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Abstract Locally finite omega languages were introduced by Ressayre in [Formal Languages defined
by the Underlying Structure of their Words, Journal of Symbolic Logic, 53, number 4, December 1988, p.
1009-1026]. These languages are defined by local sentences and extend ω-languages accepted by Büchi
automata or defined by monadic second order sentences. We investigate their topological complexity.
All locally finite ω-languages are analytic sets, the class LOCω of locally finite ω-languages meets
all finite levels of the Borel hierarchy and there exist some locally finite ω-languages which are Borel
sets of infinite rank or even analytic but non-Borel sets. This gives partial answers to questions of
Simonnet [Automates et Théorie Descriptive, Ph. D. Thesis, Université Paris 7, March 1992] and of
Duparc, Finkel, and Ressayre [Computer Science and the Fine Structure of Borel Sets, Theoretical
Computer Science, Volume 257 (1-2), 2001, p.85-105].
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1 Introduction

Local sentences were introduced by Ressayre in [Res88]. He proved there some remarkable stretch-
ing theorems which established some links between the finite and the infinite model theory of these
sentences. Some of these theorems can only be proved assuming the existence (or the consistency of
the existence) of large cardinals like inaccessible or Mahlo cardinals. These theorems show that the
existence of some well ordered models of a local sentence ϕ (a binary relation symbol is here assumed
to belong to the signature of ϕ and to be interpreted by a linear order in every model of ϕ) is equivalent
to the existence of some finite model of ϕ, generated by some particular kind of indiscernibles, like
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special, remarkable or monotonic ones. In particular, a local sentence ϕ has a model of order type ω if
and only if it has a finite model generated by Nϕ special indiscernibles (where Nϕ is a positive integer
depending on ϕ), and a similar result establishes a connection between the existence of a model of
order type α (where α is an ordinal < ωω) and the existence of a finite model (of another local sentence
ϕα) generated by semi-monotonic indiscernibles [FR96].

These theorems provide some decision algorithms which show the decidability of the following problem:
(P1) “For a given local sentence ϕ and an ordinal α < ωω, has ϕ a model of order type α ?”

These results look like Büchi’s one about the decidability of the monadic second order theory of one
successor over the integers [Büc62], and even more like its extension: the decidability of the monadic
second order theory of the structure (α,<) for a countable ordinal α.
In order to prove this result, Büchi studied in the sixties the class of ω-languages accepted by finite
automata with what is now called Büchi acceptance condition. He showed that an ω-language, i.e. a set
of words of length ω over a finite alphabet, is accepted by a finite automaton with the Büchi acceptance
condition if and only if it is defined by a monadic second order sentence and he found algorithms to
give such an automaton from the monadic second order sentence. Hence the decision problem cited
above was reduced to the decidability of the emptiness problem for Büchi automata which is easily
shown to be decidable, [Büc62,Tho90]. The equivalence between definability by monadic second order
sentences and acceptance by finite automata, which is also true for languages of finite words [Büc60],
has then been extended to α-languages, i.e. languages of words of length α, where α is a countable
ordinal ≥ ω [BS73]. This led to similar decision algorithms showing that the monadic second order
theory of the structure (α,<) is decidable.

In order to compare the power of the above decidability results concerning local or monadic sentences,
it is now interesting to compare the expressive power of monadic sentences and of local sentences, and
then to consider languages defined by these sentences.
Ressayre introduced locally finite languages which are defined by local sentences. local sentences are
first order, but they define locally finite languages via existential quantifications over relations and
functions which appear in the local sentence. These second order quantifications are more general than
the monadic ones:

– When finite words are considered, each regular language is locally finite, [Res88], each quasirational
language is locally finite, and many context-free as well as non-context-free languages are locally
finite [Fin01a].

– Each regular ω-language is a locally finite ω-language, and there exist locally finite ω-languages
which are not regular, [Fin89,Fin01a].

– This is extended to languages of transfinite length words: when α is an ordinal < ωω, an α-language
accepted by a Büchi automaton is also defined by a local sentence [Fin01a].

Thus the class LOCα of locally finite α-languages, for ω ≤ α < ωω, is a strict extension of the class
REGα of regular α-languages (defined by monadic second order sentences). Then the following question
naturally arises:

How large is the extension of REGα by LOCα ?

A way to attack this problem is to study the topological complexity of α-languages in each of these
classes, and firstly to locate them with regard to the Borel and projective hierarchies. We restrict
here our study to ω-languages and then it is well known that all regular ω-languages are boolean
combinations of Σ0

2-sets hence ∆0
3-sets, [Tho90,PP04].

We shall see in this paper that locally finite ω-languages extend far beyond regular ω-languages: the
class LOCω meets all finite levels of the Borel hierarchy, contains some Borel sets of infinite rank and
even some analytic but non-Borel sets.

This will show that the decision algorithm for the sentences in the form ∃R1 . . .∃Rkϕ, where ϕ is
local in the signature S(ϕ) = {<,R1, . . . Rk} and R1, . . . Rk are relations or n-ary function symbols
with n ≥ 1, provides a very large extension, for α < ωω, of Büchi’s result about the decidability
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of the monadic second order theory of (α,<). Moreover, at least for α = ω, the algorithm for local
sentences (given by Theorem 2.7 below) is of much lower complexity than the corresponding algorithm
for monadic second order sentences.

The question of the topological complexity of locally finite ω-languages is also motivated by the general
project of studying the logical definability of classes of formal languages of (finite or) infinite words,
(or of relational structures like graphs). This research area is now called “descriptive complexity”, see
[Pin96,Tho97] for a survey about this field of research.
The study of topological complexity of locally finite ω-languages was also asked by Simonnet [Sim92]
and also by Duparc, Finkel, and Ressayre in [DFR01] where they asked for extensions of the Wagner
hierarchy of regular ω-languages.

The paper is organized as follows.
In section 2 we review the definitions and some properties of local sentences and locally finite (omega)
languages. Then we give some examples of locally finite ω-languages.
In section 3 we study topological properties of locally finite ω-languages. Firstly we show that LOCω
is included in the class of analytic sets. Duparc studied recently the Wadge hierarchy which is a great
refinement of the Borel hierarchy. He gave a normal form for Borel sets of finite rank in each Wadge
degree, using operations over sets of finite and infinite words [Dup01]. Using Duparc’s operation of
exponentiation of sets, we prove that the class LOCω meets all finite levels of the Borel hierarchy.
Then we show that there exist some locally finite ω-languages which are Borel sets of infinite rank,
and some others which are analytic but non-Borel sets.

2 Review of local sentences and languages

2.1 Definitions and properties of local sentences

In this paper the (first order) signatures are finite, always contain one binary predicate symbol =
for equality, and can contain both functional and relational symbols. The terms, open formulas and
formulas are built in the usual way.

When M is a structure in a signature Λ and X ⊆ |M |, we define:
cl1(X,M) = X ∪

⋃
{f n−ary function of Λ } fM (Xn) ∪

⋃
{a constant of Λ } a

M

cln+1(X,M) = cl1(cln(X,M),M) for an integer n ≥ 1
and cl(X,M) =

⋃
n≥1 cl

n(X,M) is the closure of X in M .

Let us now define local sentences. We shall denote S(ϕ) the signature of a first order sentence ϕ, i.e.
the set of non-logical symbols appearing in ϕ.

Definition 2.1 A first order sentence ϕ is local if and only if:

a) M |= ϕ and X ⊆ |M | imply cl(X,M) |= ϕ
b) ∃n ∈ N such that ∀M , if M |= ϕ and X ⊆ |M |, then cl(X,M) = cln(X,M), (closure in models of

ϕ takes at most n steps).

Notation. For a local sentence ϕ, let nϕ be the smallest integer n ≥ 1 verifying b) of the above
definition.

Remark 2.2 Because of a) of Definition 2.1, a local sentence ϕ is always equivalent to a universal
sentence, so we may assume that ϕ is universal.

Let us now state first properties of local sentences.

Theorem 2.3

(a) The set of local sentences is recursively enumerable.
(b) It is undecidable whether an arbitrary sentence ϕ is a local one.
(c) It is undecidable whether an arbitrary universal sentence ϕ is a local one.
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(d) It is undecidable whether an arbitrary universal sentence ϕ, such that S(ϕ) contains only two unary
function symbols, is a local one.

(e) It is undecidable whether an arbitrary universal sentence ϕ, such that S(ϕ) contains only one binary
function symbol, is a local one.

Items (a) and (b) are results of Ressayre, see [Fin01a]. The proof of item (b) relies on Church’s Theorem:
it is undecidable to determine whether an arbitrary first order sentence ϕ is consistent. But one can
prove in the same way items (c), (d), and (e) because it is undecidable to determine whether an
arbitrary universal first order sentence ϕ is consistent, even if we assume that the signature of ϕ
contains only two unary function symbols or one binary function symbol [BGG97].

