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Abstract By using arithmetic circuits, encoding multivariate polyno-
mials may be drastically more efficient than writing down the list of
monomials. Via the study of two examples, we show however that such
an encoding can be hard to handle with a Turing machine even if the
degree of the polynomial is low. Namely we show that deciding whether
the coefficient of a given monomial is zero is hard for P#P under strong
nondeterministic Turing reductions. As a result, this problem does not
belong to the polynomial hierarchy unless this hierarchy collapses. For
polynomials over fields of characteristic k > 0, this problem is ModkP-
complete. This gives a coNPModkP algorithm for deciding an upper bound
on the degree of a polynomial given by a circuit in fields of characteristic
k > 0.

1 Introduction

Multivariate polynomials are intensively used in computer algebra. The
naive way of encoding such polynomials is to write down the list of the
coefficients of all monomials, but even low-degree polynomials may have
an exponentially large number of such coefficients (consider for example
the determinant). That is why this possibility is not always suitable.

Arithmetic circuits can sometimes remedy this situation since their
size is in general much smaller than the list of all coefficients. An arith-
metic circuit over a field K is a circuit that contains addition and multi-
plication gates over K (instead of OR and AND gates for usual boolean
circuits). With such gates, and with inputs consisting of variables and
constants of K, the circuit computes a polynomial (see the preliminaries
below for details). For example, the polynomial (x+y)2

n

can be computed
by a circuit of size O(n) by “repeated squaring”, whereas the number of
monomials is exponentially large.

⋆ UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.
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Though compact, this manner of storing data is not always easy to
handle. There are efficient randomized algorithms for testing whether a
polynomial is identically zero (see e.g. [14]), for example, but many other
problems become hard when dealing with arithmetic circuits. One way to
simplify them is to consider only circuits of polynomial “formal degree”
([10] or [12], the degree of the polynomial if no cancellation would occur).
In this direction, Erich Kaltofen [7] designed efficient algorithms for the
greatest common divisor of two polynomials, for instance.

This paper, in the same spirit as [1], investigates two natural prob-
lems concerning multivariate polynomials given by arithmetic circuits. We
are concerned with the complexity of these problems in the usual Turing
machine model. One of them is the computation of the degree of a poly-
nomial (Section 5). This problem is efficiently solved by a probabilistic
algorithm in the case where the “formal degree” is polynomially bounded;
unfortunately, in characteristic 0, the upper bound of [1] in the counting
hierarchy is not improved. However, for polynomials over fields of char-
acteristic k > 0, we obtain the better bound coNPModkP. We shall also
study the problem of deciding whether the coefficient of a given monomial
is zero (Sections 3 and 4). We show that even on polynomially-bounded
formal degree instances, this problem is hard, that is, hard for P#P under
strong nondeterministic Turing reductions. We also provide a complete
characterization of the complexity of this problem when the field is of
positive characteristic.

Throughout this paper, we heavily rely on the results of [10]. Though
stated in an algebraic context in [10] (namely Valiant’s framework), we
show indeed that they can also be useful for proving results in boolean
complexity related to the manipulation of polynomials given by arithmetic
circuits.

2 Preliminaries

An arithmetic circuit over a field K is a directed acyclic graph, each of the
vertices is of indegree 0 or 2, one and only one vertex being of outdegree
0. This last vertex is called output, and vertices of indegree zero are called
inputs. An input is labeled by a variable xi or a constant among {−1, 0, 1}
in K. Every other vertex is called a gate and is labeled by + or ×. The
polynomial computed by a vertex is defined inductively as follows:

– the polynomial computed by an input is its label (i.e. a constant or a
variable);

– the polynomial computed by a + gate is the sum of its entries;
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– the polynomial computed by a × gate is the product of its entries.

The polynomial computed by a circuit is the polynomial computed by the
output of the circuit. Note that the only allowed constants of the field are
−1, 0 and 1, so the coefficients of our polynomials are in Z (characteristic
zero) or in Zk (characteristic k > 0). The size of a circuit C, written |C|,
is the number of its vertices. See Figure 1 below for an example where
cancellations occur.
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Figure1. A circuit of size 16 computing the polynomial x4
1 + x2.

