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Abstract

We prove that, for each countable ordigab 1, there exist some:0 -completew-powers, and some
IT0-completew-powers, extending previous works on the topologlcal caxip} of w- powers
F|n0$ |[FinO#.[ Lecq1l Lecpqd, DHO6]. We prove effective vemsi of these results; in particular, for
each recursive ordingl < w{' there exist some recursive setsC 2< such thatA> ¢ H?\EQ
(respectivelyA> € S\ITP), wherell? and 5 denote classes of the hyperarithmetical hierarchy. To do
this, we prove effective versions of a result by Kuratowdkiscribing ei'Ig set as the range of a closed
subset of the Baire space’ by a continuous bijection. This leads us to prove closurgerties for the
pomtclasses‘?0 in arbitrary recursively presented Polish spaces. We apphexistence results to get
better computatlons of the topological complexity of sormis ®f dictionaries considered in [Leg 05]
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1 Introduction.

We consider the finite alphab& = {0,...,%—1}, whereX > 2 is an integer, and a language over this
alphabet, i.e., a subsei of the set> <% of finite words with letters ift. Notice that a language of finite
words will be also sometimes called a dictionary, aq in [IBic@he set of infinite words over the alphabet
¥, i.e., of sequences of lengthof letters of3, is denoted-.

Definition 1.1 Thew —power associated with4 is the setA> of the infinite sentences constructible with
A by concatenation. So we hav€®:={ qpa; ...€X¥ | View a; €A }.

Notice that we denote heré™ the w-power associated witH, as in [LecOp], while it is often denoted
A“ in Theoretical Computer Science papers, ag in [Stap7aJJFiR®03,[FLO)]. Here we reserved the
notation A“ to denote the cartesian product of countably many copie$ sifice this will be often used in
this paper.

In the theory of formal languages of infinite words, accefgdarious kinds of automata, thepowers
appear very naturally in the characterization of the cldéx~, of w-regular languages (respectively, of
the classC'F,, of context freew-languages) as the-Kleene closure of the familfz EG of regular finitary
languages (respectively, of the famiyF of context free finitary languaged) [Stap7a].

Since the seb* of infinite words over a finite alphabéf can be equipped with the usual Cantor
topology, the question of the topological complexityuapowers of finitary languages naturally arises and

has been posed by Niwinski [Niwj90], Simonnet [Sif92], anai@r [Sta97a].
What are the possible levels of topological complexity fed-powers?

As the concatenation map, frodt’ onto A>°, which associatesgya; . .. to (a;);e., IS CONtinuous, an
w-power is always an analytic set.

It has been recently proved, that for each integer 1, there exist some-powers of (context-free)
languages which arBI®-complete Borel sets[ [FinP1], and that there exists a @odiftee) language.
such thatL“ is analytic but not Borel,[[Fin03]. Amazingly, the languageis very simple to describe
and it is accepted by a simplecounter automaton. Notice that Louveau has proved indbpdly that
analytic-completev-powers exist, but the existence was proved in a non efiegtay. We refer the reader
to [ABB94] for basic notions about context-free languages.

The first author proved i [FinpP4] that there exists a finitaryguagel” such thati’ is a Borel set of
infinite rank. However the only known fact on their complgxi that there is a (context-free) langudde
such thatiW* is Borel aboveA?, [DF08]. In particular, it was still unknown which could bleet possible
infinite Borel ranks ofu-powers.

The basic notions of descriptive set theory used in this pailebe recalled in the next section. We
now state our results which extend the previous ones.



Theorem 1.2 (a) Let3 < ¢ < wy, andT # I' be a Wadge class closed under finite unions satisfying the
inclusionsA(T") CT'= A3-PU(T) CII, . Then there isd C2<* such thatA* is I-complete.

(b) Letl <& <wy. Then there isA C 2<% such thatA*> is Zg-complete.
(c) Let1 <& <w;i. Then there isA C2<“ such thatA™ is Hg-complete.
(d) Letl <& <wy. Then there isA C 2<% such thatA*>° is Dz(zg)-complete.

(e) Let3 <& <wp andw <1 <w; be an indecomposable ordinal. Then theredis 2<“ such thatA> is
D, (=2)-complete.