Per contra to these negative results, there exists a “recursive presentation” up to logical equivalence
of all local sentences.

Theorem 2.4 (Ressayre, see [Fin01a]) There exist a recursive set L of local sentences and a re-
cursive function F such that:

1) ψ local ←→ ∃ψ′ ∈ L such that ψ ≡ ψ′.
2) ψ′ ∈ L −→ nψ′ = F(ψ′).

The elements of L are the ψ ∧ Cn, where ψ run over the universal formulas and Cn run over the
universal formulas in the signature S(ψ) which express that closure in a model takes at most n steps.
ψ∧Cn is local and nψ∧Cn ≤ n. Then we can compute nψ∧Cn , considering only finite models of cardinal
≤ m, where m is an integer depending on n. And each local sentence ψ is equivalent to a universal
formula θ, hence ψ ≡ θ ∧ Cnψ .

We shall restrict now our attention to local sentences with a binary predicate < in their signature
which is interpreted by a linear ordering in all of their models.

Let us now recall a fundamental result, the stretching theorem for local sentences, which shows the
existence of remarkable connections between the finite and the infinite model theory of local sentences.
Below, semi-monotonic, special, and monotonic indiscernibles are particular kinds of indiscernibles
which satisfy some extra properties; they are precisely defined in [FR96].

Theorem 2.5 ([FR96]) For each local sentence ϕ there exists a positive integer Nϕ, which can be
effectively computed, such that

(A) ϕ has arbitrarily large finite models if and only if ϕ has an infinite model if and only if ϕ has a
finite model generated by Nϕ indiscernibles.

(B) ϕ has an infinite well ordered model if and only if ϕ has a finite model generated by Nϕ semi-
monotonic indiscernibles.

(C) ϕ has a model of order type ω if and only if ϕ has a finite model generated by Nϕ special indis-
cernibles.

(D) ϕ has well ordered models of unbounded order types in the ordinals if and only if ϕ has a finite
model generated by Nϕ monotonic indiscernibles.

Remark 2.6 In the above theorem the integer Nϕ can be effectively computed from nϕ and q where
ϕ = ∀x1 . . .∀xqθ(x1, . . . , xq) and θ is an open formula. Let v(ϕ) be the maximum number of variables
of terms of complexity ≤ nϕ + 1 and v′(ϕ) be the maximum number of variables of an atomic formula
involving terms of complexity ≤ nϕ + 1 then

Nϕ = max{3v(ϕ); v′(ϕ) + v(ϕ); q.v′(ϕ)}

Thus the stretching theorem implies the existence of decision procedures for several problems. Let us
remark that the set of local sentences is not recursive but we can consider that the algorithms given
by the following theorem are applied to local sentences in the recursive set L given by Proposition 2.4.
In particular ϕ is given with the integer nϕ.

Theorem 2.7 ([FR96]) It is decidable, for a given local sentence ϕ, whether

(1) ϕ has arbitrarily large finite models.
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(2) ϕ has an infinite model.
(3) ϕ has an infinite well ordered model.
(4) ϕ has a model of order type ω.
(5) ϕ has well ordered models of unbounded order types in the ordinals.

Remark 2.8 As indicated by the referee of this paper, “ the above theorem is still true even the
local sentences were not assumed to be in the recursive set L. Given an arbitrary local sentence, the
algorithm could begin by searching for an equivalent sentence in L (together with a formal proof of
the equivalence) and then, when it finds one, apply the algorithm to this sentence in L. Of course this
would be only a partial recursive function, defined on the class of local sentences, and its complexity
would be much worse than the complexity given below, but it is still an algorithm”.

Theorem 2.7 follows directly from the stretching Theorem 2.5. For instance Theorem 2.5 (C) states
that a local sentence ϕ has a model of order type ω iff it has a finite model generated by Nϕ special
indiscernibles, where Nϕ is a positive integer effectively computable from ϕ and nϕ. Thus the existence
of a model of order type ω of ϕ can be checked by considering only models whose cardinals are bounded
by an integer depending on nϕ and Nϕ (because closure in models of ϕ takes at most nϕ steps).
A similar argument is used to prove other items of Theorem 2.7.

The question of the complexity of these decidable problems naturally arises. It is easy to see that the
problems (1)− (5) which are shown to be decidable by Theorem 2.7 are in the class

NTIME(2O(n.log(n)))

when the algorithms work with input (ϕ,Nϕ).
Using non-determinism a Turing machine may guess a finite structure M of signature S(ϕ) generated
in at most nϕ steps by Nϕ elements y1, . . . yNϕ . Then, assuming ϕ = ∀x1 . . .∀xqθ(x1, . . . , xq) where θ is
an open formula, the Turing machine checks that θ(x1, . . . , xq) holds for all x1 . . . xq in M , and that the
elements y1, . . . yNϕ are indiscernibles (respectively, semi-monotonic, special, monotonic, indiscernibles)
in M .
On the other side Büchi showed that one can decide whether a monadic second order formula of S1S
is true in the structure (ω,<). But for a formula of size n his procedure might run in time

22.
.2
n︸ ︷︷ ︸

O(n)

see [Büc62,Saf89] for more details. Moreover it has been proved by Meyer that one cannot essentially
improve this result: the monadic second order theory of the structure (ω,<) is not elementary recursive,
[Mey75].
Notice that the complexity of Büchi’s algorithm for monadic sentences is in terms of the length of the
formula and the complexity of the algorithms for local sentences is in terms of the length of a local
sentence ϕ and the corresponding integer Nϕ.
But a sentence in L is of the form ϕ = ψ ∧ Cn, where ψ is a universal sentence and Cn is a universal
sentence in the signature S(ψ) which expresses that closure in a model takes at most n steps. The
length of Cn is greater than n and nϕ = nψ∧Cn ≤ n. So nϕ ≤ |ϕ| where |ϕ| is the length of ϕ and we
can easily get from the equality given in Remark 2.6 that Nϕ = O(|ϕ|3).
Thus the algorithms for local sentences given by Theorem 2.7 are of much lower complexity than the
algorithm for decidability of S1S. This is remarkable because the expressive power of local sentences
is also greater than the expressive power of monadic second order sentences.

Recall also that there is an extension of item (C) of the stretching Theorem 2.5 for ordinals α < ωω

from which we can infer other decidability results.

Theorem 2.9 ([FR96]) To every local sentence ϕ and every ordinal α such that ω ≤ α < ωω one
can associate by an effective procedure a local sentence ϕα, a unary predicate symbol P being in the
signature S(ϕα), such that the following equivalence holds:

(Cα) ϕ has a well ordered model of order type α if and only if ϕα has a finite model M generated by Nϕα
semi-monotonic indiscernibles in PM .
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Theorem 2.10 ([FR96]) It is decidable, for a given local sentence ϕ and a given ordinal α < ωω ,
whether ϕ has a model of order type α.

There are also other variations of the stretching theorem involving large cardinal axioms, see [FR96].

2.2 Definitions and first properties of local languages

Let us now introduce notations for words. Let Σ be a finite alphabet whose elements are called letters.
A finite non-empty word over Σ is a finite sequence of letters: x = a1a2 . . . an where ∀i ∈ [1;n] ai ∈ Σ.
We shall denote x(i) = ai the ith letter of x and x[i] = x(1) . . . x(i) for i ≤ n. The length of x is |x| = n.
The empty word will be denoted by λ and has 0 letters. Its length is 0. The set of finite words over Σ
is denoted Σ?. Σ+ = Σ? − {λ} is the set of non-empty words over Σ. A (finitary) language L over Σ
is a subset of Σ?. Its complement (in Σ?) is L− = Σ? − L. The usual concatenation product of u and
v will be denoted by u.v or just uv. For V ⊆ Σ?, we denote V ? = {v1 . . . vn | n ∈ N and ∀i ∈
[1;n] vi ∈ V }.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1a2 . . . an . . ., where ∀i ≥ 1 ai ∈ Σ.
When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . . and σ[n] = σ(1)σ(2) . . . σ(n) the finite
word of length n, prefix of σ. The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language
over an alphabet Σ is a subset of Σω. For V ⊆ Σ?, V ω = {σ = u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V } is
the ω-power of V . For a subset A ⊆ Σω, the complement of A (in Σω) is Σω − A denoted A−. The
concatenation product is extended to the product of a finite word u and an ω-word v: the infinite word
u.v is then the ω-word such that: (u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.

The prefix relation is denoted v: the finite word u is a prefix of the finite word v (respectively, the
infinite word v), denoted u v v, if and only if there exists a finite word w (respectively, an infinite
word w), such that v = u.w.

