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Is critical 2D percolation universal?

Vincent Beffara

Abstract. The aim of these notes is to explore possible ways of extending
Smirnov’s proof of Cardy’s formula for critical site-percolation on the trian-
gular lattice to other cases (such as bond-percolation on the square lattice);
the main question we address is that of the choice of the lattice embedding
into the plane which gives rise to conformal invariance in the scaling limit.
Even though we were not able to produce a complete proof, we believe that
the ideas presented here go in the right direction.

Mathematics Subject Classification (2000). 82B43, 32G15; 82B20, 82B27.
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Introduction

It is a strongly supported conjectured that many discrete models of random me-
dia, such as e.g. percolation and the Ising model, when taken in dimension 2 at
their critical point, exhibit conformal invariance in the scaling limit. Indeed, the
universality principle implies that the asymptotic behavior of a critical system
after rescaling should not depend on the specific details of the underlying lattice,
and in particular it should be invariant under rotations (at least under suitable
symmetry conditions on the underlying lattice). Since by construction a scaling
limit is also invariant under rescaling, it is natural to expect conformal invariance,
as the local behavior of a conformal map is the composition of a rotation and a
rescaling.

On the other hand, conformally invariant continuous models have been thor-
oughly studied by physicists, using tools such as conformal field theories. In 2000,
Oded Schramm ([[l4]) introduced a one-parameter family of continuous bidimen-
sional random processes which he called SLFE processes, as the only possible scaling
limits in this situation, under the assumption of conformal invariance; connections
between SLE and CFT are now quite well understood (see e.g. [, [I]).
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However, actual convergence of discrete models to SLFE in the scaling limit
is known for only a few models. The case on which we focus in this paper is that
of percolation. The topic of conformal invariance for percolation has a long history
— see [[L3 and references therein for an in-depth discussion of it.

In the case of site-percolation on the triangular lattice, it is a celebrated result
of Smirnov ([LL]) that indeed the limit exists and is conformally invariant. While
the proof is quite simple and extremely elegant (see section H below and references
therein), it is very specific to that particular lattice, to the point of being almost
magical; it is a very natural question to ask how it can be generalized to other
cases, and in particular to bond-percolation on the square lattice. Universality and
conformal invariance have indeed been tested numerically for percolation in various
geometries (see e.g. [[IF]), and conformal invariance (assuming the existence of the
limit) is known in the case of Voronoi percolation (see [ff]).

In fact, it seems that the question of convergence itself has hardly been ad-
dressed by physicists, at least in the CFT community — a continuous, conformally
invariant object is usually the starting point of their work rather than its outcome.
Techniques such as the renormalization group do give reason to expect the exis-
tence of a scaling limit and of critical exponents, but they seem to not give much
insight into the emergence of rotational invariance.

This is not surprising in itself, for a very trivial reason: Take any discrete
model for which you know that there is a conformally invariant scaling limit, say
a simple random walk on Z?2, and deform the underlying lattice, in a linear way,
so as to change the aspect ratio of its faces. Then the scaling limit still exists
(it is the image of the previous one by the same transformation); but obviously
it is not rotationally invariant. Since all the rescaling techniques apply exactly
the same way before and after deformation, they cannot be sufficient to derive
rotational invariance. A trace of this appears in the most general statement of
the universality hypothesis (see e.g. [E, section 2.4]): To paraphrase it, given any
two periodic planar graphs, the scaling limits of critical percolation on them are
conjugated by some linear map g.

The main question we address in these notes is the following: Given a discrete
model on a doubly periodic planar graph, how to embed this graph into the plane
so as to make the scaling limit isotropic? If the graph has additional symmetry (as
for instance in the case of the square or triangular lattices), the embedding has
to preserve this symmetry; so a restating of the same question in the terms of the
universality hypothesis would be, absent any additional symmetry for one of the
two graphs involved, can one determine the map g7

The most surprising thing (to me at least) about the question, besides the
fact that it appears to actually be orthogonal to the interests of physicists in that
domain, is that its answer turns out to depend on the model considered. In other
words, there is no absolute notion of a “conformal embedding” of a general graph.
In the case of the simple random walk, the answer is quite easy to obtain, though
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it does not seem to have appeared in the literature in the form we present it here;
in the case of percolation, I could find no reference whatsoever, the closest being
the discussion and numerical study of striated models in ] where, instead of
looking at a different graph, the parameter p in the model is chosen to depend on
the site in Z? in a periodic fashion — which admittedly is a very related question.

The paper is roughly divided into two parts. In the first one, comprised of
the firs two sections, we introduce some notation and the general framework of
the approach, and we treat the case of the simple random walk. This is enough to
prove that the correct embedding is not the same for it as for percolation; we then
argue that circle packings might give a way to answer the question in the latter
case. In the second part, which is of a more speculative nature, we investigate
Smirnov’s proof in some detail, and rephrase it in such a way that its general
strategy can be applied to general triangulations. We then describe the two main
steps of a strategy that could lead to its generalization, though we were able to
perform none of the two.

1. Notation and setup

1.1. The graph

We first define the class of triangulations of the plane we are interested in. Let T’
be a 3-regular finite graph of genus 1 (i.e., a graph that is embeddable in the torus
T? := R?/7Z? but not in the plane, and having only vertices of degree 3). For ease
of notation, we assume that T is equipped with a fixed embedding in T?, which
we also denote by T'. The dual T* of T' (which we also assume to be embedded in
the torus once and for all) is then a triangulation of T2.

Let T' (resp. T*) be the universal cover of T (resp. T*): Then 7" and T* are
mutually dual, infinite, locally finite planar graphs, on which Z? acts by translation.
We are interested in natural ways of embedding T into the complex plane C. Let
T; (the meaning of the notation will become clear in a minute) be the embedding
obtained by pulling T back using the canonical projection from R? to T? — we
will call T; the square embedding of T'.

For every @« € C\ R, let ¢, : C — C be the R-linear map defined by
valx +iy) = x + ay (i.e., it sends 1 to itself and ¢ to «) and let T, be the image
of T; by ¢.. For lack of a better term, we will call T,, the embedding of modulus «
of T in the complex plane.

Notice that the notation T, depends on the a priori choice of the embedding
of T in the flat torus; but, up to rotation and scaling, the set of proper embeddings
of T obtained starting from two different embeddings of 7' is the same, so no
generality is lost (as far as our purpose in these notes is concerned).

One very useful restriction on embeddings is the following:
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Definition 1. We say that an embedding 7, of T in the complex plane is balanced
if each of its vertices is the barycenter (with equal weights) of its neighbors; or,
equivalently, if the simple random walk on it is a martingale.

Proposition 2. Let T be a 3-reqular graph of genus 1: Then, for every o € H, there
is a balanced embedding of T in the complex plane with modulus oc. Moreover, this
embedding is unique up to translations of the plane.

Proof. We only give a sketch of the proof, because expanding it to a full proof is
both straightforward and tedious. The main remark is that any periodic embedding
which minimizes the sum S5, over a period, of the squared lengths of its edges is
balanced: Indeed, the gradient, with respect to the position of a given vertex, of
S is exactly the difference between this point and the barycenter of its neighbors.
(This would be true in any Euclidean space.) It is easy to use a compactness
argument to prove the existence of such a minimizer.

