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INTRODUCTION

With the exception of complex addition and multiplication, ?, ?, ? complex online SVD, ? complex operations are typically not implemented in hardware. Recently, hardware-oriented methods for complex division and square root have been introduced. ?, ?

In this paper we describe a new method for computing several common arithmetic expressions defined in the complex domain, suitable for hardware implementation as operators. The operators include Complex Multiply-Add (CM A : ab + c)), Complex Sum of Products (CSP : ab + ce + f ), Complex Sum of Squares (CSS : a 2 + b 2 ), and Complex Integer Powers (CIP k : x 2 , x 3 , ..., x k ). The variables and results are fixed-point complex numbers. The proposed approach is to map the expression to a system of linear equations, apply a complex-to-real transform, and compute the solutions to the linear system using a digit-by-digit, the most significant digit first method. The components of the solution vector corresponds to the expressions being evaluated. The number of digit cycles is about m for m-digit precision. The basic modules are similar in complexity to left-to-right multipliers. The interconnections between the modules are digit-wide. The proposed method is a generalization of a polynomial evaluation method over the reals introduced as the E-method, ?, ? and recently discussed in. ? This paper is based on the report ? where the complex E-method is introduced and discussed in general terms.

The method uses the following approach: (i) an expression is mapped onto a system of linear equations, (iii) a transform is applied to change the complex domain to the real domain, and (iii) the system is solved in a digit-by-digit manner, the most-significant digit first.

We first review the transform which allows the method to be used in the complex field C as discussed in. ? Then we show how to use the complex evaluation method (CE-method) in implementing complex operators CM A, CSP , CSS, and CIP .

Further author information: (Send correspondence to M. Ercegovac, milos@cs.ucla.edu)

COMPLEX-REAL (CR) TRANSFORMS

Complex numbers can be represented by 2 × 2 skew-symmetric matrices

x + iy ↔ x -y y x (1) 
This isomorphism holds for complex addition and multiplication which are used in the proposed method.

Consequently, an m × n matrix of complex numbers can be represented as a 2m × 2n matrix of real numbers. For n × n complex matrices, considered in this paper, the transform from the complex domain to the real domain is as follows.

The CR-transform of a n-dimensional complex linear system is a 2n-dimensional real linear system. For example, let n =, then the CR transform is

  a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3   ×   s 1 s 2 s 3   =   t 1 t 2 t 3   (2)         a r 1,1 -a i 1,1 a r 1,2 -a i 1,2 a r 1,3 -a i 1,3 a i 1,1 a r 1,1 a i 1,2 a r 1,2 a i 1,3 a r 1,3 a r 2,1 -a i 2,1 a r 2,2 -a i 2,2 a r 2,3 -a i 2,3 a i 2,1 a r 2,1 a i 2,2 a r 2,2 a i 2,3 a r 2,3 a r 3,1 -a i 3,1 a r 3,2 -a i 3,2 a r 3,3 -a i 3,3 a r 3,1 a i 3,1 a r 3,2 a i 3,2        t r 1 t i 1 t r 2 t i 2 t r 3 t i 3         (3) 
where a j,k = a r j,k + ia i j,k , s j = s r j + is i j and t j = t r j + it i j . These two linear systems are equivalent. The real linear system (??) is obtained from the complex linear system (??) by replacing each complex element by the 2 × 2 matrix defined in (??). In the following sections we review a hardware-oriented method for solving such a system. ?

REAL E-METHOD

For simplicity, we discuss here radix-2 E-method. Adaptation to higher radices is straightforward. The radix-2 method consists in solving the n-dimensional linear system As = v using the following iteration on residuals:

w (j) = 2 × w (j-1) -Ad (j-1) (4) 
with

w (0) = [v 0 , v 1 , . . . , v n ] T , and d (j) = [d 0 , d 1 , . . . , d n ]
T where the digits d

(j) k are in {-1, 0, 1}. Define the number D (j) k = d (0) k .d (1) k d (2) k . . . d (j) k (the d (j) k are the digits of a radix-2 signed-digit representation of D (j) k ). By induction, w (j) = 2 j w (0) -AD (j-1) . (5) 
Using (??), one can show that if the residuals |w 

k converges to s k as j goes to infinity. At step j we must select a value of the digits d 

SEL(x) = sign x × ⌊|x + 1/2|⌋ , if |x| ≤ 1 sign x × ⌊|x|⌋ , otherwise, (6) 
To avoid carry-propagate addition in the recurrence, the selection function is applied to an estimate of the residual : d

(j) k = SEL( ŵ(j) k ), where ŵ(j) k is a low-precision approximation to w (j)
k . The iterations converge to the desired result if residual vector w (j) is bounded. Let ξ, α and ∆ (with 0 ≤ ∆ < 1) be constants such that 1. Sum of magnitudes of off-diagonal elements in matrix A: ≤ α;