A word over Σ may be considered as a structure in the following usual manner: Let Σ be a finite
alphabet. We denote Pa a unary predicate for each letter a ∈ Σ and ΛΣ the signature {<, (Pa)a∈Σ}.
Let σ be a finite word over the alphabet Σ, |σ| is the length of the word σ. We may write that
|σ| = {1, 2, . . . , |σ|}. σ is identified with the structure (|σ|, <σ, (Pσa )a∈Σ) of signature ΛΣ where
Pσa = {1 ≤ i ≤ |σ| | the ith letter of σ is an a}.
In a similar manner if σ is an ω-word over the alphabet Σ, then ω is the length of the word σ and we
may write |σ| = {1, 2, 3, . . .}. σ is identified to the structure (|σ|, <σ, (Pσa )a∈Σ) of signature ΛΣ where
Pσa = {1 ≤ i < ω | the ith letter of σ is an a}.

Definition 2.11 Let Σ be a finite alphabet and L ⊆ Σ? be a language of finite words (respectively,
L ⊆ Σω be a language of infinite words) over the alphabet Σ. Then L is a locally finite language
(respectively, ω-language) ←→ there exists a local sentence ϕ in a signature Λ ⊇ ΛΣ such that σ ∈ L
iff ∃ finite M , (respectively, ∃M of order type ω) M |= ϕ and M |ΛΣ = σ (where M |ΛΣ is the reduction
of M to the signature ΛΣ).
We then denote L = LΣ(ϕ) (respectively, L = LΣω (ϕ)), and to simplify, when there is no ambiguity,
L = L(ϕ) (respectively, L = Lω(ϕ)) the locally finite language (respectively, ω-language) defined by
ϕ.
The class of locally finite languages will be denoted LOC.
The class of locally finite ω-languages will be denoted LOCω.

The empty word λ has 0 letters. It is represented by the empty structure. Recall that if L(ϕ) is a
locally finite language then L(ϕ)− {λ} and L(ϕ) ∪ {λ} are also locally finite [Fin01a].

Remark 2.12 The notion of locally finite language is very different from the usual notion of local
language which represents a subclass of the class of rational languages. But from now on, as in [Fin01a],
things being well defined and made precise, we shall call simply local languages the locally finite
languages.

Let us state the following decidability results.
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Theorem 2.13 It is decidable, for a local sentence ϕ, given with the integer nϕ, and an alphabet Σ,
whether
(1) The local language LΣ(ϕ) is empty.
(2) The local language LΣ(ϕ) is infinite.
(3) The local ω-language LΣω (ϕ) is empty.

(1) follows directly from the fact that if a local sentence ϕ has a finite model then it has a model
whose cardinal is bounded by a positive integer depending only on arities of the function symbols of
the signature of ϕ and on nϕ.

(2) and (3) follows items (1) and (4) of theorem 2.7.

(3) states that the emptiness problem for local ω-languages is decidable. It relies on a remarkable
analogue to the property: “a Büchi language is non-empty iff it contains an ultimately periodic word,
i.e. an ω-word in the form u.vω where u and v are finite words”.
When local ω-languages are considered, this property becomes: “a local ω-language is non-empty iff
it contains an ω-word which is the reduction, to the signature of words, of an ω-model generated by
special indiscernibles”.

2.3 Examples of local ω-languages

Example 2.14 ([Fin04]) The ω-language which contains only the word σ = abab2ab3ab4 . . . is a
local ω-language over the alphabet {a, b}.
Recall that for any family L of finitary languages, the ω-Kleene closure of L, is:

ω−KC(L) = {
⋃

1≤i≤n

Ui.V
ω
i | ∀i ∈ [1, n] Ui, Vi ∈ L}

It is well known that the class REGω of regular ω-languages (respectively, the class CFω of context
free ω-languages) is the ω-Kleene closure of the family REG of regular finitary languages (respectively,
of the family CF of context free finitary languages), [Tho90,Sta97].

We showed that a similar characterization does not hold for local languages.

Theorem 2.15 ([Fin04]) The ω-Kleene closure of the class LOC of finitary local languages is strictly
included in the class LOCω of local ω-languages.

Then we easily derive the following example because every regular finitary language is local [Res88].

Example 2.16 ([Fin01a]) Every regular ω-language is a local ω-language, i.e. REGω ⊆ LOCω.

Since numerous context free languages are local [Fin01a], CFω = ω−KC(CF ) implies that many
context free ω-languages are local. The problem whether every context free ω-language is local is still
open but by Theorem 2.15, CF ⊆ LOC would imply that CFω ⊆ LOCω.

Example 2.17 The ω-languages Uω and U.aω, where U = {an2
bn

2
cn

2 | n ≥ 1} is a local finitary
language over the alphabet {a, b, c}, [Fin01a], are examples of local but non context free ω-languages.

Example 2.18 ([Fin04]) The ω-language L = {0n1p2ω | p ≤ 2n} over the alphabet Σ = {0, 1, 2}
is local because the finitary language {0n1p | p ≤ 2n} is local [Fin01a]. But the ω-language A =
{0n1p2ω | p > 2n} over the same alphabet Σ is not local, [Fin04]. From this we can easily deduce that
the complement of L is not a local ω-language.

We shall construct some other local ω-languages in the sequel, see for example the construction of
local ω-languages which are Borel of infinite rank in section 3.3, or analytic but non Borel in section
3.4.

Now we recall some closure properties of the class LOCω which allow us to generate many other local
ω-languages from the known ones. The class LOCω is closed under union, left concatenation with local
finitary languages, λ-free substitution of local (finitary) languages, λ-free morphism, [Fin04].
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3 Topological complexity of local ω-languages

3.1 Borel and projective hierarchies

We assume the reader to be familiar with basic notions of topology which may be found in [Kur66,
Mos80,Kec95].

Topology is an important tool for the study of subsets of a set Σω, where Σ is a finite or infinite set.
We study here local ω-languages which are defined over a finite alphabet. Thus we shall restrict our
study to subsets of spaces in the form Σω, where Σ is a finite set, called here an alphabet, having at
least two elements (because the case of an alphabet having a single letter is trivial). We shall consider
Σω as a topological space with the Cantor topology. The open sets of Σω are the sets in the form
W.Σω, where W ⊆ Σ?.

Define now the following classes of the Borel Hierarchy:

Definition 3.1 The classes Σ0
n and Π0

n of the Borel Hierarchy on the topological space Σω are defined
as follows:
Σ0

1 is the class of open subsets of Σω.
Π0

1 is the class of closed subsets of Σω.
And for any integer n ≥ 1:
Σ0
n+1 is the class of countable unions of Π0

n-subsets of Σω.
Π0
n+1 is the class of countable intersections of Σ0

n-subsets of Σω.
The Borel Hierarchy is also defined for transfinite levels. The classes Σ0

α and Π0
α, for a countable

ordinal α, are defined in the following way:
Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<αΠ0

γ .
Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<αΣ0

γ .

Recall some basic results about these classes, [Mos80]:

Theorem 3.2

(a) Σ0
α ∪Π0

α ( Σ0
α+1 ∩Π0

α+1, for each countable ordinal α ≥ 1.
(b)

⋃
γ<αΣ0

γ =
⋃
γ<αΠ0

γ ( Σ0
α ∩Π0

α, for each countable limit ordinal α.
(c) A set W ⊆ Σω is in the class Σ0

α iff its complement is in the class Π0
α.

(d) Σ0
α −Π0

α 6= ∅ and Π0
α −Σ0

α 6= ∅ for every countable ordinal α ≥ 1.

We shall say that a subset of Σω is a Borel set of rank α, for a countable ordinal α, iff it is in Σ0
α ∪Π0

α

but not in
⋃
γ<α(Σ0

γ ∪Π0
γ).

The class of Borel subsets of Σω is strictly included in the class of analytic subsets of Σω which we
now define.

Definition 3.3 A subset A of Σω is in the class Σ1
1 of analytic sets iff there exists another finite set

Y and a Borel subset B of (Σ × Y )ω such that x ∈ A↔ ∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) is
the infinite word over the alphabet Σ × Y such that (x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

Remark 3.4 In the above definition we could take B in the class Π0
2. Moreover analytic subsets of

Σω are the projections of Π0
1-subsets of Σω × ωω, where ωω is the Baire space, [Mos80].

Recall that a set F ⊆ Σω is said to be a Σ0
α (respectively Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω,

E is in Σ0
α (respectively Π0

α, Σ1
1) iff there exists a continuous function f : Y ω → Σω, such that

E = f−1(F ).

