants de lois d’échelle présentent nécessairement

un comportement linéaire en fonction de l’ordre statistique q, dans la limite des grands q. Cette association abusive est à l’origine d’interprétations

erronées des exposants mesurés sur des données réelles. Le présent article contribue à l’analyse et à la contribution de cet effet de linéarisation et

ainsi à la clarification de cette association incorrecte. Il indique notamment que l’effet de linéarisation peut être relié au caractère ailes lourdes,

associé par nature aux processus multifractals ainsi qu’à leur structure de dépendance, grâce à un argument impliquant les valeurs extrêmes des

fonctions de structure. Ces arguments sont inspectés au moyen de simulations numériques conduites sur des processus multifractals particuliers,

les mouvements Poisson composés (CPM).

Abstract – Multifractal analysis is becoming a standard tool in signal processing commonly involved in classical tasks such as detection,

estimation or identification. Essentially, in practice, it amounts to measuring a collection of scaling law exponents. It has generally been thought

by practitioners that these scaling exponents were related to the details of the multiplicative construction underlying the definitions of most

known and used multifractal processes. However, recent results show that these scaling exponents necessarily behave as a linear function of the

statistical orders q, for large qs. This confusing association has often been misleading in the use of scaling exponents for real-life data analysis.

The present work contributes to the analysis and understanding of this linearization effect and hence to a clarification of this improper association.

It is shown that this effect can be explained through an argument involving extreme values and the intrinsic heavy tail nature of the marginal

distributions and dependence structure of multifractal processes. These issues are analyzed by means of numerical simulations conducted over

specific multifractal processes, the compound Poisson motions (CPM).

1 Position of the problem

Multifractal analysis provides a well-grounded mathematical

theory and well-established analysis tools for scaling, or scale

invariant, data encountered in many different applications. It is

based on the structure function

Sn(q, a) =
1

na

na∑

k=1

|TX(a, ak)|q, (1)

where TX(a, t) = X(t + a) − X(t) are the increments of the

data under analysis X(t) at scale a, n is the sample size of X(t)
and na = n/a. Essentially, multifractal analysis states that

Sn(q, a) ≃ cqa
ζ(q), as a → 0. (2)

Estimating ζ(q), known as the scaling exponents, is the goal of

empirical multifractal analysis. Estimation is commonly per-

formed by linear fits in log-log plots. The estimates of these

scaling exponents ζ(q) are then involved in standard signal pro-

cessing tasks such as detection, identification or classification.

Despite the above procedure being widely used in practice,

the behavior and statistical performance of the estimates of

scaling exponents remain poorly analyzed and understood, which

sometimes leads to misinterpretation of the results, yielded by

the estimated exponents. To contribute to a better understand-

ing of these procedures, we consider here a particular class

of multifractal processes known as Compound Poisson Mo-

tions (CPM) [2]. CPM are chosen because their increments

{TX(a, t), t ∈ R} form stationary processes, for each analysis

scale a. It can be further shown [3] that

E|TX(a, t)|q ≃ Cqa
λ(q), as a → 0, (3)

for 0 < q < q+
c = sup{q : E|TX(a, t)|q < ∞}, where λ(q)

depends on the specific details of the CPM construction.

Since sample averages are naturally used as estimates for

the ensemble averages, it has long and largely been believed

in the applied multifractal literature that the functions ζ(q) and

λ(q) in (2) and (3) were identical, at least for 0 < q ≤ q+
c .

However, after the seminal works of Molchan [10], Ossian-

der & Waymire [12] on Mandelbrot multiplicative cascades

[7], it is now being realized that the two functions λ(q) and

ζ(q) coincide, surprisingly, only on the narrow range of pow-

ers 0 < q ≤ q+
∗ with q+

∗ < q+
c . Moreover, ζ(q) is known to

behave as a linear function for q > q+
∗ (referred to as the lin-

earization effect). These observations have been confirmed in



a comprehensive empirical study by Lashermes et al. [6] who

conjectured that this phenomenon is intrinsic to all multifrac-

tal processes and measures. In a number of significant con-

tributions, whose most prominent are [8] and [9] (Chapter 9),

Mandelbrot relates negative singularity observation and super-

sampling issues, intimately tied to the the linearization effect,

to the intrinsically heavy tail nature of multiplicative cascades.