Another useful quantity concerning arithmetic circuits is their formal
degree. The formal degree of a vertex in an arithmetic circuit is inductively
defined as follows:

– the formal degree of an input is 1;
– the formal degree of a + gate is the maximum of the formal degrees

of its entries;
– the formal degree of a × gate is the sum of the formal degrees of its

entries.

The formal degree of an arithmetic circuit is the formal degree of its
output. We denote the formal degree of a circuit C by degf(C). Note that
one can easily compute the formal degree of a circuit by induction.

Here we are interested in the complexity of handling arithmetic cir-
cuits by (usual, boolean) Turing machines. Note that an arithmetic circuit
is easily encodable in binary since it merely consists of a labeled directed
graph. Hence, such circuits can be manipulated by Turing machines. We
shall study two problems: computing the degree of a polynomial, and de-
ciding whether the coefficient of a monomial is zero. We shall define two
versions of both problems, a “bounded” version where a part of the input
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is given in unary, and the unbounded one where the whole input is in
binary.

The first language we shall consider concerns the degree of the poly-
nomial. If C is an arithmetic circuit, the degree of the (multivariate)
polynomial computed by C is denoted by deg(C). The language DEG is
defined as follows:

DEG = {(C, d) : deg(C) ≤ d},

where C is an arithmetic circuit and d an integer. A “bounded” version
of DEG is also defined:

DEGb = {(C, 1d) : deg(C) ≤ d},

that is, d is given in unary, hence the size of the input is ≥ d.
The second language we shall study concerns the coefficient of a mono-

mial in a polynomial. A monomial m is encoded by the list of the expo-
nents of all the variables in binary. If we denote by coefC(m) the coefficient
of the monomial m in the polynomial computed by C, we define

ZMC = {(C,m) : coefC(m) = 0}

(ZMC stands for Zero Monomial Coefficient), and its bounded version:

ZMCb = {(C,m, 1d) : coefC(m) = 0 and degf(C) = d}.

As above, C is an arithmetic circuit, and m a monomial.
Note that these languages only depend on the characteristic of the

underlying field, because the only allowed constants in the arithmetic
circuits are −1, 0 and 1. When dealing with fields of characteristic k > 0,
we will use the superscript k as in ZMCk, ZMCk

b, DEGk and DEGk
b.

We finally briefly recall a few complexity classes; we refer the reader
to [13] and [5] for instance for further details. If L is a language, we denote
by PL (resp. NPL) the class of languages recognized by a deterministic
(resp. nondeterministic) polynomial time Turing machine with oracle L. If
C is a set of languages, PC (resp. NPC) denotes ∪L∈CP

L (resp. ∪L∈CNPL).
We define inductively the classes Σp

i as follows: Σp
0 = P and Σp

i+1 =

NPΣ
p

i . The polynomial hierarchy is PH = ∪i≥0Σ
p
i .

We shall also encounter probabilistic classes. The class coRP is the set
of languages L recognized by a probabilistic Turing machine that doesn’t
make any mistake on inputs in L, and has a small probability of error
for inputs outside of L. More precisely, a language L is in coRP if there
exists A ∈ P and a polynomial q(n) such that for all x ∈ {0, 1}∗:



The Complexity of two Problems on Arithmetic Circuits 5

– if x ∈ L then Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A} = 0;
– if x 6∈ L then Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A} ≥ 2q(|x|)−1.

BPP is analogous but both-sided errors are allowed:

– if x ∈ L then Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A} ≥ 3/4.2q(|x|);
– if x 6∈ L then Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A} < 1/4.2q(|x|).

Finally, PP is similar but the threshold is 1/2 and is the same for both
accepting and rejecting conditions. The class PP gives rise to the counting

hierarchy : CH = P ∪ PPP ∪ PPPPP

∪ . . .
Let us now define “counting classes”. The class #P is the set of func-

tions that count the number of accepting paths of a non-deterministic
Turing machine working in polynomial time. More precisely, f : {0, 1}∗ →
N is in #P if there exists A ∈ P and a polynomial q(n) such that

f(x) = Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A}.

The closure of #P under subtraction is called GapP: thus, a function
GapP takes its values in Z and is the difference of two #P functions.