To prove uniqueness up to translation is a little trickier, but since it is not
necessary for the rest of this paper, we allow ourselves to give an even sketchier
argument. First, one can get rid of translations by assuming that a fixed vertex
of T'is put at the origin by the embedding; the set of all possible embeddings of
modulus « is then parameterized by 2(|V(T')| — 1) real-valued parameters, which
are the coordinates of the locations of the other vertices in one period of 7. In
terms of these variables, S5 is polynomial of degree 2. It is bounded below by the
squared length of the longest edge in the embedding, which itself is bounded below,
up to a constant depending only on the combinatorics of the graph, by the square
of the largest of the 2(|V(T")| — 1) parameters; so it goes to infinity uniformly at
infinity. This implies that its Hessian (which is constant) is positive definite, so Sy
is strictly convex as a function of those variables. This immediately implies the
uniqueness of the minimizer. O

An essential point is that, even though our proof uses Euclidean geometry,
the fact that the embedding is balanced is a linear condition. In particular, if the
embedding T; is balanced, then so are all the other T,,. The corresponding a priori
embedding of T itself into the flat torus T? (which is also unique up to translations)
will be freely referred to as the balanced embedding of T into the torus.

1.2. The probabilistic model

We will be interested in critical site-percolation on the triangulation 77; more
specifically, the question we are interested is the following. Let  be a simply
connected, smooth domain in the complex plane, and let A, B, C and D be four
points on its boundary, in that order. For every § > 0, let 25 be the largest
connected component (in terms of graph connectivity) of the intersection of
with 07T, and §j be its dual graph. Qs should be seen as a discretization of € at
scale §. Let Ay, By, Cs and Ds be the vertices of {25 that are closest to A, B, C
and D respectively.

The model we are most interested in is critical site-percolation on €25; how-
ever, most of the following considerations remain valid for other lattice models.
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Let C5(Q2, A, B,C, D) be the event that there is an open crossing in 2}, between
the intervals A;Bs and CsDy of its boundary. Under some symmetry conditions
on T, Russo-Seymour-Welsh theory ensures that at criticality, the probability of
Cs(Q, A, B,C, D) is bounded away from both 0 and 1 as § goes to 0. Its limit was
conjectured by Cardy (see [[]]) using non-rigorous arguments from conformal field
theory; actual convergence was proved, in the case of the triangular lattice (embed-
ded in such a way that its faces are equilateral triangles), by Smirnov (see [[[3, {]).
We defer the statement of the convergence to a later time. The following definition
has become standard:

Definition 3. Assume that, for every choice of (2, A, B, C, D), the probability of
the event Cs5(92, A, B,C, D) has a limit f,(Q, A, B,C, D) as § — 0 — we will refer
to this by saying that the model has a scaling limit. We say that the model is
conformally invariant in the scaling limit if, for every conformal map ® from 2 to
®(£2), one has

fa(, A, B, C, D) = fo(®(Q), ®(A), B(B), 2(C), ®(D)).

This is equivalent to saying that f, (2, A, B,C, D) only depends on the modulus
of the conformal rectangle (2, A, B, C, D).

(Notice that the extension of ® to the boundary of 2, which is necessary
for the above definition to make sense, is ensured as soon as €2 is assumed to be
regular enough.)

2. Periodic embeddings

2.1. Uniqueness of the modulus

Given T, it is natural to ask whether it is possible to choose a value for o which
provides conformal invariance in the scaling limit. There are two possible strategies:
Either give an explicit value for which “a miracle occurs” (in physical terms, for
which the model is integrable — this is what Smirnov did in the case of the
triangular lattice), or obtain its existence in a non-constructive way — which is
what we are trying to do here.

A reassuring fact is that, whenever such an « exists, it is essentially unique:

Proposition 4. For every graph T, there are either zero or two values of o such
that critical site-percolation on T is conformally invariant in the scaling limit. In
the latter case, the two values are complex conjugates of each other.

Proof. The key remark is the following: Let 8 be a non-real complex number. Since
the event Cy is defined using purely combinatorial features, one can push the whole
picture forward through g without changing its probability. Let o/ = pg(a): ¢g
then transforms €2 into ¢3(Q2) and the lattice T, into T, . So, assuming convergence
on both sides, one always has

fa(Q,4,B,C,D) = for(p5(Q), p3(A), p5(B), ps(C), ps(D)).
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In the case 3 = —i, g is simply the map z — Z. In that case, the modulus of
the conformal rectangle (¢_;(2), D, C, B, A) is the same as that of (2, A, B, C, D),
and clearly the event Cjy is invariant when the order of the corners is reversed. So,
conformal invariance for T, and the previous remark implies that f5(Q2, A, B,C, D)
still only depends on the modulus of the conformal rectangle — in other words,
if critical percolation Ty, is conformally invariant in the scaling limit, that is also
the case on T5.

Now assume conformal invariance in the scaling limit for two choices of the
modulus in the upper-half plane; these moduli can always be written as « and
o' = pg(a) for an appropriate choice of 3 € H\ {i}. Still using the above remark,
all that is needed to arrive to a contradiction is to show that f, does actually
depend on the modulus of the rectangle (i.e., that it is not constant), and that
there exist two conformal rectangles with the same modulus and whose images by
s have different moduli.

For the former point, it is enough to prove that for every choice of p, p’ > 0,
the probability of crossing the rectangle [0, p] x [0, 1] horizontally is strictly larger
than that of crossing [0, p + p'] x [0, 1]. This is obvious by Russo-Seymour-Welsh:
The event that there is a vertical dual crossing in 675 N [p + d,p + p'] x [0,1] is
independent of Cs([0, p] x [0,1], p, p+1,%,0) and its probability is bounded below,
uniformly in § < p’/10, by some positive € depending only on p and p’. Hence,
still assuming that the limits all exist as § — 0,

fol[0,p+ 01 x [0,1], p+ ', p+ o' +1,3,0) < (1 =€) fa([0, p] x [0,1], p, p+ 1,1, 0).

For the latter point, assume that g preserves the equality of moduli of con-
formal rectangles. Let Q = [0, 1]? be the unit square. By symmetry, the conformal
rectangles (Q,0,1,1 4 4,7) and (@, 1,1 + 4,4,0) have the same modulus; on the
other hand ¢g(Q) is a parallelogram, and by our hypothesis on g it has the same
modulus in both directions. This easily implies that it is in fact a rhombus. If now
@’ is the square with vertices 1/2, 1+i/2, 1/2+1,i/2, p(Q’) is both a rhombus
(by the same argument) and a rectangle (because its vertices are the midpoints of
the edges of 3(Q) which is a rhombus). Hence ¢3(Q’) is a square, and so is ¢3(Q),
and in particular § = ¢g(i) = 4, which is in contradiction with our hypothesis. [

When such a pair of moduli exists, we will denote by o™ the one with

positive imaginary part. The same reasoning can be done for various models, and
in each case where the scaling limit exists and is non-trivial, there will be a pair of
moduli making it conformally invariant; we will distinguish them from each other
by using the name of the model as a superscript (so that for instance o5 makes
the simple random walk conformally invariant in the scaling limit — cf. below).

When an argument does not depend on the specific model (as is the case in
the next subsection), we will use the generic notation ap as a placeholder.