The present contribution aims at contributing to a better under-

standing of the origins and causes of the differences in nature

of these two different functions of q: λ(q) and ζ(q).

2 Compound Poisson Motion

Compound Poisson cascade. Compound Poisson cascades

(CPC) are defined by Barral & Mandelbrot [2] as

Qr(t) = C
∏

(ti,ri)∈Cr(t)

Wi, r > 0, (4)

where Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t−r′/2 ≤ t′ ≤ t+r′/2}
is a cone, (ti, ri) are random points of a Poisson measure on

a rectangle I = {(t′, r′) : r ≤ r′ ≤ 1,−1/2 ≤ t′ ≤ T +
1/2} having intensity measure dm(t, r), Wi are positive i.i.d.

multipliers associated with points (ti, ri), and C = C(r, t) is a

normalizing constant such that EQr(t) = 1. It can be shown

that CPC satisfy the following key resolution equation:

EQr(t)
q = exp− (ϕ(q)m(Cr(t))),

with ϕ(q) = c((1−EW q)− q(1−EW )) (c being an arbitrary

positive constant) and m(Cr(t)) =
∫
Cr(t)

dm(t′, r′) .

Compound Poisson motion. On condition that ϕ(1−) ≥
−1, compound Poisson motion (CPM) is a well-defined pro-

cess:

A(t) = lim
r→0

∫ t

0

Qr(s)ds. (5)

Finiteness of moments and heavy tails. It has been shown

[2] that the moments of TA(a, t) = A(t + a) − A(t) are finite

only up to order 0 < q < q+
c = sup {q ≥ 1, q+ϕ(q)−1 ≥ 0}.

One then expects that P (TA(a, t) ≥ x) ∼ x−q+
c , when x →

+∞ and hence that the variables TA(a, t) are heavy-tailed.

Stationary Increments. If dm(t, r) = g(r)drdt, the incre-

ments TA(a, t) of A are stationary [3].

Scaling properties. In addition, when g(r)dr = c(dr/r2 +
δ{1}(dr)) (as proposed in [1]), where δ{1}(dr) denotes a point

mass at r = 1, A(t) exhibits scaling properties of the form of

Eq. (3), with λ(q) = q + ϕ(q), for 0 < q < q+
c [3].

Multifractal properties. From the results proven in [2], we

can infer that the multifractal spectrum DA(h) of A can be

derived from the Legendre transform Dλ(h) = minq 6=0(1 +
qh − λ(q)) of λ(q) as

DA(h) =

{
Dλ(h), if Dλ(h) ≥ 0,
−∞, otherwise.

(6)

The quantity DA(h) is the Hausdorff dimension of the set of

time points t ∈ R where the sample path can be characterized

with the singularity (or Hölder) exponent h:

|TA(a, t)| ≃ c|a|h, as a → 0. (7)
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Figure 1: Linearization effect. ζ̂(q) versus q, observed

over 1000 realizations (left) and averaged over all realizations

(middle), together with the curve λ(q) (solid dotted curve), the

dashed line expands the linear behavior observed at large q.

Right: averaged slope, characterizing this linear behavior, as a

function of log2 n. Observe that it does not depend on n and is

found to be very close to h+
∗ ≃ 0.64 (dashed - red - line).

The multifractal spectrum DA(h) hence provides a global de-

scription of the local fluctuations of a sample path of A. For

a thorough introduction to multifractal analysis, the reader is

referred to e.g., [5].