An analogous definition provides counting classes modulo k: if k is an
integer greater than 1, ModkP is the set of languages L such that

x ∈ L ⇔ Card{y ∈ {0, 1}q(|x|) : (x, y) ∈ A} 6≡ 0 mod k.

If k is prime, ModkP is closed under complement [2], so we can take ≡ 0
in the definition instead of 6≡ 0.

Let us recall a few inclusions:

P ⊆ NP ⊆ PH ⊆ P#P ⊆ CH, and P ⊆ coRP ⊆ BPP ⊆ Σp
2 .

We shall also make use of strong nondeterministic Turing reductions,
introduced by Long [8]. This is defined as follows: B ≤

sn

T A iff B ∈
(NPA ∩ coNPA).

The next section studies ZMC (and its bounded version): we first show
that over fields of characteristic zero, ZMCb ∈ P#P, ZMC ∈ CH and
these languages are outside PH unless it collapses. Then we study fields
of characteristic k > 0, in which ZMCk and ZMCk

b are ModkP-complete.
Finally, Section 5 deals with DEG and DEGb.

3 The coefficient of a monomial in characteristic zero

Here we work on polynomials with coefficients in Z, i.e. we do not use
modular arithmetic. The following two results are shown.
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Proposition 1. ZMCb is P#P-complete under strong nondeterministic

Turing reductions ≤
sn

T .

Proposition 2. ZMC is in CH and is P#P-hard under strong nondeter-

ministic Turing reductions ≤
sn

T .

Remark that the hardness result of Proposition 2 is implied by that
of Proposition 1. The latter is shown in Section 3.1. The upper bounds
of both propositions are proved in Section 3.2.

3.1 Hardness for P#P

The language Perm We define the language Perm as a decision prob-
lem for the permanent. We recall that the permanent of a matrix M =
(mi,j)1≤i,j≤n is defined as

per(M) =
∑

σ∈Sn

n
∏

i=1

mi,σ(i)

where Sn is the set of all permutations of {1, . . . , n}. Despite its similarity
with the determinant, the permanent seems to be hard to compute (even
for 0-1 matrices) since it is #P-complete under counting reductions [18].
The language Perm is the following:

Perm = {(M,v) : per(M) = v},

where M is a 0-1 square matrix, and v an integer (this language also
appears in [6]). We show that Perm is P#P-hard under strong nondeter-
ministic Turing reductions, i.e.

P#P ⊆ NPPerm ∩ coNPPerm.

Let L ∈ P#P. Since computing the permanent of a 0-1 matrix is
#P-complete, there exists a polynomial-time deterministic oracle Turing
machine M that decides L with the help of the oracle per. It is easy to
simulate this machine with a nondeterministic one, call it N , that consults
the oracle Perm. We proceed as follows. While M does not use its oracle,
N simply simulates M in a deterministic manner. As soon as M asks for
the value of a permanent, say per(M) for a matrix M , the machine N
guesses the value of this permanent and check for a correct guess thanks
to its oracle Perm: only the correct path (corresponding to the true value
of the permanent) is continued, whereas the other paths are rejected.
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Our machine N thus exactly has one path that behaves like M, the
other being rejecting paths. So N recognizes L, and we have shown the
inclusion P#P ⊆ NPPerm. The other inclusion P#P ⊆ coNPPerm holds by
closure of P#P under complement.

Remark 1. Toda’s theorem ([15]) asserts that PH ⊆ P#P. It yields

PH ⊆ NPPerm.

This implies that Perm does not lie in the polynomial hierarchy unless
it collapses. Indeed, if Perm ∈ Σp

i for some i, then PH ⊆ NPΣ
p

i = Σp
i+1,

and PH collapses to the (i + 1)-th level.

ZMCb is harder than Perm

Remark 2. The following ideas already appear in [17]. We nevertheless
detail the reduction here for the sake of completeness.

We now show that ZMCb is harder than Perm. For, if M = (mi,j) is
a matrix (1 ≤ i, j ≤ n) and v an integer, we use the following classical
multivariate polynomial, already appearing in e.g. [17] (without the term
−vX1 · · ·Xn, though):

P(M,v)(X1, . . . ,Xn) =
n
∏

j=1

(
n
∑

i=1

mi,jXi) − vX1 · · ·Xn.