So we get a complete knowledge of the Borel claddésr which there isA C 2<“ such thatA*> is I'-
complete. Indeed, the only class’g admitting a complete set A}. And A:={s€2<* | 0<s or 12<s}
implies thatA> =2“\ Ny, is aAJ-complete set.

In this context coming from theoretical computer scientis, matural to wonder whether these examples
are effective. We answer positively. The reader shoulddes8(] for basic notions of effective descriptive
set theory. It is known thalB C 2 is 3:2-complete if and only ifB € S\ IT{ (see 22.10 in[[Kec95]). The
effective version of Theorem 1.2 is the following:

Theorem 1.3 (1) Let1 <¢ <wiE,

(@) There isA C 2<% such thatA> € X\ IIY.

(b) There isA C2<* such thatA> e I1)\ 3.
Moreover,A can be coded by &\ subset ofv.

(2) Similarly, let3 €2+ and1< ¢ <w?.

(a) There isA C2<* such thatA> € X0(5) \ITY.

(b) There isA C2< such thatA> e I17(3)\ =.
Moreover,A can be coded by a9 (3) subset of.

To prove Theorem 1.2, we use a theorem of Kuratowski whichesel by level version of a theorem of
Lusin and Souslin stating that every Borel &£tC 2% is the image of a closed subset of the Baire spacte
by a continuous bijection. This theorem of Lusin and Souséid already been used by Arnold [n JArh83]
to prove that every Borel subset Bf, for a finite alphabet, is accepted by a non-ambiguous finitely
branching transition system with Biichi acceptance cardénd our first idea was to code the behaviour of
such a transition system. This way, in the general case, wenaamage to construct anpower of the same
complexity asB. We now state Kuratowski’s Theorein [Kul66] (see CorollaByiB1):

Theorem 1.4 Let{ > 1 be a countable ordinalX a zero-dimensional Polish space, aftle HQH(X).
Then there i€” € IT9(w*) and a continuous bijectiofi: C — B such thatf ' is 3¢-measurable (i.e.f[U]
is Zg(B) for each open subsét of C').

To prove Theorem 1.3, we first prove an effective version addrem 1.4. It has the following conse-
quence.



Theorem 1.5 Let¢ > 1 be a countable ordinal, and € H£0+1(2“). Then there i<0 € I1Y(w*), a partial
function f : w* — 2%, recursive onC, and a partial functiong : 2 — w*, Eg-recursive onB, such thatf
defines a bijection from¥’ onto B and g coincides withf .

To prove Theorems 1.3 and 1.5, we prove some results of eHattscriptive set theory that cannot be
found in [Mos8p]. We prove that the pointclassBg are, uniformly and in the codes, closed under taking
sections at points in spaces of type at migostubstitutions of partial recursive functions, finite rsexctions
and unionsg¥, among other things.

In [Cec03], the following question is asked. What is the tiogical complexity of the set of dictionaries
whose associated-power is of a given level of complexity? More specificallgt1<¢ <w;. The following
21(227)\ Dy (9) sets are introduced:

B¢ ={AC2% | A® e %Y},
I := {AC 2% | A~ eTIY},

A :={AC2 | A® € Af} = {AC2 | A* cIT}).

The proof of Theorem 1.3 gives some more informations abimitbmplexity of these sets. We will prove,
using a result by J. Saint Raymond, tf¥&¢t andIl, areIli-hard if ¢ > 3, which is a much better approxi-
mation of their complexity than the one ih [Let05]. The probthis fact has the following consequence.
Theorem 1.2 shows that thepowers are quite general objects. On the other hand, wepwalle another
result showing that they are not arbitrary.

Notation. Let I’ be a class having a universal 8(%” C (2“)2, andI” another class. We set

U, T):={aec2” | UL )oeT"}.
Let X,Y be zero-dimensional Polish spaces ahd X, B C Y. We will use the following notation to
denote the Wadge quasi-order:
(X,A)<w (Y,B) & 3f:X —Y continuous withA= f~!(B).
We write (X, A) <w (Y, B) if (X,A)<w (Y,B) and(Y, B) £w (X, A).
The consequence we mentioned is the following. If we chooiatde universal sets, then the following

inequalities hold:
UL, ) <w B¢ <w UE]EY)

UZLTLE) <w I <w U(Z],TIY)

UL Zw A <w U(Z],A})=U(Z]II).
This means that the-powers are analytic sets that do not behave like arbitragtytic sets. This also
means that there is a strong difference between the Bordklen one side, and the level of analytic sets on
the other side. Actually, our method to prove Theorem 1.3eethod that works for the Borel levels, and it
cannot be extended to the level of analytic sets, even if i#md.3 can be extended to the level of analytic
sets (se€[[Fin®3]). Note that we will prove that>], Al) is ITi-complete.