3 Empirical multifractal formalism

Multifractal formalism. Empirical multifractal analysis

aims at estimating the multifractal spectrum of a process from

a given observed sample path. This is commonly performed by

computing structure functions, as in Eq. (1), based on incre-

ments. Such structure functions are assumed to exhibit power

law behaviors as in Eq. (2). The so-called multifractal for-

malism states that the Legendre transform Dζ(h) of the corre-

sponding scaling exponents ζ(q) yields a convex hull of DA:

Dζ(h) ≥ DA(h). In the case of CPM, this turns to an equality.

Estimation procedures. Estimation of the scaling expo-

nents ζ(q) is commonly conducted through the linear regres-

sion of the log of the structure function Sn(q, a) in (1) over

dyadic scales aj = 2j1 , . . . , 2j2 (throughout this text,
∑

stands

for
∑j2

j=j1
, the weights wj satisfy

∑
wj = 0 and

∑
jwj = 1):

ζ̂(q) =
∑

wj log2 Sn(q, 2j). (8)

4 Linearization effect

Numerical simulations. All numerical simulations reported

below were conducted over R = 1000 independent realiza-

tions of CPM, with various ϕ(q) and various data lengths (n =
210, . . . , 218), within a single integral scale. Plots and results

are presented for a specific ϕ(q) (based on lognormal multi-

pliers W ) yielding numerically q+
∗ ≃ 6.8, h+

∗ ≃ 0.64 and

q+
c ≃ 13.8. However, the results presented here hold for all

choices of ϕ(q).

Linearization effect. The estimation procedure (8) has been

applied to R realizations of CPM. First, we observe that, for

each and every realization of CPM, ζ̂(q) is close to λ(q) at

small qs, i.e., 0 ≤ q ≤ qn while it behaves linearly in q, for

large qs, i.e., ζ̂(q) = αn + βnq, for q ≥ qn, where αn, βn

and qn are RVs whose means are found not to depend on n
[6]. This is illustrated in Fig. 1, left plot. Second, averaging

over the R realizations, we observe (Fig. 1, middle plot) that

〈ζ̂(q)〉R is close to λ(q) at small qs but behaves linearly in q, at
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Figure 2: Structure functions versus extrema. Two sides of

Relation (12): Scatter plots (top row) and empirical PDFs (bot-

tom row), for j = 5 with (left to right) q = 2, 7(≃ q+
∗ ), 20.

large qs. Third, we observe that the slope and intercept of this

average linear behavior do not vary (or only extremely slowly

vary) when n is increased (estimated slopes as a function of

n are reported in Fig. 1, right plot). Such observations can be

gathered as follows: 〈ζ̂(q)〉R ≃ ζ(q), where

ζ(q) =

{
λ(q), if q ≤ q+

∗ ,
1 + qh+

∗ , if q > q+
∗ ,

(9)

h+
∗ = min h{DA(h) = 0}, q+

∗ = (dDA/dh)h=h+
∗

. (10)

They are referred to in [6] as the linearization effect of the scal-

ing exponents. It is worth mentioning again that one necessar-

ily has q+
∗ ≤ q+

c , and q+
∗ is often far smaller than q+

c . The

equations above are fully consistent with the results in [10, 12]

that were previously obtained for the specific case of Mandel-

brot cascades. It is formulated as a general conjecture for mul-

tifractal processes in [6]. It can appear paradoxical as ensemble

averages (in Eq. (3)) and time averages (in Eq. (1)) differ. The

goal of the present work is to contribute to a better understand-

ing of the origins of this linearization effect.

5 Extreme values and heavy tails

Structure functions and extreme values. Simple algebra

yields that the structure functions Sn(q, 2j) are driven by the

largest increment at scale a = 2j ,

Mnj
(2j) = max{|TA(2j , 2jk)|, k = 1, . . . , nj} (11)

for fixed n, in the limit q → +∞ : Sn(q, 2j) ≃ 1
nj

(Mnj
(2j))q,

or, log2 Sn(q, 2j) ≃ − log2 nj + q log2 Mnj
(2j). (12)

As mentioned in Section 2, the variables TA(a, t) have heavy

tails. Be they independent, the order q for which Mnj
(2j)

takes the control of Sn(q, 2j) should be such that TA(a, t)q

has infinite mean (cf. e.g., [4], Chapter 8), i.e., when q ≥ q+
c .