Let us now recall the definition of the arithmetical hierarchy of ω-languages, see for example [Sta97]
or [Mos80].
Let Σ be a finite alphabet. An ω-language L ⊆ Σω belongs to the class Σn if and only if there exists
a recursive relation RL ⊆ (N)n−1 ×Σ? such that

L = {σ ∈ Σω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}
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where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language L ⊆
Σω belongs to the class Πn if and only if its complement Σω − L belongs to the class Σn.
The inclusion relations that hold between the classes Σn and Πn are the same as for the corresponding
classes of the Borel hierarchy and the classes Σn and Πn are strictly included in the respective classes
Σ0
n and Π0

n of the Borel hierarchy.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the second Π-class) lead
beyond the arithmetical hierarchy, to the analytical hierarchy of ω-languages. The first class of the
analytical hierarchy of ω-languages is the class Σ1

1 (lightface). An ω-language L ⊆ Σω belongs to
the class Σ1

1 if and only if there exists a recursive relation RL ⊆ (N)× {0, 1}? ×Σ? such that:

L = {σ ∈ Σω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Thus an ω-language L ⊆ Σω is in the class Σ1
1 iff it is the projection of an ω-language over the

alphabet {0, 1} ×Σ which is in the class Π2 of the arithmetical hierarchy.

Remark 3.5 Σ1
1 -subsets of Σω are also projections of Π1-subsets of Σω × ωω, where ωω is the Baire

space, [Mos80].

It turns out that an ω-language L ⊆ Σω is in the class Σ1
1 iff it is accepted by a non deterministic

Turing machine reading ω-words with a Muller acceptance condition. (A Turing machine T is given
with a set F of designated state sets which are particular subsets of its finite set K of states; then an ω-
word σ is accepted by T iff there exists a run of T reading σ for which the set of states entered infinitely
often by T during this run is in F). This class is denoted NT (inf,=) (where (inf,=) indicates the
Muller condition) in [Sta97] and also called the class of recursive ω-languages REKω.1

With the above definitions, we can state the following:

Theorem 3.6 The class LOCω is strictly included in the class Σ1
1 .

Proof. Let LΣω (ϕ) be a local ω-language defined by the local sentence ϕ. We may replace the constant
and function symbols of S(ϕ) by relation symbols in a usual manner. For example we replace an n-
ary function f by a (n+1)-ary relation Rf and we express by a Π0

2 formula that the relation Rf is
functional:

∀x1 . . . xnzz
′∃y[Rf (x1, . . . , xn, y) ∧ (Rf (x1, . . . , xn, z) ∧Rf (x1, . . . , xn, z

′)→ z = z′)]

Then from ϕ we obtain another first order sentence which is not universal and not local but which
defines the same ω-language when reductions of models to the signature ΛΣ of words are considered.
Let us call ψ(R1, . . . , Rk) the resulting first order sentence in the signature ΛΣ ∪ {R1, . . . , Rk} where
R1, . . . , Rk are relation symbols of arities n1, . . . , nk.

An ω-model of ψ(R1, . . . , Rk) may be viewed as an element of:

Σω × 2ω
n1 × 2ω

n2 × . . .× 2ω
nk

because any n-ary relation R over ω can be identified with its characteristic function, i.e. a function
ωn → 2 = {0, 1} which associates 1 to an n-tuple (x1, . . . , xn) iff R(x1, . . . , xn).

But Σω × 2ω
n1 × 2ω

n2 × . . .× 2ω
nk is a classical recursively presented Polish space (generalizing Σω)

and it is well known [Mos80] that a subset of this space which is defined by a first order sentence where
the quantifiers run only over the integers of ω is an arithmetical subset of Σω×2ω

n1 ×2ω
n2 × . . .×2ω

nk .

And LΣω (ϕ) is the projection of this arithmetical set onto Σω and it is well known that such a projection
of an arithmetical set is a Σ1

1 -subset of Σω.

1 In another presentation, as in [Rog67], the recursive ω-languages are those which are in the intersection
Σ1 ∩Π1.
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Remark 3.7 Another way to show this result is to consider a non deterministic Turing machine T
which accepts Lω(ϕ). Let then σ be an ω-word over Σ. The non determinism of T is used to guess an
expansion of the word σ (considered as a structure of signature ΛΣ) to a structure in the signature
S(ϕ) which is coded by an ω-word. Then the Turing machine checks whether this expansion is a model
of ϕ. This can be checked with a Muller acceptance condition. If such a model exists, the word σ is in
Lω(ϕ). And if no such model exists, the word σ is not in Lω(ϕ). Then an ω-word σ over Σ is in Lω(ϕ)
iff there exists an accepting run of T on σ.

The strictness of the inclusion is easy to prove. The ω-language A = {0n1p2ω | p > 2n} over the
alphabet Σ = {0, 1, 2}, given in Example 2.18, is not local but it is easily shown to be in the class Σ1

1

and even in the class Σ0
2 . �

The inclusion Σ1
1 ⊂ Σ1

1 is trivial and well known. Thus, when studying local ω-languages, we shall
not have to consider non Σ1

1-sets.

Corollary 3.8 Every local ω-language over a finite alphabet Σ is an analytic subset of Σω.

By Suslin’s Theorem [Kec95, page 226], an analytic subset of Σω is either countable or has the con-
tinuum power. Then we can infer the following:

Corollary 3.9 Let Σ be a finite alphabet. Every local ω-language LΣω (ϕ) over the alphabet Σ is either
countable or has the continuum power.

3.2 Borel sets of finite rank and local ω-languages

We shall prove that the class LOCω meets all finite levels of the Borel hierarchy. The proof is very
similar to our corresponding proof for the class of context free ω-languages in [Fin01b]. We shall use
recent results of Duparc who studied the Wadge hierarchy which is a great refinement of the Borel
hierarchy. He gave an inductive construction of a Borel set of every given degree of this hierarchy,
introducing operations over sets of finite or infinite words over an alphabet Σ, called conciliating sets
in [Dup95a,Dup01]. So we shall sometimes consider subsets of Σ? ∪ Σω = Σ≤ω, for an alphabet Σ,
and the correspondence A→ Ad where for A ⊆ Σ≤ω and d a letter not in Σ:

Ad = {x ∈ (Σ ∪ {d})ω | x(/d) ∈ A}

where x(/d) is the sequence obtained from x when removing every occurrence of the letter d.

We shall only use in this paper Duparc’ s operation of exponentiation:

A→ A∼

which produces some sets of higher complexity, in the following sense:

Theorem 3.10 (Duparc [Dup01] ) Let n be an integer ≥ 1 and A ⊆ Σ≤ω.
If Ad ⊆ (Σ ∪ {d})ω is a Σ0

n-complete (respectively, Π0
n-complete) set then (A∼)d is a Σ0

n+1-complete
(respectively, Π0

n+1-complete) set.

Let us now introduce Duparc’s operation of exponentiation on sets.

Definition 3.11 Let Σ be a finite alphabet and �/∈ Σ, let X = Σ ∪{�}. Let x be a finite or infinite
word over the alphabet X = Σ ∪ {�}.
Then x� is inductively defined by:
λ� = λ,
and for a finite word u ∈ (Σ ∪ {�})?:
(u.a)� = u�.a, if a ∈ Σ,
(u. �)� = u� with its last letter removed, if |u�| > 0,
(u. �)� = λ, if |u�| = 0,
and for u infinite:
(u)� = limn∈ω(u[n])�, where, given βn and v in Σ?,
v v limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.
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Remark 3.12 For x ∈ X≤ω, x� denotes the string x, once every � occuring in x has been “evaluated”
to the back space operation (the one familiar to your computer!), proceeding from left to right inside
x. In other words x� = x from which every interval of the form “a � ” (a ∈ Σ) is removed.

For example if u = (a �)n, for n an integer ≥ 1, or u = (a �)ω, or u = (a ��)ω, then (u)� = λ. If
u = (ab �)ω then (u)� = aω and if u = bb(� a)ω then (u)� = b.

We define now the operation A→ A∼ of exponentiation of conciliating sets:

Definition 3.13 For A ⊆ Σ≤ω and � /∈ Σ, let

A∼ = {x ∈ (Σ ∪ {�})≤ω | x� ∈ A}.

We now prove that the class LOCω is closed under this operation ∼.

Proposition 3.14 If A ⊆ Σω is in LOCω, then A∼ ⊆ (Σ ∪ {�})ω is also in LOCω.

Proof. We remark that an ω-word σ ∈ A∼ may be considered as an ω-word σ� ∈ A to which we
possibly add, before the first letter σ�(1) of σ� (respectively between two consecutive letters σ�(n)
and σ�(n+ 1) of σ�), a finite word w1 (respectively wn+1 ) where:
wn+1 belongs to the context free (finitary) language C1 generated by the context free grammar with
the following production rules:
S → aS � S with a ∈ Σ and S → λ where λ is the empty word.
This language C1 corresponds to words where every letter of Σ has been erased after using the back
space operation.
And w1 belongs to the finitary language C2 = (C1.(�)?)?. This language corresponds to words where
every letter of Σ has been removed after using the back space operation and this operation may be
has been used also when there was not any letter to erase.
Then for A ⊆ Σω, the ω-language A∼ ⊆ (Σ ∪ {�})ω is obtained by substituting in A the language
a.C1 for each letter a ∈ Σ, and then making a left concatenation by the language C2.