2.2. Obtaining ap by symmetry arguments

It should be noted that, because the value of ar (when it exists) is uniquely
defined by the combinatorics of T, there are cases where additional symmetry
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specifies its value uniquely. Indeed, assume W is a graph isomorphism of T which
is neither a translation nor a central symmetry; for every «, it induces a topological
isomorphism of T,,. Assume without loss of generality that the origin of the plane
is chosen to be one of the vertices of Ty,; let zg = U(0), 21 = U(1) and z, = ¥(«)
(notice that both 1 and « are also vertices of T,,).

Assume o = o™, Because U is an isomorphism, it preserves site-percolation;
so, in particular, critical site-percolation on (7}, ) is conformally invariant in the

scaling limit. By Proposition , this implies that
2o —20 _ V() — ¥(0)
21 —20  U(1)—¥(0)

This condition is then enough to obtain the value of ap. There are two natural

examples of that (illustrated in Figures [| and ), which we now describe.

€{wo,a}l. (2.1)

FIGURE 1. The graphs T}, (left) and Ty (right), embedded into
T? in a balanced way with a vertex at the origin; empty circles
and dotted lines represent the dual graphs. Both are represented
using their square embedding, so the triangles in T}, are not equi-
lateral.

7@;'7”7 ‘ *";;‘(}'

FIGURE 2. The same graphs as in Figure m, with the origin on a
vertex of the dual.
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o Let T}, be one period of the honeycomb lattice, embedded into T2 in such
a way that every vertex is the barycenter of its neighbors (we will call such
an embedding balanced); since we take T? to be a square, the coordinates of
the vertices of T}, are (0,0), (1/3,0), (1/2,1/2) and (5/6,1/2). There is an
isomorphism ¥, of order 3 of T}, corresponding to rotation around (0,0); on
Ty, it sends 0 to 2o =0, 1 to 21 = (Ba — 1)/2 and & to zo = —(1 + «)/2.
Since U}, preserves orientation, Equation @) leads to

Za — 20 1+« V3

Z1 — 20 1 -3« @ @ 23’

in other words o, = iv3 /3. Not surprisingly, this corresponds to embedding
the faces of T,j as equilateral triangles, and those of Ty as regular hexagons.

e Let T be chosen in such a way that Ts* has the topology of the centered square
lattice; if again the embedding is balanced, the coordinates of the vertices of
T, are (0,0), (1/2,0), (1/4,1/4) and (1/4,3/4). There is an isomorphism
W, of order 4 of Ts, corresponding to a rotation rotation around the vertex
(1/4,0) of T7. In that case

— -3/4—a/4)—(1/4— /4 -1
W (Ao -i-a/h) 1
z1—z0 (1/4+3a/4)— (1/4— a/4) «
so a, = i. Again not surprisingly, this corresponds to the usual embedding
of the square lattice using — well, squares.

Of course, identifying a in those cases is a long way from a proof of conformal
invariance; but it would seem that understanding, in the general case, what "

is would be a significant progress in our understanding of the process.

2.3. Embedding using random walks

As an aside, in this subsection and the next we describe two natural ways of embed-
ding a doubly periodic graph into the complex plane, which both have something
to do with conformal invariance.

Let T be a finite 3-regular graph of genus 1, embedded in T? in a balanced
way, and let (X,,)n>0 be a simple random walk on it. For simplicity, assume that
(Xy) is irreducible as a Markov chain. (Both 3-regularity and irreducibility are
completely unnecessary as far as the results presented here are concerned, and
the same reasoning would work in the general case, but notation would be a little
tedious.) Since T is finite, (X,,) converges in distribution to the unique invariant
measure, which, because T is 3-regular, is the uniform measure on V(T'); moreover
the convergence is exponentially fast.

Now pick a € H, and lift (X,,) to a simple random walk (Z,,) on T,. By the
balance condition on the embedding, it is easy to check that (Z,,) is a martingale;
exponential decay of correlations between its increments is enough to obtain a
central limit theorem (cf. for instance [E] and references therein). To write the
covariance matrix in a convenient form, we need some notation. For each (oriented)
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edge e of T, choose z1(e) and z3(e) in T, in such a way that they are neighbors
and the edge (z1(e), z2(e)) is a pre-image of e by the natural projection from T,
to T let e, := z2(e) — z1(e) — obviously it does not depend on the choice of z;(e)
and zo(e). Define

ecE(T)
yy — 1 % 2
= O = ) eEEZ(T)(Je“) |
oy = ! eq)(Se
Eoz (T) |E(T)| ee;(T)(% 04)( 04)

It is not difficult to compute the covariance matrix of the scaling limit of the walk:

Proposition 5. Asn goes to infinity, n='/2Z, converges in distribution to a Gauss-
tan variable with covariance matriz
| ZeN(T) BT
2= | S v

Proof. The walk is centered by definition; the existence of a Gaussian limit is a
direct consequence of the exponential decay of step correlations. All that remains
to be done is to compute the covariance matrix. We focus on the first matrix entry,
the others being similar. We have

n—1

Var(n='/2R2,) = E % (Z R(Zisr — Zk)> _ % S B ((R(Zi11 — 20))]
k=0 k=0

(the other terms disappear by the martingale property). We know that Zy1 — Z
converges in distribution, because the walk on T" converges in distribution; its limit
is the distribution of e, where e is an edge of T chosen uniformly. By Cesaro’s
Lemma, the expression above then converges to £%%; the computation of the other
entries in X, (7") it exactly similar. O

Even though the previous definition of conformal invariance in the scaling
limit does not apply directly in this case, its natural counterpart is to ask for
the scaling limit of the walk to be rotationally invariant (i.e., to be standard
two-dimensional Brownian motion); this is equivalent to saying that the covari-
ance matrix 3, (7T) is scalar, and since its entries are real, yet another equivalent
formulation is

[S25(T) -SR] +i[EX(T)] =0 < Y (ea)’=0.

The last equation is a second-degree equation in a with real-valued coeffi-
cients. If @ € R, all the terms are non-negative and at least one is positive, so
the equation has no solution in R; letting v go to 400 along the real line leads
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to |E(T)| positive terms, at least one of which is of order a2, so the coefficient
in o? in the equation is not zero. Hence the equation has exactly two solutions
which are complex conjugate of each other — the situation is very similar to the
one in Proposition H For further reference, we let oV be the one with positive
imaginary part. One advantage of this choice (besides the fact that it exists for
every doubly periodic graph) is that the value of o}V is very easy to compute.

Remark 6. In the more general case of a doubly periodic graph but without the
assumptions of 3-regularity and irreducibility (but still assuming that the embed-
ding is balanced), the condition Y~ €2 is still necessary and sufficient for the walk
to be isotropic in the scaling limit — and the proof is essentially the same, so we
do not delve into more detail.

Remark 7. Of course, in the cases where T has some additional symmetry, afV

is the same as that obtained in the previous subsection using symmetry ...

Remark 8. One can also look at a simple random walk on the dual graph T7¥, and
ask for which values of « this dual walk is isotropic in the scaling limit. As it turns
out, the modulus one obtains this way is the same as on the initial graph, in other
words

L
This is a very weak version of universality, and unfortunately there doesn’t seem
to be a purely discrete proof of it — say, using a coupling of the two walks.

There is another natural way to obtain the same condition. We are planning
on studying convergence of discrete objects to conformally invariant limits, so it
is a good idea to look for discrete-harmonic functions on T, (with respect to the
natural Laplacian, which is the same as the generator of the simple random walk
on T, ). The condition of balanced embedding is exactly equivalent to saying that
the identity map is harmonic on 7,; it is a linear condition, so it does not depend
on the value of «.