2. Magnitudes of right-hand side elements: ≤ ξ;

3. |w (j) k,r - ŵ(j) k,r | ≤ ∆ 2
, and |w

(j) k,i - ŵ(j) k,i | ≤ ∆ 2 Since |d (j-1) k,r - ŵ(j-1) k,r | ≤ 1/2 and |d (j-1) k,i - ŵ(j-1) k,i | ≤ 1/2, from (??) we find |w (j) k,r | ≤ 2 1 2 + ∆ 2 + α = 1 + ∆ + 2α. ( 7 
)
The same bound holds for |w

(j) k,i |.
For this bound to be feasible, we must assure that a suitable choice of d

(j)
k,r and d

(j) k,r in {-1, 0, 1} is possible. This requires that |w (j) k,r | and |w (j) k,i | should be less than 3/2. Therefore, ∆ + 2α ≤ 1 2 (8) 
Since |w

(0) k,r | and |w (0) 
k,i | must also be less than 3/2, we get

ξ ≤ 3 2 (9) 
In the complex E-method the coefficient matrix A, the solution vector s and the right-hand side v are in the complex domain. Moreover, the complex residual vector is denoted as

w (j) = [w (j) 0,r , w (j) 0,i , w (j) 1,r , w (j) 1,i • • • , w (j) n,r , w (j) 
n,i ] and the complex digit vector d (j) is written as

d (j) = [d (j) 0,r , d (j) 0,i , d (j) 1,r , d (j) 1 
,i , • • • , d (j) n,r , d (j) n,i ] 
The mapping of operators on linear systems and complex residual iterations are discussed in the following sections for each complex operator.

COMPLEX MULTIPLY-ADD OPERATOR (CM A)

The operator computes y = ab + c. In the real domain, the mapping to a linear system is

1 -a 0 1 × s 0 s 1 = c b
where the solution is obtained as s 0 = y. In the complex domain, the variables are y = y r + iy i , a = a r + ia i , b = b r + ib i , and c = c r + ic i . The mapping in this case is

    1 0 -a r a i 0 1 -a i -a r 0 0 1 0 0 0 0 1     ×     s r 0 s i 0 s r 1 s i 0     =     c r c i b r b i    
so that s r 0 = y r and s i 0 = y i .

The residual recurrences are:

w (j) 0,r = 2 w (j-1) 0,r -d (j-1) 0,r + a r d (j-1) 1,r -a i d (j-1) 1,i w (j) 0,i = 2 w (j-1) 0,i -d (j-1) 0,i + a i d (j-1) 1,r + a r d (j-1) 1,i w (j) 1,r = 2 w (j-1) 1,r -d (j-1) 1,r w (j) 1,i = 2 w (j-1) 1,i -d (j-1) 1,i (10) 
with the initial conditions w

(0) 0,r = c r , w (0) 
0,i = c i , w (0) 1,r = b r , w (j) 
1,i = b i The convergence requires that the following conditions are satisfied

|a r | + |a i | ≤ α, |c r |, |c i |, |b r |, |b i | ≤ 3/2 (11)
From condition (??) and using ∆ = 1/8, we get α ≤ 3/16. Therefore, |a r |, |a i | ≤ 3/32 assures convergence of the algorithm. This range reduction of the input a can be achieved by scaling of the initial value. ?

A scheme for implementing the CM A operator is shown in Figure ??(a) and the corresponding elementary unit (EU 0) is illustrated in Figure ??(b). Elementary units EU 1 can be simplified as discussed below. A bitparallel bus transmits a values in a broadcast mode, while b and c variables are loaded in separate cycles. Note that the initialization cycles could be shorter than the iteration cycles. • Registers (4)

• Multiple generators MG (2), producing {-1, 0, 1} × a r and {-1, 0, 1} × a i , and buffers

• Multiplexers MUX (2) for initializing the residual

• A [4:2] adder (the shaded MS part performs the indicated subtraction of the selected digit)

• Output digit selection SEL (a small table or a gate network)

The elementary unit EU 1 can be greatly simplified. This module, in general radix-r case is effectively a recoder from the digit set {0, 1, . . . , r -1} to the the set {-a, . . . , a} where r/2 ≤ a ≤ r -1. In the case of radix-2, this recoding is unnecessary: the module is a left shift register.

The digit-serial outputs of EU s can be converted into digit-parallel form using on-the-fly converters OF Cr and OF Ci as indicated by the thick lines. ?