We claim that the coefficient of the monomial X1 · · ·Xn in this polynomial
is per(M) − v. Indeed, consider the product

(
n
∑

i=1

mi,1Xi)(
n
∑

i=1

mi,2Xi) · · · (
n
∑

i=1

mi,nXi).

In order to develop it, in each factor one has to choose one term of the sum.
Since we are concerned with the coefficient of X1 · · ·Xn, one has to choose
different variables Xi for each factor. Therefore, for each permutation σ
of {1, . . . , n}, the product yields a term of the form (

∏

i mi,σ(i))X1 · · ·Xn,
thus the coefficient of X1 · · ·Xn in the product is

∑

σ

∏

i

mi,σ(i) = per(M).

Now, taking the term −vX1 · · ·Xn into account, we obtain the announced
coefficient per(M) − v.
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From the input (M,v), it is easy to build in polynomial time an arith-
metic circuit with polynomially-bounded formal degree1 that computes
P(M,v). Then the language ZMCb enables us to decide Perm by asking
whether the coefficient of X1 · · ·Xn in P(M,v) is zero. We conclude that
ZMCb is harder than Perm for polynomial-time many-one reductions.
This shows the hardness results of Propositions 1 and 2. This also im-
plies that ZMCb (and a fortiori ZMC) is not in the polynomial hierarchy
unless it collapses.

3.2 The help of a #P-oracle

We now show that ZMCb is in P#P. We need the following definition
of [10, section 5.2] (also in [11]).

Definition 1. Let α be a gate whose inputs are β and γ. The gate α is

disjoint if the subcircuits associated to β and γ are disjoint.

A circuit is said to be multiplicatively disjoint if all its multiplication

gates are disjoint.

Multiplicatively disjoint circuits are useful in the light of the following
result of Malod and Portier [11, Lemma 2] (also in [10]).

Lemma 1. Let C be a circuit of size s and formal degree d. There exists

a multiplicatively disjoint circuit C ′ of size ≤ ds which computes the same

polynomial as C. Furthermore, constructing C ′ from C requires only time

polynomial in |C| and d.

In order to show that ZMCb is in P#P, we rely on the proof of Theo-
rem 3 of [10, section 2.4]: the idea is that the coefficient of the monomial
m in a multiplicatively disjoint circuit is merely the number of possible
“developments” that lead to m. By a “development” we mean a tree which
represents the choices in the distribution of × over +. More precisely, if
C is a multiplicatively disjoint arithmetic circuit, a development D is a
subgraph of C satisfying the following properties:

– every × gate in D has both inputs in D;

– every + gate in D has exactly one input in D;

– D contains the output gate of the circuit, and every gate in D different
from the output gate has at least one child in D.

1 An immediate construction provides a formal degree of roughly 2n for the product,
and n log n for vX1 · · ·Xn (since |v| ≤ n!, because it is a permanent of a 0-1 n × n

matrix). The overall circuit thus has formal degree ≤ 2n(1 + log n) ≤ |C|2.
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The monomial computed by a development is merely the product of its
variables. If the development contains the constant 0, then the develop-
ment will be called neutral. Otherwise, if the development contains the
constant −1, then it will be called negative, else positive. The following
result of [10] justifies the introduction of the notion of developments.

Lemma 2. Let C be a multiplicatively disjoint circuit and m a mono-

mial Xα1

1 · · ·Xαn
n . Let d+(m) and d−(m) be the numbers of positive and

negative developments computing m, respectively. Then the coefficient of

m in the polynomial computed by C is equal to d+(m) − d−(m).

We finally have the following result.

Lemma 3. The function f which, given a multiplicatively disjoint circuit

C and a monomial m, computes the coefficient of m, is in GapP.