Fig. 2 illustrates that the relevance of (12) actually starts for

q ≃ q+
∗ ≤ q+

c .

Extreme value distributions. It is well-known that the dis-

tributions of maxima of i.i.d. random variables are modeled by

extreme value distributions [4]. In the present study, the vari-

ables TA(a, t) have heavy tails, hence so do the TA(a, t)q, q >
0. Therefore, the maximum taken over independent TA(a, tk),
k = 1, ..., na, would theoretically follow a Frechet distribu-

tion with a power law tail x−q+
c as x → +∞ [4]. For a
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Figure 3: Extreme values distribution fits. PDFs of the max-

ima Mnj
(2j) as in (11) (solid line) and their best GEV fits

(dashed lines) for scales a = 2j with j = 4, 6, 8.

given realization of CPM, the TA(a, tk)q, k = 1, ..., na, en-

tering the sums Sn(q, 2j), are, by construction of CPM, de-

pendent so that the limit distribution of their maxima is not

theoretically known. Therefore, we chose to fit the distribution

of Mnj
(2j), separately at each scale a = 2j , using the gen-

eralized extreme value (GEV) probability density distribution,

whose cumulative distribution function reads [4]: Fξ,σ,µ(x) =

exp−
{

(1 + ξ((x − µ)/σ)
−1/ξ

}
.

Extreme value fits. Fig. 3 clearly indicates a satisfactory agree-

ment between the empirical PDFs of Mnj
(2j) and the GEV

distribution. Moreover, Fig. 4 (left plot) shows unambiguously

that the estimated parameter ξ depends neither on the scale 2j

nor on the sample number n:

ξj,n ≃ ξ0. (13)

Simple algebra shows that the tail of the GEV probability den-

sity function is controlled by the exponent 1/ξ. The estimated

1/ξ0 turns out to be very far from the exponent q+
c that would

be expected under independence of the TA(a, tk) and happens

to be consistently close to q+
∗ (cf. Fig. 4, left plot). The empir-

ical PDFs of TA(a, t) (not shown here for sake of space) also

exhibit power law tails, with exponent q+
∗ , which is consistent

with what is observed for their maxima.

Moreover, Fig. 4 (middle plot) clearly shows that the coeffi-

cients µj,n and σj,n are characterized by power law behaviors,

with respect to the scales 2j , where the multiplicative factors

depend on n, while the power law exponents do not and turn

out to be equal to h+
∗ , for all n (cf. Fig. 4, right plot):

µj,n ≃ µ0,n2jh+
∗ , σj,n ≃ σ0,n2jh+

∗ . (14)

These findings (Eq. (13) and (14)) are consistent with the anal-

yses recently proposed in [11]. Combined together, the obser-

vations above yield:

{Mnj
(2j)}j=j1,...,j2

d
≃ {2jh+

∗ (σ0,nΛj
ξ0

+ µ0,n)}j=j1,...,j2 ,
(15)

where each Λj
ξ0

is a random variable drawn from the same

Fξ0,1,0 GEV distribution, which does not depend on j.

Linearization effect: slope h+
∗ . Combining Definition (8)

with empirical results (12) and (15) implies, as q → +∞,

ζ̂(q) =
∑

wj log2 Sn(q, 2j)
d
≃ −

∑
wj log2 nj

+qh+
∗

∑
jwj + q

∑
wj log2(σ0,nΛj

ξ + µ0,n)

≃ 1 + q
(
h+
∗ +

∑
wj log2(σ0,nΛj

ξ + µ0,n)
)

,

since nj ≃ n2−j yields −
∑

j wj log2 nj ≃ 1. In itself, it

explains the linearization effect observed for each realization.