The cycle time (without interconnect delay between units), in terms of a full adder delay t, is estimated as

T EU -CM A = t BU F F + t M G + t SEL + t [4:2] + t REG ≈ (0.4 + 0.3 + 1 + 1.3 + 0.9)t = 3.9t (12) 
The cost, again in terms of area of a full adder A F A , is estimated as

A EU -CM A (m) = A SEL + 2A BU F F + (m + 2)[2A M G + 2A M U X + A [4:2] + 4A REG + A OF C ] ≈ [5 + 2 × 0.4 + (m + 2)(4 × 0.45 + 2.3 + 4 × 0.6 + 2.1)]A F A ≈ (23 + 9m)A F A (13) 
The cost is estimated as area occupied by modules using the area of a full-adder A F A as the unit. The areas of primitive modules are: Register A REG = 0.6A F A ; buffer

A BU F F = 0.4A F A ; MUX A M U X = 0.45A F A ; multiple generator MG A M G = 0.45A F A ; [4:2] adder A [4:2] = 2.3A F A ; SEL A SEL = 5A F A ,

and on-the-fly converters

A OF C = 2A M U X + 2A REG = 2.1A F A . A

total cost of an m-bit CM A operator is

A CM A (m) = 2 × A EU -CM A (m) + 2 × (m + 2)A REG ≈ (50 + 20m)A F A

COMPLEX SUM OF PRODUCTS OPERATOR (CSP )

The operator computes y = ab + ce + f . In the real domain, the mapping to a linear system is

  1 -a -c 0 1 0 0 0 1   ×   s 0 s 1 s 2   =   f b e  
and the solution s 0 = y. In the complex domain, a = a r + ia i , b = b r + ib i , etc. The mapping in this case is

        1 0 -a r a i -c r c i 0 1 -a i -a r -c i -c r 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1         ×         s r 0 s i 0 s r 1 s i 1 s r 2 s i 2         =         f r f i b r b i e r e i        
The residual recurrences are:

w (j) 0,r = 2 w (j-1) 0,r -d (j-1) 0,r + a r d (j-1) 1,r -a i d (j-1) 1,i + c r d (j-1) 2,r -c i d (j-1) 2,i w (j) 0,i = 2 w (j-1) 0,i -d (j-1) 0,i + a i d (j-1) 1,r + a r d (j-1) 1,i + c i d (j-1) 2,r + c r d (j-1) 2,i w (j) 1,r = 2 w (j-1) 1,r -d (j-1) 1,r w (j) 1,i = 2 w (j-1) 1,i -d (j-1) 1,i w (j) 2,r = 2 w (j-1) 2,r -d (j-1) 2,r w (j) 2,i = 2 w (j-1) 2,i -d (j-1) 2,i (14) 
with the initial conditions

w (0) 0,r = f r , w (0) 0,i = f i , w (0) 1,r = b r , w (j) 1,i = b i , w (j) 2,r = e r , w (j) 
2,i = e i The convergence requires that the following conditions are satisfied

|a r | + |a i | + |c r | + |c i | ≤ α, |f r |, |f i |, |b r |, |b i |, |e r |, |e i | ≤ 3/2 (15)
From condition (??) and using ∆ = 1/8, we get α ≤ The modules used are:

• Registers (6)

• Multiple generators MG (4), producing {-1, 0, 1} × a r and {-1, 0, 1} × a i , and buffers

• Multiplexers MUX (2) for initializing the residual

• A [6:2] adder (the shaded MS part performs the indicated subtraction of the selected digit)

• Output digit selection SEL (a small table or a gate network) As in the CM A operator, the digit-serial outputs of the EU 0 can be converted into digit-parallel form using on-the-fly converters OF Cr and OF Ci. The cycle time, in terms of a full adder (complex gate) delay t, is estimated as

T EU -CSP = t BU F F + t M G + t SEL + t [6:2] + t REG ≈ (0.4 + 0.3 + 1 + 2.3 + 0.9)t = 4.9t (16) 
The cost, again in terms of area of a full adder A F A , is estimated as CHANGE As discussed in the previous section, the cost is estimated as the area occupied by the modules using the area of a full-adder A F A as the unit. A total cost of an m-bit CSP operator is

A EU -CSP (m) = A SEL + 4A BU F F + (m + 2)[4A M G + A M U X + A [6:2] + 6A REG + 2A OF C ] ≈ [5 + 4 × 0.4 + (m + 2)(5 × 0.45 + 4.3 + 6 × 0.6 + 2 × 2.1)]A F A ≈ (35 + 14m)A F A (17) 
d j 0,i d j 0,r d j-1 1,r w 0,r -d j-1 0,r (a) EU1r EU1i d j 1,i d j 1,r EU2r EU2i d j 2,i d j 2,r MUX REG MUX REG 0 ws wc f r REG MG a i d j-1 1,i REG MG c r d j-1 2,r REG MG c i d j-1 2,i digit-serial digit-parallel
A CSP (m) = 2 × A EU -CSP (m) + 4 × (m + 2)A REG ≈ (70 + 30m)A F A