Proof. Checking whether a tree is a development corresponding to a given
monomial is in P. Define A+(m) (respectively A−(m)) to be the set of
positive (resp. negative) developments of C computing m. The coefficient
of m is then |A+(m)| − |A−(m)| and is computable in GapP because
deciding A+(m) and A−(m) takes only polynomial time. ⊓⊔

For the bounded version ZMCb, the formal degree of the circuit is
bounded by the size of the input since it is given in unary. Therefore one
can compute in polynomial time an equivalent multiplicatively disjoint
circuit by Lemma 1. By Lemma 3, computing the coefficient of m and
testing it to zero (i.e. deciding ZMCb) is done in P#P. This concludes the
proof of Proposition 1.

In fact, we obtain a polynomial-time algorithm with only one call to
a GapP oracle f . This can be converted into one call to a #P oracle as
follows. Let f+ and f− be the #P-functions such that f = f+ − f− and
take a polynomial p(n) such that f+(x), f−(x) < 2p(|x|) for all x. Then
the function g defined by g(x) = f+(x)+2p(|x|)f−(x) is in #P and we can
recover f from g. We have therefore proved a slightly stronger statement,
since only one call to the #P oracle is necessary: ZMCb ∈ P#P[1].

Unbounded version. However, this construction does not work for the
unbounded version, since we cannot transform the original circuit into a
multiplicatively disjoint one in polynomial time. We only show here that
ZMC is in the counting hierarchy CH.

As in [10], we first build a “generic” arithmetic circuit, called Gn,
whose inputs can be specialized to simulate any other circuit of size ≤ n.
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The construction proceeds as follows. We define

Gn
−n = 1, Gn

−n−1 = x1, . . . , G
n
0 = xn.

We then compute every possible sum and product of the previous levels,
by adding new variables al+1,i and bl+1,i:

Gn
l+1 =





l
∑

i=−n

al+1,iG
n
i









l
∑

i=−n

bl+1,iG
n
i



 .

We then write Gn(y1, . . . , yp) = Gn
n. The circuit Gn is generic in the

sense that the computation of any crcuit of size ≤ n can be obtained from
Gn(y1, . . . , yp) by specializing some variables: here is the precise statement
coming from [10, Prop. 3].

Lemma 4. Let f(x1, . . . , xk) be a polynomial computed by an arithmetic

circuit C of size ≤ n. Then

1. there exist a1, . . . , ap among {−1, 0, 1, 2, x1 , . . . , xk} such that f(x1, . . . , xk) =
Gn(a1, . . . , ap);

2. the values of a1, . . . , ap can be computed from C in polynomial time.

If C is a fixed circuit and f the polynomial computed by C, let τ be
the substitution of the variables y1, . . . , yp of Gn given by the preceding
lemma, that is, the map defined by τ(yi) = ai. We will write C = τ(Gn).

If m′ is a monomial in Gn, the image τ(m′) of m′ by the substitution
τ is the product of a (possibly zero) coefficient and a monomial of f ; we
will denote by α(m′) the coefficient and by τ ′(m′) the monomial, that is,
τ(m′) = α(m′)τ ′(m′) where α(m′) is an integer. Note that both τ ′ and α
are computable in polynomial time.

We thus have:

coefC(m) =
∑

m′ | τ ′(m′)=m

α(m′)coefGn(m′).

Malod has explicitely evaluated the coefficients of Gn in [10, section 5.2.3]
by means of binomial coefficients. More precisely, he shows the following
result.

Proposition 3. The coefficient in Gn of the monomial

m =
∏

−n≤i,j≤n

a
αi,j

i,j

∏

−n≤i,j≤n

b
βi,j

i,j

∏

1≤i≤n

xγi

i
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is 0 if γi 6=
∑n

j=−n(αi−n,j + βi−n,j) for some i ≥ 1, and

n
∏

i=1

i−1
∏

j=−n

(

∑j
k=−n αi,k

αi,j

)(

∑j
k=−n βi,k

βi,j

)

otherwise.

Thus, if we are given a circuit C, we compute the substitution τ such
that C = τ(Gn) thanks to Lemma 4 and we have:

coefC(m) =
∑

m′,τ ′(m′)=m

α(m′)coefGn(m′).