Now we easily show that the language C1 is local, defined by the following sentence ϕ in the signature
S(ϕ) = {<, (Pa)a∈(Σ∪{�}), s} , where s is a unary function symbol. ϕ is the conjunction of:

– ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x)↔ x = y) ∧ ((x ≤ y ∧ y ≤ z)→ x ≤ z)]
(this means: “ < is a linear order ”),

– ∀x[(
∨
a∈(Σ∪{�}) Pa(x)) ∧ (

∧
(a,a′)∈(Σ∪{�})2,a6=a′ ¬(Pa(x) ∧ Pa′(x)))]

(this means: “(Pa)a∈(Σ∪{�}) form a partition ”),
– ∀x[Pa(x)→ (x < s(x) ∧ P�(s(x))], for each a ∈ Σ,
– ∀xz[(Pa(x) ∧ Pb(z) ∧ x < z)→ (s(x) < z ∨ s(z) < s(x))], for all a, b ∈ Σ,
– ∀x[(

∨
a∈Σ Pa(x))↔ P�(s(x))],

– ∀x[s(s(x)) = x].

ϕ is equivalent to a universal formula and closure in its models takes only one step because ϕ →
∀x[s(s(x)) = x]. Then ϕ is a local sentence and we easily check that L(ϕ) = C1 (the function s is used
to associate a letter a ∈ Σ with the eraser � which erases a). Hence C1 is a local language and so is
a.C1 for a ∈ Σ. But C2 = (C1.(�)?)? and the class LOC is closed under concatenation product and
star operation, [Fin01a]. Thus the language C2 is also local.

LOCω is closed under substitution of local finitary languages and left concatenation by local finitary
languages [Fin04], therefore if A ⊆ Σω is a local ω-language then the ω-language A∼ is a local
ω-language. �

Consider now subsets of Σ≤ω in the form A ∪ B, where A = LΣ(ϕ) is a local finitary language and
B = LΣω (ψ) is a local ω-language. Remark that A and B might not be defined by the same sentence.
Let us prove the following:

Proposition 3.15 If C = A ∪ B, where A ⊆ Σ? is in LOC and B ⊆ Σω is in LOCω, then C∼ is
also the union of a local finitary language and a local ω-language over the alphabet Σ ∪ {�}.
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Proof. Let A ⊆ Σ? be a local finitary language and let B ⊆ Σω be a local ω-language. It follows from
the definition of the operation A → A∼ that if C = A ∪ B then C∼ = A∼ ∪ B∼. But if B = LΣω (ψ),
where ψ is a local sentence, then, by Proposition 3.14, there exists a local sentence ψ1 such that
B∼ = L

Σ∪{�}
ω (ψ1).

Consider now the set A∼ ⊆ (Σ ∪ {�})≤ω: it is constituted of finite and infinite words. Let h be the
substitution: Σ → P ((Σ ∪ {�})?) defined by a → a.C1 where C1 is the local language defined above.
Then it is easy to see that the finite words of A∼ are obtained by substituting in A the language a.C1
for each letter a ∈ Σ and concatenating on the left by the language C2. But LOC is closed under
substitution and concatenation [Fin01a], so this language is a local language L(ϕ1) defined by a local
sentence ϕ1.

The infinite words in A∼ constitutes the ω-language
L(ϕ1).(C1 − {λ})ω if λ /∈ A, and
L(ϕ1).(C1 − {λ})ω ∪ (C2 − {λ})ω if λ ∈ A,

The languages C2 − {λ} and C1 − {λ} are local. Thus the set of infinite words in A∼ is a local ω-
language Lω(ϕ2) because ω−KC(LOC) ⊆ LOCω by Theorem 2.15. Finally we have got

C∼ = Lω(ψ1) ∪ Lω(ϕ2) ∪ L(ϕ1)
But LOCω is closed under union, [Fin04] hence Lω(ψ1)∪Lω(ϕ2) is a local ω-language. This ends the
proof. �

We have seen above that the correspondence A→ Ad is involved in Theorem 3.10. Hence we shall need
the following proposition.

Proposition 3.16 a) if A ⊆ Σ? is a local language, then Ad is a local ω-language.
b) if A ⊆ Σω is a local ω-language , then Ad is a local ω-language.
c) If A = LΣ(ϕ)∪LΣω (ψ) is the union of a finitary local language and of a local ω-language over the

same alphabet Σ, then Ad is a local ω-language over the alphabet Σ ∪ {d}.
Proof of a). Let A = LΣ(ϕ) be a local finitary language over the alphabet Σ. Let Pd be a new letter
unary predicate symbol and a be a new constant symbol.
Let ϕ′ be the following sentence in the signature S(ϕ′) = S(ϕ) ∪ {Pd, a}, which is the conjunction of
the following formulas:

1. (< is a linear order ),
2. ((Pe)e∈ (Σ∪{d}) form a partition),
3. ∀x1 . . . xj ∈ ¬Pd[ϕ0(x1, . . . , xj)], where ϕ = ∀x1 . . . xjϕ0(x1, . . . , xj) with ϕ0 an open formula,
4. ∀x1 . . . xm ∈ ¬Pd[f(x1, . . . , xm) ∈ ¬Pd], for each m-ary function f of S(ϕ),
5. ¬Pd(c), for each constant c of S(ϕ),
6. ∀x1 . . . xm[

∨
1≤i≤m Pd(xi)→ f(x1, . . . , xm) = min(x1, . . . , xm)], for each m-ary function f of S(ϕ).

7. ∀x[x ≥ a→ Pd(x)].

This sentence is equivalent to a universal one and closure in its models takes at most nϕ + 1 steps. By
construction L(ϕ′) = Ad holds. �

Remark 3.17 We have defined the function f by f(x1, . . . , xm) = min(x1, . . . , xm) when at least
one of the xi was in Pd (see the conjunct numbered 6). In that case the function f is not useful for
defining the local ω-language Ad, but this will imply that closure in models of ϕ′ takes at most
a finite number of steps, because f(x1, . . . , xm) is then equal to one of the xi. This method will be
applied in the construction of most local sentences in the sequel of this paper, where some functions are
somewhere trivially defined (like f(x, y) = x or p(x) = x for a binary function f or a unary function
p) in order to make the sentence local.

Proof of b).
Assume that A = Lω(ϕ) where ϕ is a local sentence and d /∈ Σ.
Ad is defined by the following sentence ψ of signature S(ψ) = S(ϕ)∪{Pd, s}, where Pd is a new unary
predicate symbol and s is a new unary function symbol. ψ is the conjunction of:
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– The same formulas (1) to (6) as in the proof of a),
– ∀x[¬Pd(x)→ s(x) = x],
– ∀x[Pd(x)→ ¬Pd(s(x))],
– ∀xy[(Pd(x) ∧ Pd(y) ∧ x 6= y)→ s(x) 6= s(y)].

This sentence is equivalent to a universal one and closure in its models takes at most nϕ+1 steps (one
applies first the function s and then the functions of S(ϕ)).
In a model M of ψ, it is easy to see that sM is an injective function from PMd into ¬PMd and then, if
M has order type ω , ¬PMd is infinite and induces an ω-word which is a word of Lω(ϕ). So Lω(ψ) =
(Lω(ϕ))d. �

Proof of c).
Let A and B be subsets of Σ≤ω for a finite alphabet Σ. Then we easily see that if C = A ∪ B,
Cd = Ad ∪Bd holds. c) is now an easy consequence of a) and b) because LOCω is closed under finite
union, [Fin04]. �

We can now state the following result:

Theorem 3.18 For each integer n ≥ 1, there exist Σ0
n-complete and Π0

n-complete local ω-languages.

Proof. Consider first S1 (respectively P1) being the following subsets of {0, 1}≤ω: S1 = {x ∈ {0, 1}≤ω |
∃ i x(i) = 1} and P1 = {λ}. Then (S1)d (respectively, (P1)d) are Σ0

1-complete (respectively, Π0
1-

complete).

We can now apply n ≥ 1 times the operation of exponentiation of sets.
More precisely, we define, for a set A ⊆ Σ≤ω:
A∼.0 = A
A∼.1 = A∼ and
A∼.(n+1) = (A∼.n)∼ .

Now apply n times (for an integer n ≥ 1) the operation ∼ (with different new letters �1, �2, �3,. . . ,
�n) to S1 and P1.

By Theorem 3.10, it holds that for an integer n ≥ 1:
(S∼.n1 )d is a Σ0

n+1-complete subset of {0, 1,�1, . . . ,�n, d}.
(P∼.n1 )d is a Π0

n+1-complete subset of {0, 1,�1, . . . ,�n, d}.