The main difficulty when looking at discrete holomorphic maps is that the
product of two such maps is not holomorphic in general. But we are interested in
scaling limits, so maybe imposing that such a product is in fact “almost discrete
holomorphic” (in the sense that it satisfies the Cauchy-Riemann equations up to
an error term which vanishes in the scaling limit) would be sufficient.

Whether the previous paragraph makes sense or not — let us investigate
whether the map ¢ : z — 22 is discrete-harmonic. For every z € T,,, we can write

AR =3 Y- =3 Y Grel-F=z 3 A

2~z ecE.(T) ecE.(T)

(the term in Y ze, vanishes because the embedding is balanced). So, if ¢ is
discrete-harmonic, summing the above relation over z € T gives the very same
condition " e2 = 0 as before; in other words, 5" is the embedding for which
2+ 22 is discrete-harmonic on average.
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As a last remark, let us investigate how strong the condition of exact har-
monicity of ( is; so assume that « is chosen in such a way that A( is identically
0. Let e be any oriented edge of T; let e’ := 7.e and e’ := 72.e be the two other
edges sharing the same source as e. The balance condition on the embedding plus
harmonicity of ¢ imply the following system:

eq t+el, +el =0
2.2
Labesitr 20 22)
Up to rotation and scaling, one can always assume that e, = 1, so the system
reduces to e/, + e = —1 and (e),)? + (e//)? = —1. Squaring the first of these two

relations and substracting the second, one obtains el e’ =1, so e/, and e/ are the
two solutions of the equation

X2+ X+4+1=0
which implies that {e/,, e/} = {eF27/3}. To sum it up:

o) o

Proposition 9. The only 3-reqular graph on which the map ¢ : z — 22 is discrete-
harmonic is the honeycomb lattice, embedded in such a way that its faces are regular
hezxagons.

So, imposing ¢ to be harmonic not only determines the embedding, it also
restricts T’ to essentially one graph; but in terms of scaling limits, the condition
that ¢ is harmonic on the average makes as much sense as the exact condition.

2.4. Embedding using circle packings

There is another way to specify essentially unique embeddings of triangulations,
which is very strongly related to conformal geometry, using the theory of circle
packings. It is a fascinating subject in itself and a detailed treatment would be
outside of the purpose of these notes, so the interested reader is advised to consult
the book of Stephenson [@] and the references therein for the proofs of the claims
in this subsection and much more.

We first give a version of a theorem of Kébe, Andreev and Thurston, special-
ized to our case. It is a statement about triangulations, which is why we actually
apply it to T* instead of directly to T. Notice that we do not assume T to be
already embedded into the torus T2.

Theorem 10 (Discrete uniformization theorem [, p. 51]). Let T* be a finite
triangulation of the torus, and let T* be its universal cover. There exists a locally
finite family (CU)UEV(T*) of disks of positive radii and disjoint interiors, satisfying
the following compatibility condition: C, and C, are tangent if, and only if, v and
v’ are neighbors in T*.

Such a family is called a circle packing associated to the graph T*. It is es-
sentially unique, in the following sense: If (Cl) is another circle packing associated
to T*, then there is a map ¢ : C — C, either of the form z — az + b or of the
form z — az +b, such that for every v € V(T*), C, = ¢(Cy).
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Remark 11. The “existence” part of the above theorem remains true in a much
broader class of graphs; essentially all that is necessary is bounded degree and
recurrence of the simple random walk on it. (One can see that a packing exists
by completing the graph into a triangulation.) The “uniqueness” part however
fails in general, as is made clear as soon as one tries to construct a circle packing
associated to the square lattice ...

A consequence of the uniqueness part of the theorem is the following: Let
0 :T* — T* be a translation along one of the periods of T*, and let C;, := Cy(y);
according to the theorem, let ¢ be such that C, = ¢(C,) for all v. Up to composition
of ¢ by itself, one can always assume that it is of the form ¢(z) = az + b. By the
assumption of local finiteness of the circle packing, one has |a| = 1; besides, the
orbits of 6 are unbounded, so those of ¢ are too, and in particular it does not
have a fixed point, which implies that a = 1 and b # 0. In other words, ¢ is a
translation, i.e. the circle packing associated to T is itself doubly periodic.

As soon as one is given a circle packing associated to a planar graph, it
comes with a natural embedding: Every vertex v € V(T*) will be represented by
the center of C,, and if v’ is a neighbor of v, the edge (v,v’) will be embedded as a
segment — which is the union of a radius of C,, and a radius of C,, because those
two disks are tangent. One can then specify an embedding of T by putting each of
its vertex at the center of the disk inscribed in the corresponding triangular face
of (the embedding of) 7*; the collection of all those inscribed disks is in fact a
circle packing associated with the graph T (see Figure E)

FIGURE 3. The circle packings associated to the graph Ty (solid
lines) and its dual (dotted lines).
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Of more interest to us is the fact that the embedding is itself doubly peri-
odic, by the previous remarks. Up to rotation, and scaling and maybe complex
conjugation, one can assume that the period corresponding to the translation by
1 (resp. i) in T? is equal to 1 (resp. o € H). Once again, the value of the modulus

« is uniquely determined; for further reference, we will denote it by agp.

Yet again, as soon as one additional symmetry is present in T, the value
of agp is the same as that obtained using the symmetry; this is again a direct
consequence of the essential uniqueness of the circle packing.

2.5. “Exotic” embeddings

Looking closely at Smirnov’s proof, one notices that essentially the only place
where the specifics of the graph are used is in the proof of “integrability” or exact
cancellation; we will come back to this in the next section, let us just mention
that the key ingredient in the phenomenon can be seen to be the fact that ) (e)
(as introduced earlier) is identically 0. This is equivalent to saying that all the
triangles of the triangular lattice are equilateral.

A way to try and generalize the proof is to demand that all the faces of T
be equilateral triangles. Of course this cannot be done by embedding it in the
plane, even locally — the total angle around a vertex would be equal to 27 only
if the degree of the vertex is 6. But one can build a 2-dimensional manifold Mp
with conic singularities by gluing together equilateral triangles according to the
combinatorics of T*; since the average degree of a vertex of T is equal to 6, the
average curvature of the manifold (defined e.g. as the limit of the normalized total
curvature in large discs) is 0.

The manifold My is not flat in general (the only case where it is being
the triangular lattice), but it is homeomorphic to the complex plane, and one
can hope to see it as a perturbation of it on which some of the standard tools
of complex analysis could have counterparts — the optimal being to be able to
perform Smirnov’s proof within it. This is no easy task, and is probably not doable
anyway.

To relate M to the topic of this section, one can try to define a module out
of it. A good candidate for that is the following: Assume that My can be realized
as a sub-manifold of R? (or in RY for d > 2 large enough), in such a way that the
(combinatorial) translations on T act by global translations of the ambient space,
thus forming a periodic sub-manifold. Then there is a copy of Z? acting on it, and
the affine plane containing a given point of My and spanned by the directions of
the two generators of that group is at finite Hausdorff distance from it; in other
words, this realization of M7 looks like a bounded perturbation of a Euclidean
plane.