Bürgisser shows in [4, Corollary 3.8] that the so-called falling factorials
N(N −1) . . . (N −k) are computable bit by bit in CH on input size log N ,
as well as integer divisions and sums and products exponential in the size
of the input (Theorem 3.7). Therefore this sum of products of binomial
coefficients is computable bit by bit in the counting hierarchy CH. Now, a
coNP computation is enough for testing whether all bits of the coefficients
are zero. Therefore ZMC ∈ coNPCH = CH. This concludes the proof of
Proposition 2.

Remark 3. That ZMC ∈ CH could also be proven thanks to the result
of [1] that the problem BitSLP is in the counting hierarchy. The problem
BitSLP consists in computing the bits of an integer computed by an
arithmetic circuit. Indeed, similarly as in the proof of Proposition 2.1
of [1], one can substitute to the variables xi of our polynomial some

integers growing sufficiently fast, for instance 22is2

, where s is the size of
the circuit. Then, when computing the bits of the integer thus computed,
there will be no overlap of the coefficients of the polynomial (because
they are bounded by 22s

in absolute value). We will therefore be able to
recover them in CH thanks to BitSLP.

4 The coefficient of a monomial in positive characteristic

Now we are working over a field of positive characteristic k > 0, that is,
the polynomials computed by our circuits now have coefficients in Zk, so
we can perform modular arithmetic. This will help a little, since we shall
show the following completeness result.

Proposition 4. ZMCk and ZMCk
b for fields of characteristic k > 0 are

ModkP-complete.
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Remark 4. Toda’s theorem shows that PH ⊆ BPPMod2P. This result is
generalized in [16] to any k ≥ 2, that is

PH ⊆ BPPModkP,

which implies that ZMCk is not in the polynomial hierarchy unless it
collapses.

4.1 Algorithm

We use the generic polynomial Gn of the preceding section and the same
notations. Given a circuit C, one can compute in polynomial time the
substitution τ such that C = τ(Gn). Now, showing that the coefficients
of Gn modulo k can be computed in polynomial time is enough in order
to show that the coefficients of C can be computed in ModkP, since the
coefficient of m is expressed as a sum of those of Gn:

coefC(m) =
∑

m′,τ ′(m′)=m

α(m′)coefGn(m′)

and ModkP is closed under exponential sum if the index of the summation
is computable in polynomial time (as is the case here).

It remains to see why the coefficients of Gn are computable in polyno-
mial time modulo k. The main tool here is the following result of Édouard
Lucas [9], thanks to which we can efficiently compute binomial coefficients
modulo k.

Proposition 5 (Lucas, 1878). Let k be a prime integer. Let N =
∑n

i=0 nik
i and M =

∑n
i=0 mik

i be two integers written in base k. We

have
(

N
M

)

≡
n
∏

i=0

(

ni

mi

)

mod k.

Together with Proposition 3, this proves that the computation of the
coefficients of Gn modulo k is done in polynomial time. The remark above
on the closure of ModkP under exponential sum shows that ZMCk ∈
ModkP: this is the first part of Proposition 4.

4.2 Lower bound

Let us now show that ZMCk
b is hard for ModkP. We use a reduction

from “#Hamilton Cycle”, the function that counts the number of Hamil-
ton cycles in a graph. This function is #P-complete under parsimonious
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reductions, that is, under counting reductions that preserve the num-
ber of solutions, see [19] (one can also use the proof of [13, Th. 18.2] of
#P-completeness of “#Hamilton Path” and then use an easy parsimo-
nious reduction from “#Hamilton Path” to “#Hamilton Cycle”). So it
remains complete modulo k, i.e. “#Hamilton Cycle modulo k” is ModkP-
complete. The number of Hamilton cycles in a graph of adjacency matrix
(xi,j)1≤i,j≤n is given by the polynomial

HCn(xi,j) =
∑

σ

n
∏

i=1

xi,σ(i),

where the sum is taken over all n-cycles of Sn.

Now, as in the case of the permanent, the number of Hamilton cycles
is the coefficient of a monomial in a polynomial P that is obtained in
polynomial time from the adjacency matrix of the graph:

Lemma 5 ([10], Lemma 14). Let the polynomials Tp,i,j be defined as

T1,i,j = xi,jyizj and Tp+1,i,j =
∑n

k=1 Tp,i,kT1,k,j. Then

– the polynomial P = Tn,1,1 can be computed by an arithmetic circuit of

size O(n4) and of formal degree O(n);

– the circuit itself is computable in time polynomial in n;

– the coefficient of the monomial y1z1 · · · ynzn in P is HCn.