It is easy to see that S1 and P1 are in the form L{0,1}(ϕ)∪L{0,1}ω (ψ) where ϕ and ψ are local sentences
(they are in fact unions of a finitary regular language and of a regular ω-language. Then it follows
from Propositions 3.15 and 3.16 that the ω-languages (S∼.n1 )d and (P∼.n1 )d are local. Hence the class
LOCω meets all finite levels of the Borel hierarchy. �

Remark 3.19 For n = 1 and n = 2, we could get some Σ0
n-complete and Π0

n-complete sets by con-
sidering well known examples of regular ω-languages, [Lan69,LT94,PP04], because REGω ⊆ LOCω:
A1 = {α ∈ {0, 1}ω | ∃i α(i) = 1} is Σ0

1-complete,
B1 = {α ∈ {0, 1}ω | ∀i α(i) = 0} is Π0

1-complete,
A2 = {α ∈ {0, 1}ω | ∃<ωi α(i) = 1} is Σ0

2-complete,
B2 = {α ∈ {0, 1}ω | ∃ωi α(i) = 0} is Π0

2-complete,
where ∃<ωi means: “ there exist only finitely many i such that. . . ” , and
∃ωi means: “ there exist infinitely many i such that. . . ”.

Remark 3.20 Reasoning as in [Fin01b] for ω-powers of finitary context free languages, we can prove
a similar result for local languages: for each integer n ≥ 1, there exists a local language Ln such that
(Ln)ω is a Π0

n-complete set.
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3.3 Borel sets of infinite rank and local ω-languages

We are going now to prove that there exist some local ω-languages which are Borel sets of infinite
rank. More precisely:

Theorem 3.21 There exists a local ω-language which is a ∆0
ω-set but not a Borel set of finite rank.

Proof. Recall that we can define the following operation on ω-languages:
Let (Ai)i∈N be a countable infinite family of subsets of Xω for X a finite alphabet containing at least
two letters a and b. Then [Dup01]:

supi∈NAi =
⋃
i∈N

ai.b.Ai

Assume now that each set Ai is a Borel set of finite rank and that for every integer j ≥ 1 there exists
an integer ij such that Aij is of Borel rank greater than j. Then the set supi∈NAi is a Borel set which
is in ∆0

ω = Σ0
ω ∩∆0

ω.
Firstly, it is easy to see that the Borel rank of the set ai.b.Ai is the same as the Borel rank of the set
Ai. Thus the set supi∈NAi =

⋃
i∈N a

i.b.Ai is a Σ0
ω-set because it is a countable union of Borel sets of

finite ranks.
Secondly

⋃
i∈N a

i.b.Ai is the intersection of the sets Bi =
⋃
j 6=i a

j .b.Xω ∪ ai.b.Ai. But for each integer
i the set Bi is the union of two Borel sets of finite rank (the set

⋃
j 6=i a

j .b.Xω = (
⋃
j 6=i a

j .b).Xω is an
open set). Thus supi∈NAi =

⋃
i∈N a

i.b.Ai is a countable intersection of Borel sets of finite rank hence
it is a Π0

ω set.
Moreover the set supi∈NAi is not a Borel set of finite rank because otherwise assume that it is in the
Borel class Σ0

J for an integer J ≥ 1. Then for each i, the language ai.b.Ai would be the intersection of
the open set ai.b.Xω and of supi∈NAi. But each class Σ0

J is closed under finite intersection and then
for each i ∈ N, ai.b.Ai would be in the class Σ0

J . This would imply that, for all i, Ai ∈ Σ0
J also holds

which is in contradiction with the hypothesis.

In order to simplify the following proof, we now introduce a variant of A∼ which was already defined
in [Fin01b]:

Definition 3.22 For A ⊆ Σ≤ω and � /∈ Σ, let X = Σ ∪ {�} and
A≈ = {x ∈ (Σ ∪ {�})≤ω | x� ∈ A},
where x� is inductively defined by:
λ� = λ,
and for a finite word u ∈ (Σ ∪ {�})?:
(u.a)� = u�.a, if a ∈ Σ,
(u. �)� = u� with its last letter removed if |u�| > 0,
(u. �)� is undefined if |u�| = 0,
and for u infinite:
(u)� = limn∈ω(u[n])�, where, given βn and v in Σ?,
v v limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

The only difference between the previous definition and this one is that here (u. �)� is undefined if
|u�| = 0. Recall that if A is a Π0

2-complete subset of Σω, then for each integer n ≥ 1 the set A≈.n is
a Π0

n+2-complete subset of (Σ ∪ {�1, . . . ,�n})ω, [Fin01b]. Then the set supi∈NA
≈.i is a Borel set of

rank ω.

In fact this latter result is true only when countable infinite alphabets are allowed because we see from
the definition of A≈.n that this is a set over the alphabet Σ∪{�1, . . . ,�n}. So if we want to find such
a set in LOCω we have to modify this set by coding the infinite number of erasers �1, . . . ,�n,. . . by
finite words over a finite alphabet. We shall then code the eraser �n by the word a.bn where a and b
are two letters which are not in Σ.

It is easy to see that the resulting set A≈.n will still be a Π0
n+2-complete subset (of (Σ ∪ {a, b})ω ).

The proof is left to the reader.
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Let then A = Lω(ϕ) be a local ω-language over the alphabet Σ. We are going to show that supi∈NA
≈.i

is a local ω-language.

An ω-word of supi∈NA
≈.i is in the form an.b.u where u ∈ A≈.n.

Remark that in such an ω-word, there are only finitely many (codes of) erasers and that the number
of erasers is fixed by the initial segment an.b .

We have now to find a local sentence which defines this ω-language. As in the proof of closure of the
class LOC, [Fin01a], (respectively LOCω, [Fin04]) under substitution by finitary local languages, we
use a unary function I which marks the first letters of the subwords, in order to divide an ω-word into
omega (finite) subwords (the function I will be constant on each such “subword” and I(x) will indicate
the first letter of the subword containing x).
This is expressed by the following sentence θ1 conjunction of:

– “ < is a linear order ”,
– ∀xy[(I(y) ≤ y) ∧ (y ≤ x→ I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) = I(y))].

Every subword will have a last letter (and then it will be finite). We use another unary function e to
designate this last letter. This is expressed by the following sentence θ2 conjunction of:

– ∀x[I(e(x)) = I(x)],
– ∀x[x ≤ e(x)],
– ∀xy[I(x) = I(y)→ (e(x) = e(y))].

The initial segment of the word in the form an.b will be indicated by a unary predicate P0 and a
constant B. Notice that we can assume, without loss of generality, that 0 is not a letter of the alphabet
Σ, so the predicate P0 cannot be a letter predicate. This is expressed by the following sentence θ3
conjunction of:

– ∀xy[P0(x) ∧ ¬P0(y)→ x < y],
– P0(B),
– ∀x[P0(x)→ x ≤ B],
– Pb(B),
– ∀x[P0(x) ∧ x < B → Pa(x)].

We shall say that if a subword on which the function I is constant has length 1 it designates a letter
in P0 or a letter of the alphabet Σ, and otherwise (if such a subword has length > 1) it designates an
eraser a.bn where n is an integer ≥ 1. We use a unary predicate P to indicate the letters in Σ. This is
expressed by the following sentence θ4 conjunction of:

– ∀x[P0(x)→ I(x) = x = e(x)],
– ∀x[P (x)↔ (I(x) = x = e(x) ∧ ¬P0(x))],
– ∀x[P (x)↔

∨
c∈Σ Pc(x)],

– ∀x[I(x) 6= e(x)→ Pa(I(x))],
– ∀x[(I(x) 6= e(x) ∧ x 6= I(x))→ Pb(x)].

We have now to say that if the ω-word begins with an.b the erasers are in the finite set {a.b1, . . . , a.bn}.
We shall use a unary function i which will be injective from each subword into the initial segment
designated by P0; and we add that i is strictly increasing on each subword, this will be useful in the
sequel. This is expressed by the following sentence θ5 conjunction of:

– ∀x[¬P0(x)→ P0(i(x))],
– ∀xy[(I(x) = I(y) ∧ x < y)→ i(x) < i(y)],
– ∀x[P0(x)→ i(x) = x].

(this third conjunct expresses that i is trivially defined on P0).
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Now we want to be able to compare the erasers because an eraser �k= a.bk is allowed to erase another
eraser �j= a.bj if and only if k > j, because of the inductive definition of the sets A≈.n. Then we will
compare each eraser to an initial segment of P0. We use for that purpose another binary function f
such that, for I(x) /∈ P0, f(I(x), .) will be a function from P0 into {y | I(y) = I(x)}. This is expressed
by the following sentence θ6 conjunction of:

– ∀xy[(¬P0(x) ∧ P0(y))→ I(f(I(x), y)) = I(x)],
– ∀xy[P0(x)→ f(x, y) = x],
– ∀xy[I(x) 6= x→ f(x, y) = x],
– ∀xy[¬P0(y)→ f(x, y) = x].