One can then look at the orthogonal projections of the vertices of T* (seen as
points of Mr) onto that plane; this creates a doubly periodic, locally finite family
of points of the Euclidean plane. It is not always possible to form an embedding
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of T* in the plane from it (with disjoint edges); but it does define a value of « as
above.

Unfortunately, there are cases when this value of « is not well-defined, in the
sense that it depends on the choice of M7; this happens if the (infinite) polyhedron
associated to 1%, with equilateral faces, is flerible. The simplest example of this
phenomenon is to take T to be two periods of the honeycomb lattice in each
direction.

2.6. Comparing different methods of embedding

We now have at least two (forgetting about the last one) ways of giving a conformal
structure to a torus equipped with a triangulation — which is but another way of
referring to the choice of ar. Assuming that critical percolation does have a scaling
limit, it leads to a third choice o of it.

It would be a natural intuition that all these moduli are the same, and corre-
spond to a notion of conformal embedding of a triangulation (or a 3-regular graph)
in the plane; and they all have a claim to that name. But this is not true in general:
We detail the construction of a counterexample. Start with the graph T and its
dual T7; and refine one of the “vertical” triangular faces of T by adding a vertex
in the interior of it, connected to its three vertices. In terms of the primal graph,
this correspond to replacing one of its vertices by a triangle — see Figure . Let T
be the graph obtained that way; we will refer to such a splitting as a refinement,
and to the added vertex as a new vertez.

FIGURE 4. Square (but not balanced) embeddings of 7" (solid)
and its dual (dotted); the origin is taken as a point of T, on the
left, and as a point of the dual on the right, corresponding to the
ones chosen for Figures m and E

In terms of circle packings, this changes essentially nothing; the new vertex of
(T?)* can be realized as a new disc without modifying the rest of the configuration
(cf. Figure E) In terms of random walks, however, adding edges will modify the
covariance matrix in the central limit theorem. The computation can be done
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easily, as explained above, and one gets the following values:

) . /6,
a%?:z:a%f; aFT{WZZ\/;#z:aFT{W.

In this particular case, the value of a?}’Y)* is also i,/6/7.

F1Gure 5. Splitting a face of a triangulation into 3 triangles,
and the corresponding modification of its circle packing (added
features represented by dashed lines)

RW and aCP Perc

So, « are different in general. Is « (provided it exists) one
of them? An easy fact to notice is the following: Let T be a triangulation of the
torus and let (77)* be obtained from it by splitting a triangle into 3 as in the
construction of T7. Then, consider two realizations of site-percolation at p, = 1/2
on both universal covers, coupled in such a way that the common vertices are in the
same state for both models. In other words, start with a realization of percolation
on T and without changing site states, refine a periodic family of triangles of it
into 3, choosing the state of each new vertex independently of the others and of
the configuration on 1+

If there is a chain of open vertices in T*, this chain is also a chain of open ver-
tices in the refined graph — because all the edges are preserved in the refinement.
Conversely, starting from a chain of open vertices in the refinement and removing
each occurrence of a new vertex on it, one obtains a chain of open vertices in T*;
the reason for that being that the triangle is a complete graph. Another way of
stating the same fact is to say that opening (resp. closing) one of the new vertices
cannot join two previously disjoint open clusters (resp. split a cluster into two
disjoint components); they cannot be pivotal for a crossing event.

Hence, the probability that a large conformal rectangle is crossed is the same
in both cases (at least if the choice of the discrete approximation of its boundary
is the same for both graphs, which in particular implies that it contains no new
vertex), and so is f, for every choice of « (still assuming that it exists, of course).
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If one is conformally invariant in the scaling limit, the other also has to be. In
short,
ag:erc — ag:?rc
Looking at circle packings instead of percolation, we get the same identity
(as was mentioned in the particular case of Ts), with a very similar proof: Adding
a vertex does not change anything to the rest of the picture, and we readily obtain
oSP = afF.
This leads us to the following hope, which we state as a conjecture even though it
is much closer to being wishful thinking:

Conjecture 12. Let T be a triangulation of the torus. Then, the critical parameter
for site-percolation on its universal cover T+ is equal to 1/2, and for every a € H,
critical site-percolation on To’j has a scaling limit. The value of the modulus o for
which the model is conformally invariant in the scaling limit is that obtained from
the circle packing associated to T

ag:erc — a%P )

3. Critical percolation on the triangular lattice

For reference, and as a way of introducing our general strategy, we give in this
section a very shortened version of Smirnov’s proof of the existence and conformal
invariance of the scaling limit for critical site-percolation on the triangular lattice
T},. The interested reader is advised to consult our previous note [E] for an “ex-
tended shortening”, or Smirnov’s article [[[] for the original proof; see the book of
Bollobas and Riordan [H] for a more detailed treatment. Up to cosmetic changes,
we follow the notation of [{.

Remark 13. Up to the last paragraph of the section, we are not assuming that
the lattice we are working with is the honeycomb lattice; our only assumption is
that we have an a priori bound for crossing probabilities of large rectangles which
depends on their aspect ratio but not on their size (we “assume Russo-Seymour-
Welsh conditions”). It is not actually clear how general those are; all the standard
proofs require at least some symmetry in the lattice in addition to periodicity, but
it is a natural conjecture that periodicity is enough.

Here and in the remainder of this paper, 7 := €27/3 will be the third root
of unity with positive imaginary part. Let T" be a finite graph of genus 1, T, an
embedding of modulus « of T in the complex plane; let V(Ty,) (resp. E(Ty,)) be
the set of vertices (resp. oriented edges) of T,. Fach vertex z € V(T,) has three
neighbours; let E,(T,,) be the set of the three oriented edges in E(T,) having their
source at z. That set can be cyclically ordered counterclockwise; if e € E,(T,) is
one of the three edges starting at z, we will denote by 7.e (resp. 72.¢) the next
(resp. second to next) edge in the ordering.
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Remark 14. In the particular case of the honeycomb lattice, seeing each edge as
a complex number (being the difference between its target and its source), the
notation 7.e corresponds to complex multiplication by e27%/3
T.e = Te as a product of complex numbers. That is of course not the case in
general, but we keep the formal notation for clarity. In what follows, whenever an
algebraic expression involves the product of a complex number by an edge of T, or
T, as above the edge will be understood as the difference, as a complex number,
between its target and its source; we will never use formal linear combinations of
edges. The notation 7.e (with a dot) will be reserved for the “topological” rotation
within E, (Ty,).

— in other words,

Let again Q be a smooth Jordan domain in the complex plane, and let A,
B, C' and D be three points on its boundary, in that order when following OS2
counterclockwise. Let €25 be the largest connected component of Q2 N 07T, and let
As (resp. Bs, Cs, Dg) be the point of Q5 that is closest to A (resp. B, C, D). The
main result in Smirnov’s paper ([Lf]) is the following:

Theorem 15 (Smirnov). In the case where T, is the honeycomb lattice, embedded
50 as to make its faces regular hewvagons (i.e., when o = i\/3/3), critical site-
percolation has a conformally invariant scaling limit. If Q is an equilateral triangle
with vertices A, B and C, then

|CD
QA B,C,D)=——.
Knowing this particular family of values of f, is enough, together with con-
formal invariance, to compute it for any conformal rectangle. The formula obtained
for a rectangle is known as Cardy’s formula.