Since HCn is the coefficient of a monomial in a polynomial P com-
puted by an arithmetic circuit C of polynomial size and polynomial formal
degree, the same argument as in the case of the permanent applies: ZMCk

b

is as hard as counting the number of Hamilton cycles modulo k, i.e. ZMCk
b

is ModkP-hard. This concludes the proof of Proposition 4.

5 Computation of the degree

We now turn to the study of the complexity of DEG and DEGb.

5.1 Unbounded version

For the unbounded version, we do not improve the PPPPPPP

upper bound
of [1] for fields of characteristic zero. Over a field of positive characteristic,
however, Section 4 helps us finding the better bound coNPModkP. We first
show that DEG is P-hard for logspace reductions.
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Lower bound. We show that the “Circuit value problem” (CVP) is
easier than DEG. CVP is the language consisting of those boolean circuits
whose output is TRUE. This is a P-complete problem under logspace
reductions [13, Th. 8.1]. In fact, we can encode a boolean circuit in an
arithmetic one, by simulating the boolean operations by polynomials:
(x AND y) is xy, (x OR y) is x+ y−xy, and (NOT x) is 1−x. From the
boolean circuit B, we construct the arithmetic circuit C0 that simulates
B; then we multiply the output gate of C0 by a new variable x, and add
1. Call the new circuit C. The polynomial computed by C is 1 if the value
of B is FALSE, and x+1 otherwise. Thus by computing the degree of C,
we know the value of B.

Since this procedure uses only logarithmic work space, we conclude
that DEG is P-hard for logspace reductions.

Upper bound. Obviously, both problems DEG and ZMC are related.
In fact, we have:

deg(C) ≤ d iff (every monomial of degree > d has zero for coefficient).

Since the number of monomials is simply exponential in the size of the
circuit, this condition is checkable in coNP with the help of the oracle
ZMC. It yields:

DEG ∈ coNPZMC.

In characteristic zero, ZMC is in CH, so

DEG ∈ coNPCH = CH.

This does not improve the result of [1] that DEG is in the counting hier-
archy. In characteristic k > 0, however, ZMCk is in ModkP, so DEGk ∈
coNPModkP. Thus we have proved the following result.

Proposition 6. The problem DEGk for fields of characteristic k > 0 is

P-hard for logspace reductions and is in coNPModkP.

5.2 Bounded version

The case of DEGb is easy and uses classical techniques. Let C be a circuit
and f the polynomial it computes: we want to know whether the degree
of f is ≤ d. Since d is given in unary, one can first build in polynomial
time an arithmetic circuit computing all the homogeneous components fi

of degree ≤ d of f , as in [3, Prop. 5.28] or [10, Lemma 2]. We now simply
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have to test whether f =
∑d

i=0 fi. Testing the equality of two polynomials
given by arithmetic circuits is standard by testing the equality at random
points, see [14] for example. By working in extensions of the prime field
if necessary, it is easy to see that the technique also works in fields of
positive characteristic.

As a whole, it yields the following result.

Proposition 7. The problem DEGb is in coRP.

6 Summary and further research

Here is a summary of our results. The symbol ≤
sn

T means “strong nonde-
terministic Turing reduction”, see Section 2. The upper bound for DEG
in the counting hierarchy is from [1].

Characteristic zero Characteristic k > 0

Lower bound Upper bound Lower bound Upper bound

ZMCb P#P (under ≤
sn

T )
P#P

ModkP
ZMC CH

DEGb ? coRP ? coRP

DEG P CH P coNPModkP

There is still a lot of work to do, namely to reduce the gap between
the above results. Possible next steps would be to completely character-
ize ZMC in characteristic zero, and to find a better upper bound than

PPPPPPP

for DEG.
The authors thank Erich Kaltofen for the suggestion of encoding d in

unary in the language DEGb, as well as the anonymous referees for useful
remarks.
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