(these three latest conjuncts are used to trivially define the function f when it is not useful for our
purpose, see remark 3.17)

Now we are going to say that f(I(x), .) is strictly increasing, hence also injective, from {z ∈ P0 |
z ≤ i(e(x))} into {y | I(y) = I(x)}. This ensures that i is an injection from {y | I(y) = I(x)}
into {z ∈ P0 | z ≤ i(e(x))} (because i is increasing) and conversely f(I(x), .) is an injection from
{z ∈ P0 | z ≤ i(e(x))} into {y | I(y) = I(x)}. Therefore these sets have the same cardinal because
they are finite and, for x /∈ P0, i is a strictly increasing bijection from {y | I(y) = I(x)} onto an initial
segment of P0. Hence we shall be able to compare two erasers by comparing the images by the function
i of the last elements e(x) and e(y) of the segments which code these erasers.
This is expressed by the following sentence θ7 :

– ∀xyz[(¬P0(x) ∧ P0(y) ∧ P0(z) ∧ y < z ≤ i(e(x))→ f(I(x), y) < f(I(x), z)].

Now we are able to associate an eraser a.bj which really erases with the letter of Σ or the other
eraser of type a.bk , with k < j, which is erased by a.bj .
Indeed we shall use a unary function s which associates the first element of the eraser with the letter
of Σ or the first element of the eraser which is erased.
Let P1 and P2 be two new unary predicate symbols, the first one will indicate the first elements of the
erasers which really erase and the second one will indicate the letters of Σ or the first elements of
the erasers which are erased.
This is expressed by the following sentence θ8, conjunction of:

– ∀x[(P1(x) ∨ P2(x))→ (¬P0(x) ∧ I(x) = x)],
– ∀x[I(x) 6= e(x)→ (P1(I(x)) ∨ P2(I(x)))],
– ∀x[¬(P1(x) ∨ P2(x))→ s(x) = x],
– ∀x[P2(x)↔ P1(s(x))],
– ∀x[s(s(x)) = x],
– ∀x[P2(x)→ x < s(x)].

Remark that some letters of Σ will not be erased by any eraser, hence we have not added the conjunct
∀x[P (x)→ P2(x)].

Now we have to ensure, as already mentioned above, that an eraser erase a letter of Σ or an another
eraser it is allowed to erase.
This is expressed by the following sentence θ9 :

– ∀x[P2(x)→ i(e(x)) < i(e(s(x)))].

More, the operations of erasing have to be done in a good order, i.e. in an ω-word which contains only
the erasers �1, . . . ,�n, the first operation of erasing uses the last eraser �n, then the second one
uses the eraser �n−1, and so on.
Moreover there is not any letter of Σ which is not erased between an eraser and the segment it erases.
This is expressed by the following sentence θ10 conjunction of:

– ∀xy[(P1(x)∧P1(y)∧ x < y)→ ((s(x) < x < s(y) < y)∨ (s(y) < s(x) < x < y ∧ i(e(x)) ≥ i(e(y))))]
– ∀xy[(P1(x) ∧ s(x) < y < x ∧ I(y) = e(y))→ P2(y)].

Consider now an ω-word of the form an.b.u where u ∈ A≈.n. When the operations of erasing (with the
erasers �1, . . . ,�n) have been completed in u, then the resulting word must be in A = Lω(ϕ).
Let P3 be a new unary predicate, we shall say that P3 induces this resulting word.
This is expressed by the following sentence θ11 conjunction of:



Topological complexity of locally finite ω-languages 17

– ∀x[P3(x)↔ (P (x) ∧ ¬P2(x))],
– ∀x1 . . . xj ∈ P3[ϕ0(x1, . . . , xj)], where ϕ = ∀x1 . . . xjϕ0(x1, . . . , xj) with ϕ0 an open formula,
– ∀x1 . . . xm ∈ P3[g(x1, . . . , xm) ∈ P3], for each m-ary function g of S(ϕ),
– ∀x1 . . . xm[

∨
1≤i≤m ¬P3(xi) → g(x1, . . . , xm) = min(x1, . . . , xm)], for each m-ary function g of

S(ϕ),
– P3(c), for each constant c of S(ϕ).

We add the following sentence θ12 which expresses that j is an injective function from P2 into P3,
where j is a new unary function symbol. This will ensure that in an ω-model, P3 is infinite and hence
it induces an ω-word of Lω(ϕ) (which remains when the operations of erasing have been made).
θ12 is the conjunction of:

– ∀x[P2(x)→ P3(j(x))],
– ∀xy[(P2(x) ∧ P2(y) ∧ x 6= y)→ j(x) 6= j(y)],
– ∀x[¬P2(x)→ j(x) = x].

(this latest conjunct is used to define trivially the function j on ¬P2, see remark 3.17).

Now the conjunction
∧

1≤i≤12 θi is a sentence which is equivalent to a universal sentence, because it
is the conjunction of a finite number of universal sentences, and closure in its models takes at most
nϕ + 5 steps:
one takes first closure under the functions I and e, then under s, and again under I and e, then under
i and j, then under f and the functions of S(ϕ).

By construction we check that:

Lω(
∧

1≤i≤12

θi) = supi∈N(Lω(ϕ))≈.i

�

Remark 3.23 The above proof is the first step for the study of local ω-languages which are Borel sets
of infinite rank. Using this first result and other methods, we have constructed some local ω-languages
which are Borel sets of every Borel rank smaller than the Cantor ordinal ε0, [Fin02].
On the other side, Kechris, Marker and Sami proved in [KMS89] that the supremum of the set of
Borel ranks of (lightface) Π1

1 , so also of (lightface) Σ1
1 , sets is the ordinal γ1

2 . This ordinal is strictly
greater than the first non-∆1

2 ordinal, [KMS89]. Thus it holds that ωCK
1 < γ1

2 , where ωCK
1 is the first

non-recursive ordinal. The question is left open to determine completely the set of all Borel ranks of
local ω-languages and in particular to find its supremum which is of course smaller than or equal to
γ1
2 .

3.4 Beyond Borel sets

The question naturally arises: are there local ω-languages which are analytic but not Borel sets?

Theorem 3.24 There exist local ω-languages which are Σ1
1-complete hence non Borel sets.

Proof. We shall use here results about languages of infinite binary trees whose nodes are labelled in
a finite alphabet Σ.
A node of an infinite binary tree is represented by a finite word over the alphabet {l, r} where r means
“right” and l means “left”. Then an infinite binary tree whose nodes are labelled in Σ is identified
with a function t : {l, r}? → Σ. The set of infinite binary trees labelled in Σ will be denoted TωΣ .

There is a natural topology on this set TωΣ [Mos80,Kec95,LT94]. It is defined by the following distance:
Let t and s be two distinct infinite trees in TωΣ . Then the distance between t and s is 1

2n where n is
the smallest integer such that t(x) 6= s(x) for some word x ∈ {l, r}? of length n.
The open sets are then in the form T0.T

ω
Σ where T0 is a set of finite labelled trees. T0.T

ω
Σ is the set of

infinite binary trees which extend some finite labelled binary tree t0 ∈ T0, t0 is here a sort of prefix,
an “initial subtree” of a tree in t0.TωΣ .
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The Borel hierarchy and the projective hierarchy on TωΣ are defined from open sets in the same manner
as in the case of the topological space Σω.

Let t be a tree. A branch B of t is a subset of the set of nodes of t which is linearly ordered by the
tree partial order R (R(xy)↔ x v y) and which is closed under the prefix relation, i.e. if x and y are
nodes of t such that y ∈ B and x v y then x ∈ B.
A branch B of a tree is said to be maximal iff there is not any other branch of t which strictly contains
B.

Let t be an infinite binary tree in TωΣ . If B is a maximal branch of t, then this branch is infinite. Let
(ui)i≥0 be the enumeration of the nodes in B which is strictly increasing for the prefix order.
The infinite sequence of labels of the nodes of such a maximal branch B, i.e. t(u0)t(u1) . . . t(un) . . . is
called a path. It is an ω-word over the alphabet Σ.

Let then L ⊆ Σω be an ω-language over Σ. Then we denote Path(L) the set of infinite trees t in TωΣ
such that t has (at least) a path in L.

It is well known that if L ⊆ Σω is an ω-language over Σ which is a Π0
2-complete subset of Σω (or a

set of higher complexity in the Borel hierarchy) then the set Path(L) is a Σ1
1-complete subset of TωΣ .

Hence Path(L) is not a Borel set, [Kec95,Sim93,PP04].