To each edge e € E(T,) corresponds its dual oriented edge e* € E(T%),
oriented in such a way that the angle (e,e*) is in (0,7). If —e denotes the edge
with the same endpoints as e but the reverse orientation, then we have e** = —e.
Define

Yle) i=e* +1(r.e)* +7%(r2.e)"

(where as above we interpret the edges e*, (7.)* and (7°.e)* as complex numbers).
It is easy to check that ¢ (e) = 0 if, and only if, the face of T} corresponding to
the source of e is an equilateral triangle; so, ¥(e) can be seen as a measure of the
local deviation between T, and the honeycomb lattice. An identity which will be
useful later is the following:

VzeV(T.), >, w(e)=0. (3.1)

e€FE.(Ty)

For every z € Qs, let E4 5(z) be the event that there is a simple path of open
vertices of (2}, joining two points of the boundary of the domain, which separates
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z and A from B and C; let Hy := P[E4 5(z)]. Define similar events for points B
and C by a circular permutation of the letters, and let

Ss(z) == Has(z)+ Hp,s(z) + He,s(2),
H5(Z) = HAJ;(Z) + THBJ;(Z) + TQHQ(;(Z).

It is a direct consequence of Russo-Seymour-Welsh estimates that these functions
are all Holder with some universal positive exponent, with a norm which does not
depend on ¢, so by Ascoli’s theorem they form a relatively compact family, and as
0 — 0 they have subsequential limits which are Holder maps from €2 to C; all that
is needed is prove that only one such limit is possible.

The key argument is to show that if h (resp. s) is any subsequential limit of
(Hs) (resp. (Ss)) as § — 0, then h and s are holomorphic; indeed, assume for a
moment that they are. Since s is also real-valued, it has to be constant, and its
value is 1 by boundary conditions (e.g. at point A). On the other hand, along the
boundary arc (A5B;s) of 9Qs, He,s is identically 0, so the image of the arc (AB)
by h is contained in the segment [1, 7] of C; and similar statements hold mutatis
mutandis for the arcs (BC) and (C'A). By basic index theory, this implies that h
is the unique conformal map sending €2 to the (equilateral) triangle of vertices 1, 7
and 72, and that is enough to characterize it and to finish the proof of Theorem E

So, the crux of the matter, as expected, is to prove that the map h has to
be holomorphic. The most convenient way to do that is to use Morera’s theorem,
which states that h is indeed holomorphic on Q if, and only if, its integral along
any closed, smooth curve contained in € is equal to 0.

Let v be such a curve, and let s = (20, 21, .- ., 21, = 20) be a closed chain of
vertices of {5 which approximates it within Hausdorff distance § and has O(6~1)
points. Because the functions Hy are uniformly Holder, it follows that

7{ Hs(z)dz := i Hs(zk)(zkg1 — 25) — %h(z)dz.
s k=0 Y

We want to prove that, for a suitable choice of «, the discrete integral on the
left-hand side of that equation vanishes in the scaling limit.

If e = (2, 2’) is an oriented edge of {25, define Py 5(e) := P[Ea 5(z")\ Ea,s(2)];
define Pps and Pc s similarly. A very clever remark due to Smirnov, which is
actually the only place in his proof where specifics of the model (as opposed to
the lattice) are used, is that one can use color-swapping arguments to prove that,
for every oriented edge,

PA,(;(G) - PB75(T.€) = PC,(;(TQ.e). (32)

On the other hand, since differences of values of Hs between points of s can
be computed in terms of these functions P. s, the discrete integral above can be
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rewritten using them: Letting F(vs) be the set of edges contained in the domain
surrounded by 75 and using (), one gets

Hs(z)dz = Z (e)Pas(e) + o(1). (3.3)
e e€E(vs)

A similar computation, together with the fact that e*+(7.e)*+(72.€)* is identically

equal to 0, leads to
Ss(z)dz = o(1). (3.4)
s
We again refer the reader to [f for the details of this construction.

Notice that it already implies that s is holomorphic, hence constant equal to
1, independently of the value of «; so, whether A is holomorphic or not, it will send
) to the triangle of vertices 1, 7 and 72 anyway. In the case of the triangular lattice
embedded in the usual way, 1(e) is also identically equal to 0, as was mentioned
above, so h is itself holomorphic, and the proof is complete.

The remainder of these notes is devoted to some ideas about how to extend
the general framework of the proof to more general cases; it is not clear how close
one is to a proof, but it is likely that at least one fundamentally new idea will
be required. However, we do believe that the overall strategy which we will now
describe is the right angle of attack of the problem. Do not expect to find any
formal proof in what follows, though.

4. Other triangulations

4.1. Using local shifts

The first natural idea when trying to generalize the construction of Smirnov is to
try an apply it to more general periodic triangulations of the plane. Indeed, in all
that precedes, up to and including Equation @)7 nothing is specific to the regular
triangular lattice, only Russo-Seymour-Welsh conditions (and their corollary that
pe = 1/2) are needed. It is only at the very last step, noticing that 1 was identically
equal to 0, that the precise geometry was needed.

The key fact that makes hope possible is the following (and it is actually
similar to one of the points we made earlier): In the expression of the discrete
integral as a sum over interior edges, each term is the product of two contributions:

e 1 (e) which depends on the geometry of the embedding, and through that on
the value of «;
e Py s(e) which is only a function of the combinatorics of 2.

Even though s as a graph does depend on the choice of «, one can make the
following remark: Applying the transformation ¢g (for some 3 € H) to both the
domain €2 and the lattice 07T, does not change €2, as a graph. In particular it does
not change the value of PA,(;(e).
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One can then see the whole sum as a function 3, say Sq s5(3). Because ¢g(2)
is a real-affine function of /3, so is Sq s; one can then try to solve the equation
Sa,5(8) = 0in 8. Using the corresponding ¢g, one gets a joint choice of a domain,
a lattice modulus and mesh, and a curve 7 making the discrete contour integral
vanish.

It the modulus thus obtained actually did not depend on €2, § or 7, we would
be done — call it a2 and there is only bookkeeping left to do. However we do not
even know whether it has a limit as § | 0 ... An alternative is as follows. Because
the lattice is periodic, it makes sense to first look at the sum > 1(e)P4 s(e) over
one fundamental domain. If that is small, then over the copy of the fundamental
domain immediately to the right of the previous one, the terms v (e) are exactly
the same, and one is lead to compare P4 s for two neighboring pre-images of a
given edge of T'.

So, let e be an edge of 25, and let e + § be its image by a translation of one
period to the right. Making the dependency on the shape of the domain explicit in
the notation, one can replace the translation of e by a translation of the domain
itself and the boundary points in the opposite direction, to obtain

P 5(e+8) = P50, (4.1)

To estimate the difference between this term and the corresponding one in €2, one
can consider coupling two realizations of percolation, one on €25 and the other in
Qs — 0, so that they coincide on the intersection between the two.

The event corresponding to PX s(e) is that there is an open simple path
separating the target of e and A from B, and C, and that no open simple path
separates the source of e and A from B and C'; this is equivalent to the existence
of 3 disjoint paths from the 3 vertices of the face at the source of e to the 3 “sides”
of the conformal triangle (2, A, B, C), two of them being formed of open vertices
and the third being formed of closed vertices — cf. Figure E For this to happen
in Q but not in Q — 4, one of these arms needs to go up to 9 but not to (N2 — ),
and the only way for this to be realized is for a path of the opposite color to
prevent it; this can be done in finitely many ways, Figure E being one of them;
PX 5 — PX}‘S can then be written as the linear combination of the probabilities
of finitely many terms of that form — half of these actually corresponding to the
reversed situation, where arms go up to 9(Q2 — §) but not up to 9.