COMPLEX SUM OF SQUARES OPERATOR (CSS)

This operator computes y = a 2 + b 2 . In the real domain, the mapping to a linear system is

  1 -a -b 0 1 0 0 0 1   ×   s 0 s 1 s 2   =   0 a b  
and the solution s 0 = y. In the complex domain, a = a r + ia i , and b = b r + ib i . The mapping in this case is

        1 0 -a r a i -b r b i 0 1 -a i -a r -b i -b r 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1         ×         s r 0 s i 0 s r 1 s i 1 s r 2 s i 2         =         0 0 a r a i b r b i        
The residual recurrences are:

w (j) 0,r = 2 w (j-1) 0,r -d (j-1) 0,r + a r d (j-1) 1,r -a i d (j-1) 1,i + b r d (j-1) 2,r -b i d (j-1) 2,i w (j) 0,i = 2 w (j-1) 0,i -d (j-1) 0,i + a i d (j-1) 1,r + a r d (j-1) 1,i + b i d (j-1) 2,r + b r d (j-1) 2,i w (j) 1,r = 2 w (j-1) 1,r -d (j-1) 1,r w (j) 1,i = 2 w (j-1) 1,i -d (j-1) 1,i w (j) 2,r = 2 w (j-1) 2,r -d (j-1) 2,r w (j) 2,i = 2 w (j-1) 2,i -d (j-1) 2,i (18) 
with the initial conditions

w (0) 0,r = 0, w (0) 
0,i = 0, w

1,r = a r , w

(j) 1,i = a i , w (j) 
2,r = b r , w

(j) 2,i = b i
The convergence requires that the following conditions are satisfied

|a r | + |a i | + |b r | + |b i | ≤ α (19) 
From condition (??) and using ∆ = 1/8, we get α ≤ 3/16 and |a r |, |a i |, |b r |, |b i | ≤ 3/64 to assure convergence of the algorithm. This range reduction can be achieved by scaling of the initial values. ?

A scheme for implementing the CSS operator (general and elementary unit) is similar to that of Figure ??. Consequently the delays and the cost are similar as estimated for the CSP operator.

COMPLEX INTEGER POWERS OPERATOR (CIP )

The operator computes in the real domain consecutive integer powers of the argument x in parallel: x 2 , x 3 , ..., x k . The corresponding linear system is

           1 -x 0 0 0 • • • 0 0 1 -x 0 0 • • • 0 . . . . . . . . . . . . . . . • • • . . . 0 0 • • • 0 0 1 -x 0 0 0 • • • 0 0 1            ×            s 0 s 1
are equal to the integer powers of z.

The residual recurrences are

w (j) h,r = 2 w (j-1) h,r -d (j-1) h,r + xd (j-1) 
h+1,r -yd

(j-1) h+1,i w (j) h,i = 2 w (j-1) h,i -d (j-1) h,i + yd (j-1) h+1,r + xd (j-1) h+1,i (21) 
for h = k, w

(j) k,r = 2 w (j-1) k,r -d (j-1) k,r w (j) k,i = 2 w (j-1) k,i -d (j-1) k,i
with the initial conditions for h = 0, . . . , k -1

w (0) h,r = 0, w (0) 
h,i = 0 and w

(0) k,r = x, w (0) 
k,i = y The convergence requires that the following conditions are satisfied

|x| + |y| ≤ α (22) 
From condition (??) and using ∆ = 1/8, we get α ≤ 3/16 and |x|, |y| ≤ 3/32 to assure convergence of the algorithm. This range reduction can be achieved by scaling of the initial values. ?

A scheme for implementing the CIP operator is shown in The same scheme, with different initialization, can be used to evaluate complex polynomials. ? 

SUMMARY

We presented a general method for computing several commonly used arithmetic expressions in the complex domain: multiply-add, sum of products, sum of squares, and integer powers. The method consists of mapping the operators on diagonally-dominant systems of complex linear equations, transforming the system from the complex to the real domain, and solving it using digit-by-digit MSDF algorithm. The latency is roughly m cycles for m bits of precision and independent of the order of the resulting linear system. The cycle time is independent of m. We discussed the mapping of operators to linear systems, transforms from the real to the complex domains, the recurrences and convergence conditions. Implementations of the proposed operators are discussed at a high level with estimates of the cost and cycle time. The method used here has been applied in the case of complex polynomials and rational functions. ?, ?
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k

  such that the values w (j+1) k remain bounded. The following selection function, proposed in ? as a form of rounding, achieves such a choice.
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