For LΣω (ϕ) a local ω-language, we shall find another local ω-language L
(Σ∪{0,1})
ω (ψ) and a continuous

function

h : TωΣ → (Σ ∪ {0, 1})ω

such that Path(LΣω (ϕ)) = h−1(L(Σ∪{0,1})
ω (ψ)). For that we shall code trees labelled in Σ by words over

Σ ∪ {0, 1}, where 0 and 1 are supposed to be two new letters not in Σ.
We use two new unary predicate symbols, P and B. The first one will indicate the set of nodes of the
tree and the second one will indicate a maximal branch of the tree which provides a word of LΣω (ϕ)
when the labels are considered.
We first express that R (a binary new relation) is a strict partial order over P by the following sentence
φ1, conjunction of:

– ∀xy[R(xy)→ P (x) ∧ P (y)],
– ∀xyz[R(xy) ∧R(yz)→ R(xz)],
– ∀xy[R(xy)→ ¬R(yx)].

We have to say that this order is the order of a tree, i.e. that the predecessors of an element x ∈ P are
linearly ordered by R. This is expressed by the following sentence φ2:

– ∀xyz[R(xz) ∧R(yz)→ (R(xy) ∨R(yx) ∨ x = y)].

Now we use a new constant symbol S and the following sentence φ3 expresses that this constant is
interpreted by the root node of the tree:

– P (S) ∧ ∀x ∈ P [x 6= S → R(Sx)].

The trees are labelled in Σ, and we use the two other letters to code the relation R in a word. So let
φ4 be the following sentence, conjunction of:

– ( (Pa)a∈(Σ∪{0,1}) form a partition ),
– ∀x[P (x)↔

∨
a∈Σ Pa(x)],

– ∀x[¬P (x)↔ P0(x) ∨ P1(x)].

We use a binary new function f and two unary new functions p and p′ to say that a model M of ψ is
the disjoint union of PM and of fM (PM × PM ).
fM will be an injective function from PM×PM into ¬PM , and the projections pM and p′M will ensure
that fM (PM × PM ) = ¬PM . This is expressed by the following sentence φ5, conjunction of:
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– ∀xy ∈ P [¬P (f(xy))],
– ∀x[¬P (x)→ P (p(x)) ∧ P (p′(x))],
– ∀xy[P (x) ∧ P (y)→ x = p(f(xy)) ∧ y = p′(f(xy))],
– ∀x[¬P (x)→ x = f(p(x)p′(x))],

(these four latest conjuncts imply that the function f is a bijection from P × P onto ¬P ),
– ∀xy[¬P (x) ∨ ¬P (y)→ f(xy) = x],
– ∀x[P (x)→ p(x) = p′(x) = x],

(these two latest conjuncts trivially define somewhere the functions f , p and p′ according to remark
3.17).

The order of the elements of fM (PM ×PM ) for <M in M will be also determined by the order <M on
PM . Let us remark that we choose such an order on fM (PM × PM ) but we could have made another
choice. But we want this order to be determined by ψ. Then once the enumeration of order type ω of
the nodes has been chosen, the code of a tree as an ω-word over the alphabet Σ ∪ {0, 1} is completely
fixed. This is expressed by the following sentence φ6, conjunction of:

– ∀xyx′y′ ∈ P [max(xy) < max(x′y′)→ f(xy) < f(x′y′)],
( where max(xy) = y iff x ≤ y and max(xy) = x iff y ≤ x ),

– ∀xyz ∈ P [y < z ≤ x→ (f(xy) < f(xz) ∧ f(zx) > f(yx) ∧ f(xy) < f(zx))],
– ∀xyz ∈ P [y ≤ x < z → (x < f(xy) < z ∧ x < f(yx) < z)].

This will fix the order of the letters 0 and 1 which code the tree order and in order to really code the
tree order by the letters 0 and 1 of the word, we use the following sentence φ7, conjunction of:

– ∀xy[R(xy)→ P0(f(xy))],
– ∀xy[¬R(xy)→ P1(f(xy))],

In order to say that the branches of the tree have at most length ω when the word coding the tree is
an ω-word we use the following sentence φ8 which expresses that the order R is compatible with the
order < of the words:

– ∀xy[R(xy)→ x < y].

The unary predicate B will indicate the nodes of a branch of the tree, this is expressed by using the
following sentence φ9, conjunction of:

– ∀x[B(x)→ P (x)],
– ∀xy[(B(x) ∧B(y) ∧ x 6= y)→ (R(xy) ∨R(yx))],
– ∀xy[B(x) ∧R(yx)→ B(y)].

This branch will be a maximal branch (this will be useful for having an infinite branch when infinite
trees are considered). We use a new unary function i which is trivial on B and which associates to each
node x of ¬B another node i(x) of the branch B such that x and i(x) are incomparable with regard
to the relation R of the tree. This is expressed by the following sentence φ10, conjunction of:

– ∀x[(P (x) ∧ ¬B(x))→ B(i(x))],
– ∀x[(P (x) ∧ ¬B(x))→ (¬R(xi(x)) ∧ ¬R(i(x)x))],
– ∀x[¬P (x)→ i(x) = x],
– ∀x[B(x)→ i(x) = x].

(these two latest conjuncts trivially define the function i on B and on ¬P ).

Now we have to say that the branch B induces a word of Lω(ϕ) (when the branch is infinite of length
ω ).
This is expressed by the following sentence φ11, conjunction of:

– B(c), for each constant c of S(ϕ),
– ∀x1 . . . xk[S(x1 . . . xk)→ B(x1) ∧ . . . ∧B(xk)], for each predicate S(x1 . . . xk) of S(ϕ),
– ∀x1 . . . xj [(B(x1) ∧ . . . ∧B(xj))→ B(g(x1 . . . xj))], for each j-ary function symbol g of S(ϕ),
– ∀x1 . . . xj [(

∨
1≤i≤j ¬B(xi)) → g(x1 . . . xj) = min(x1 . . . xj)], for each j-ary function symbol g of

S(ϕ),
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– ∀x1 . . . xm[(B(x1) ∧ . . . ∧ B(xm)) → ϕ0(x1 . . . xm)], where ϕ = ∀x1 . . . xmϕ0(x1 . . . xm) with ϕ0 an
open formula,

Consider now the conjunction:

ψ =
∧

1≤i≤11

φi

This sentence is written in the signature:

S(ψ) = S(ϕ) ∪ {S, P,B,R, P0, P1, f, p, p
′, i}

where S is a constant symbol, P,B, P0, P1 are unary predicate symbols, R is a binary predicate symbol,
p, p′, i are unary function symbols and f is a binary function symbol.
ψ is equivalent to a universal sentence, because it is the conjunction of a finite number of universal
sentences, and closure in its models takes at most nϕ + 3 steps (one takes closure under the functions
p and p′, then under S and i, then under the functions of S(ϕ) and finally under f).
Hence ψ is a local sentence and it defines a local ω-language over the alphabet Σ ∪ {0, 1}.

Consider now the set {l, r}? of nodes of the infinite binary tree, and the lexicographic order on this
set (assuming that l is before r for this order). Then, in the enumeration of the nodes with regard to
this order, the first nodes will be λ, l, r, ll, lr, rl, rr, lll, llr, . . .
Let then h be the mapping from TωΣ into (Σ∪{0, 1})ω such that for every labelled binary infinite tree t
of TωΣ , h(t) is the code of the tree as defined above (by the sentences φ1 to φ8), where the enumeration
of length ω of the nodes is in lexicographic order as explained above.
Then for a tree t ∈ TωΣ , h(t) ∈ Lω(ψ) if and only if t has a path in Lω(ϕ) thus Path(LΣω (ϕ)) =
h−1(LΣ∪{0,1}ω (ψ)) holds.

Hence if Lω(ϕ) is a Borel set which is at least a Π0
2-complete subset of Σω, the language Path(Lω(ϕ)) =

h−1(Lω(ψ)) is a Σ1
1-complete subset of TωΣ .

But it is easy to see from the definition of h and of the lexicographic order on {l, r}? that h is a
continuous function from TωΣ into (Σ ∪ {0, 1})ω. Then the ω-language Lω(ψ) is at least Σ1

1-complete
because h−1(Lω(ψ)) is a Σ1

1-complete set and it is in fact a Σ1
1-complete subset of (Σ∪{0, 1})ω because

every local ω-language is an analytic set by theorem 3.8.
Then in that case Lω(ψ) is not a Borel set because a Σ1

1-complete set is not a Borel set.

Indeed this gives infinitely many Σ1
1-complete local ω-languages, because there exist infinitely many lo-

cal ω-languages which are Π0
2-complete (for example the regular ω-languages which are Π0

2-complete).
�

A natural question arises about the recursive analogue to Theorem 3.24: are there local languages
which are in the class Σ1

1 but in not any class of the arithmetical hierarchy? The answer can be easily
derived from the inclusions Σn ⊆ Σ0

n and Πn ⊆ Π0
n and Theorem 3.24:

Corollary 3.25 There exist some local ω-languages in Σ1
1 −

⋃
n≥1Σn.

Remark 3.26 The method we have used in the above proof to code the tree order relation may be
used more generally to code the ω-models of some local sentence ϕ. Then we can show that the set of
codes of ω-models of ϕ is itself a local ω-language.
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