In the case corresponding to Figure E, and all the similar ones, one sees that
3 arms connect the source of e to the boundary of QN (2 —4), and on at least one
point of that boundaries there have to be 3 disjoint arms of diameter of order 1.
There are O(6~1) points on the boundary, and the probability that 3 such arms
exist from one of them is known — at least in the case of a polygon, which is
enough for our purposes — to behave like §2, see e.g. [@]

Another possible reason for the non-existence of 3 arms from the source
of e to the correct portions of the boundary of 2 — ¢ (say) is that one of the
corresponding arms in 2 actually lands very close to either A, B or C': Preventing
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FIGURE 6. A typical case contributing to P ;(e) — PX?(@). The
original domain boundary is represented by a solid line, that of the
shifted domain bu a dashed-and-dotted line; open (resp. closed)
arms from the source of e are represented as solid (resp. dotted)
lines, and the additional open path preventing the closed arm from
connecting to the boundary of Q5 — § is represented as a dashed
curve.

it from touching the relevant part of 9(Q2 — §) requires only one additional arm
from a d-neighborhood of that vertex — i.e., a total of 2 arms of diameter of order
1. The probability for that (see [@] also), still in the case when 2 is a polygon
with none of A, B or C' as a vertex, behaves like §. Fortunately, there are only 3
corners on a conformal triangle, so the contribution of these cases is of the same
order as previously

Putting everything together, one gets an estimate of the form

Pi5%(e) = Pis(e) [1+0(0)]. (4.2)

Coming back to our current goal, let £ be the set of oriented edges in a given
period of s, and let £ + ¢ be its image by the translation of vector §. Then,

Y v(ePisle) =) w(e)PLs(e) [L+O()]

ecE+6 ecf
=Y d(e)P{s(e) + O
ecf

with n > 0; the existence of such an 7 is ensured by Russo-Seymour-Welsh
type arguments again, which ensure that, uniformly in e and ¢, for every edge
e, PXJ(e) = O(M).

Now, if that is the way the proof starts, what needs to be done is quite clear:
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e Fix a period & of the graph,
e Choose « so that the previous sum, over this period, of ¥ (e) P 5(e) is equal
to 0,
e Use the above estimate to give an upper bound for the same sum on neigh-
boring periods;
e Try to somehow propagate the estimate up to the boundary.
The last part of the plan is the one that does not work directly, because one needs
of the order of §—! steps to go from £ to 912, and the previous bound is not
small enough to achieve that; one would need a term of the order of O(§377). It
is however quite possible that a more careful decomposition of the events would
lead to additional cancellation, though we were not able to perform it.

4.2. Using incipient infinite clusters

Another idea which might have a better chance of working out is based on the idea
of incipient infinite clusters. We are trying to ensure that > 1 (e)Pa s(e) is equal
to 0(6%) over a period for a suitable choice of a; but for it to be exactly equal to 0
depends only on the ratios P4 (e)/Pa(e’) within the period considered, and not on
their individual values. One can then let § go to 0, or equivalently let €2 increase
to cover the whole space, and look at this ratio.

Proposition 16. There is a map 7 : E(T) — (0,+00) such that the following
happens. Let e, €' be two edges of Ty, which we identify with T' for easier notation,
and let § = 1. Then, as € increases to cover the whole plane,

PEi(e) (e
- )
Pii(e)  m(e)
uniformly in the choices of A, B and C on 0). The map m is periodic and does
not depend on the choice of a.

Proof. The argument is very similar to Kesten’s proof of existence of the incipient
infinite cluster (see [[LI]); it is based on Russo-Seymour-Welsh estimates. It will
appear in an upcoming paper [E] Notice that there is no requirement for A, B and
C to remain separated from each other; this is similar to the fact that the incipient
infinite cluster is also the limit, as n — o0, of critical percolation conditioned to
the event that the origin is connected to the point (n,0) — which in turn is
again a consequence of Russo-Seymour-Welsh theory. The speed of convergence is
certainly different with and without such restrictions on the positions of A, B and
C, though. O

Seeing this Proposition, one is tempted to define o by solving the equation
S w(e)m(e) = 0, (4.3)
eef

where again the sum is taken over one period of the lattice. Indeed, all that remains
in the sum, over the same period of the lattice, of 1)(e) P4 (e) is composed of terms
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of a smaller order. However, because the limit taken to define 7 is uniform in the
choices of A, B and C, in particular it is invariant by re-labelling of the corners
of the conformal triangle; equivalently, taking Pp instead of P4 leads to the same
limit. Combining this remark with Equation (B.9), one gets the following identities:

Ve € E(T), m(e)=mn(r.e)=mn(r2e). (4.4)
In other words, m(e) only depends on the source of e. For every edge e = (z,2'),
let 7(z) := mw(e): If V is a period of V(T'), one has

S wlermle) = > w(z) D b((z,) =0
ec& zeV zl~z

by using the remark in Equation @I) So, the equation (ft.3)) is actually always
true, and does not help in finding the value of « . ..

This is actually good news, because it is the sign of emerging cancellations
in the scaling limit, which were not at first apparent; that means that the relevant
terms in (@) are actually smaller than they look at first sight, which in turn
means that making the leading term equal to 0 by the correct choice of « leads to
even smaller terms.

Whether the overall strategy can be made to work actually depends on the
speed of convergence in the statement of Proposition E In the case of the tri-
angular lattice, one can actually use SLE to give an explicit expansion of the
ratio Pa(e)/Pa(e’) as § increases, at least in some cases; this is the subject of an
upcoming paper [E]

5. Other lattices
5.1. Mixed percolation

We conclude the speculative part of these notes by some considerations about
bond-percolation on the planar square lattice. The combinatorial construction we
perform here does apply to more general cases, but the probabilistic arguments
which follow do not, so we restrict ourselves to the case of Z2.

The general idea it to map the problem of bond-percolation on Z? to one of
site-percolation on a suitable triangulation of the plane. Then, if the arguments
in the previous section can be made to work, one could potentially prove the
existence and conformal invariance of a scaling limit of critical percolation on the
square lattice.

The key remark was already present in the book of Kesten [L0]: For any bond-
percolation model on a graph, one can construct the so-called covering graph on
which it corresponds to site-percolation. More specifically, let G; be a connected
graph with bounded degree; as usual, let F(G1) be the set of its edges and V(G1)
be the set of its vertices. We construct a graph Ga as follows: The set V(G3) of
its vertices is chosen to be F(G1), and we put an edge between two vertices of G
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if, and only if, the corresponding edges of G5 share an endpoint. Notice that even
if G1 is assumed to be planar, GGo does not have to be — see Figure ﬂ for the case
of Z2.

* o .

o o

FIGURE 7. The square lattice Z? and its covering graph

The graph thus obtained from the square lattice is isomorphic to a copy of the
square lattice where every second face, in a checkerboard disposition, is completed
into a complete graph with 4 vertices. The next remark is the following: in terms
of site-percolation, a complete graph with 4 vertices behaves the same way as a
square with an additional vertex at the center, which is open with probability
1 — with the same meaning as when we looked at refinement of triangles in
triangulations, i.e. taking a chain of open vertices in the partially centered square
lattice and removing from it the vertices which are face centers leads to a chain of
open vertices in the covering graph of Z2.