Moreover, taking the average over realizations yields

〈ζ̂(q)〉R ≃ 1 + qh+
∗ + q

∑
wj〈log2(c0,nΛj + d0,n)〉R.
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Figure 4: Extreme value fits and multifractal properties.

log2 ξj,n (’⋄’) (left plot) log2 σj,n (‘o’) and log2 µj,n (’+’)

(middle plot) versus j, for various n. The horizontal dashed

(red) line (left plot) corresponds to − log2 q+
∗ , while the di-

agonal one (middle plot) has slope h+
∗ (intercept being arbi-

trary). Right plot: estimated slopes for log2 σj,n (‘o’) and

log2 µj,n (’⋄’) do not vary significantly with n and are close

to h+
∗ (dashed, red line).

Since 〈log2(σ0,nΛj
ξ + µ0,n)〉R does not depend on j and

∑
wj

≡ 0, this explains the linearization effect observed as an aver-

age over realizations, cf. Eq. (9):

〈ζ̂(q)〉R ≃ 1 + qh+
∗ . (16)

Linearization effect: critical order q+
∗ . On the one hand,

the empirical results reported above suggest a power law tail

behavior x−q+
∗

/q for the variables TA(a, t)q, observed from a

single realization and therefore, that they exhibit infinite mean

as if when q & q+
∗ . This explains that the maximum Mnj

(2j)q

takes control of the sum Sn(q, 2j) at q+
∗ . On the other hand, we

observed in Fig. 1 that ζ(q) evolves continuously and without

discontinuity from λ(q) at small qs, to 1 + qh+
∗ for large qs.

This implies and explains the existence of a critical order q+
∗

and defines it as λ(q+
∗ ) = 1 + q+

∗ h+
∗ . Using the Legendre

transform in Eq. (10), this can be rewritten in clear agreement

with Definition (10) as well as with the conjecture in [6], as:

1 + q+
∗ (dλ/dq)q=q+

∗

− λ(q+
∗ ) = 0. (17)

These two different arguments explain separately that the lin-

earization effect starts to occur when q & q+
∗ .

6 Conclusions and perspectives

Multifractal properties and extreme values. Observations

(15), indicating that Mn(2j) ≃ Cn2jh+
∗ , as a = 2j → 0,

where Cn is a suitable random variable, are strikingly consis-

tent with the multifractal paradigm. Indeed, recall from Section

2 that multifractal analysis associates to each time position t an

Hölder exponent as |TA(a, t)| ≃ c(t)ah(t), as a → 0. Then,

the largest increments (hence the maxima) are observed in the

limit a → 0 for the smallest h, that is where A(t) is the most

singular. By Definition (10), such smallest exponent is h+
∗ .

Heavy tails, dependence and linearization effect. The anal-

yses reported here show that the existence of the lineariza-

tion effect is a combined consequence of two major proper-

ties of CPM: their increments are heavy-tailed and possess a

specific dependence structure resulting from the multiplicative

construction.

Perspectives. First, it is conjectured and currently observed

in numerical simulations not reported here that the present anal-

yses of the linearization effect holds for all multifractal pro-

cesses and not only CPM or those resulting from multiplicative

constructions (such as the Mandelbrot cascades [7] or infinitely

divisible motions [3]). Indeed, multifractal processes will in

general gather the two key ingredients mentioned above: heavy

tails and a form of time dependence structure, which the multi-

fractal spectrum characterizes in an indirect way. Second, a full

and relevant multifractal analysis needs to be based on wavelet

leaders [5] rather than on increments and involves both posi-

tive and negative qs. It is of interest to understand how these

relations between multifractality, heavy tails, dependence, ex-

treme values and linearization effect extend to this more accu-

rate framework and accommodate the negative qs. These two

research directions are being currently investigated.
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