So, let again G5 be the centered square lattice, as was introduced above,
and let ¢ € [0,1]; split the vertices of Gy into three classes, to defined a non-
homogeneous site-percolation model, as follows. Each vertex is either open or
closed, independently of the others, and:

e The sites of Z? are open with probability p = 1/2; we will call them vertices
of type I, or p-sites for short, and denote by V; the set of such vertices;

e The vertices of coordinates (k + 1/2,1 + 1/2) with k 4 [ even are open with
probability ¢; we will call them wvertices of type II, or g-sites for short, and
denote by V5 the set of such vertices;

e The vertices of coordinates (k + 1/2,1+ 1/2) with k 4+ [ odd are open with
probability 1 — ¢; we will call them wvertices of type III, or (1 — g)-sites for
short, and denote by V3 the set of such vertices.

We will refer to that model as mized percolation with parameters p = 1/2 and ¢,
and denote by P, /5, the associated probability measure. Two cases are of partic-
ular interest:

e If ¢ = 1/2, the model is exactly critical site-percolation on the centered square
lattice Gg;
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e If ¢ =0 or g =1 (the situation is the same in both cases up to a translation),
from the previous remarks mixed percolation then corresponds to critical
bond-percolation on the square lattice.

Besides, all the models obtained for p = 1/2 are critical and satisfy Russo-Seymour-
Welsh estimates.

5.2. Model interpolation

We are now equipped to perform an interpolation between the models at ¢ = 0 and

q=1/2. Let (Q, A, B,C, D) be a simply connected subset of Z? equipped with 4

boundary points — say, a rectangle; let U = Uq_4,p,c,p be the event, under mixed

percolation with parameters p = 1/2 and ¢, that there is a chain of open vertices of

Q) joining the boundary arcs (AB) and (C'D). To estimate the difference between

the probabilities of U for the two models we are most interested in, simply write
1/2 9

Pyja1)2[U] — PyrygolU] = / 6_qP1/2’q[U] dg. (5.1)
0

If percolation is indeed universal, then one would expect cancellation to occur,
hopefully for each value of ¢; the optimal statement being of the form

0
lim sup sup —Pi/04|U] =0. 5.2
Q17 4.5.0,beo9 qe01) 00 alU] 62
The main ingredient in the estimation of the derivative in ¢ is, as one might expect,
a slight generalization of Russo’s formula; to state it, we need a definition:

Definition 17. Consider mixed percolation on Gy, and let E be a cylindrical in-
creasing event for it (i.e., an event which depends on the state of finitely many
vertices). Given a realization w of the model, we say that a vertex v is pivotal for
the event E if E is realized for the configuration w” where v is made open, and
not realized for the configuration w, where v is made closed. We will denote by
Piv(E) the (random) set of pivotal vertices for E.

Proposition 18. With the above notation, one has

0 . .

a_qpl/Q’q[U] = E1/21q [|P1V(U) NN ‘/2| — |P1V(U) NN ‘/3” .

Proof. The argument is the same as in the proof of the usual formula (in the case
of homogeneous percolation); we refer the reader to the book of Grimmett [ g

As was the case in the previous section, one can relate the event that a given
site is pivotal to the presence of disjoint arms in the realization of the model, with
appropriate color. More precisely, a g-site (say) v € € is pivotal if, and only if, the
following happens: v is at the center of a face of Z?; two opposite vertices of that
face are connected respectively to the boundary arcs (AB) and (CD) by disjoint
chains of open vertices; the other two vertices of the face are connected respectively
to the boundary arcs (BC') and (AD) by disjoint chains of closed vertices; and none
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of the chains involved contains the vertex v. To state the previous description more
quickly, there is a 4-arm configuration with alternating colors at vertex v, and the
endpoints of the arms are appropriately located on 9€2 — see Figure E

B
C

D

FIGURE 8. A four-arm configuration at vertex v making it pivotal
for the event U(Q2, A, B,C, D).

The main feature of mixed percolation in the case of the centered square
lattice is the following: Starting from a configuration sampled according to Py /o 4
and shifting the state of all vertices by one lattice mesh to the right, or equivalently
flipping the state of all vertices, or rotating the whole configuration by an angle of
7/2 around a site of type I, one gets a configuration sampled according to Py /3 1_4;
on the other hand, rotating the picture by m/2 around a vertex of type II or III
leaves the measure invariant.

Notice that the existence of 4 arms of alternating colors from a given vertex v
is invariant by color-swapping; the configuration in Figure Eis not though, because
the arms obtained after the color change connect the neighbors of v to the wrong
parts of the boundary. Nevertheless, one can try to apply the same reasoning as
in the previous section, as follows: Let v’ be the vertex that is one lattice step to
the right of v. If v is a vertex of type II, then v’ is a vertex of type III, and up to
boundary terms, one can pair all the g-sites in {2 to corresponding (1 — ¢)-sites.

To estimate the right-hand term in the statement of Proposition E, let

A(v) := P[v € Piv(U)] — P[v' € Piv(U)].

Our goal will be achieved if one is able to show that A(v) = o(|Q|71); or equiv-
alently, if €25 is obtained from a fixed continuous domain by discretization with
mesh 4, if one has

A(v) = o(6?).
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In the case of critical site-percolation on the triangular lattice, arguments
using SLE processes give an estimate to the probability that a vertex is pivotal,
and from universality conjectures it is natural to expect that they extend to the
case of mixed percolation on Ts. They involve the 4-arm exponent of percolation,
and would read (still in the case of a fixed domain discretized at mesh 4) as

Plv € Piv(U)] ~ 6°/*.

So, shifting the domain instead of the point as we did in the last section, one
would expect an estimate on A(v) of the order

A(v) ~ 6%

(where the addition of 1 in the exponent corresponds to the presence of a 3-arm
configuration at some point on the boundary on either the original domain or its
image by the shift). Since 9/4 > 2, that would be enough to conclude.

However, this approach does not work directly, because of the previous re-
mark that the shift by one lattice step does change the measure, replacing ¢ by
1—gq. If one is interested in the mere existence of the 4 arms around a vertex, com-
bining the shift with color-flipping is enough to cancel the effect; but the estimate
one obtains that way is of the form

Plv € Piv(Uqg,a,8,c,0)] — PV’ € Piv(Uq,B,c,p,4)] = 6P[v € Piv(Uq a,8,0,0)]
(5.3)
(and Russo-Seymour-Welsh estimates are actually enough to obtain a formal proof
of this estimate).

So, once again, what is missing is a way to estimate how much Plv €
Piv(Uq,a.B,c,p)] depends on the location of A, B, C' and D along 0€; if the
dependency is very weak, then the estimate in Equation (@) might actually be
of the right order of magnitude. Once again, it is likely that the way to proceed
is to use a modified version of the incipient infinite cluster conditioned to have 4
arms of alternating colors from the boundary, and that the order of magnitude of
A(v) will be related to the speed of convergence of conditioned percolation to the
incipient clusters; but we were not able to conclude the proof that way. It would
seem that this part of the argument is easier to formalize than that of the previous
section, though, and hopefully a clever reader of these notes will be able to do just
that ...
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