This paper is organized as follows:
e In section 2 we prove Theorem 1.2.

¢ In section 3 we recall a few basic facts of effective desimgpset theory, and fix some notation. Then we
prove the results of effective descriptive set theory thatneed for the sequel. This is where the closure
properties for the pointclass§§ are proved.

e In section 4 we prove Theorem 1.5.
e |n section 5 we prove Theorem 1.3.

¢ In section 6 we study the complexity of some sets of dicti@sar

2 Proof of Theorem 1.2.

Basic facts and notation.

In descriptive set theory, we study the topological comipyexf definable subsets of Polish spaces, i.e.,
of separable and completely metrizable topological spaces

e The notation for theBorel classes in metrizable spaces is as followk! is the class of open sets, and if
¢ > 1 is a countable ordinal, theﬁg is the class of complements E]‘,g sets,Eg is the class of countable

unions of sets i, ., . 1Y, andAg is the classEg N Hg. The class oBorel sets is

Al= | == | m

1<€<wr 1<€<wn

e The class ofinalytic sets is the class1 of subsets of Polish spaces that are continuous imagesishPol
spaces. One can prove thatXfis a Polish space, theA C X is analytic if and only ifA is the projection
on X of a closed subset of x w* (see 14.3 in[[Kec95]). Then we can define thejective classes in
Polish spaces as follows; if > 1 is an integer, theiiI}, is the class of complements Bf, sets, X}, (X)

is the class of projections aK of sets inIT! (X xw“), andAl is the classS! N ITL.

e If T'is a class of sets in Polish spaces dads a Polish space, then a g6t € I'(2¥ x X) is universal
for T(X) if T(X) ={(U)a | « €29} (Where(UX), :={r € X | (o, z) EURX }). For example, there are
universal sets foE22(X), TI¢(X), }(X), I} (X) for any Polish spac& (see 22.3 and 26.1 ifi [Ked95]).

e Recall that a Polish space isro—dimensional if it has a basis consisting di{ sets. Typically, letx
be a countable set. K is equipped with the discrete topology and K <“, thenN,:={a € K¥ | s<a}
is a basicA{ set of K“ (s <« means that is a beginning ofy). The length ofy € K= is denoted|. If
v € K= andk € w, theny[k is the beginning of lengthk of v. If s < a = a(0)a(1)..., thena—s is the
sequencex(|s|)a(|s|+1)...

o If T"is a class of sets in zero-dimensional Polish spaces, closgel continuous preimages, then a subset
A of X isT —hard if for each A’ € T'(X’) there is a continuous mafx X’ — X with A’= f~1(A).
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If AcT'(X) isT'-hard, then we say that is I' — complete. We say thal is aWadge class if there is
aT-complete set. We denole:={—-A | AcT}. If T #T C A} is a Wadge class, the# is T-complete if
and only if AcT'\T.

o If T is a Wadge class, theﬁg(I‘) CI'meansthaFeI'(X)if Ec A?(A) andAeT'(X).
e If I'isasetand is aclass or a set, thém;);c; CT" means that; €T for eachie 1.

o We setA2-PUT) :={U,c,, 4n N P | (An)new CT and (P)ne, C A partition} if 1<&<w;. One
can prove that iA) CT' #T' C A} is a Wadge class, then there is a bigher¢ < w; (thelevel of T') such
thatT'= AZ-PU(T") (see [CSTRE8)).

If n<w; and(Ag)g, is an increasing sequence of subsets of some sgatieen we set

Dy[(Ag)o<y]:={zc X | F0<n xe Ay U Ay and the parity off is opposite to that ofy}.
/<6
If moreover1 < £ < wy, then we seD,(X?) := {D;[(4g)o<y] | (As)o<, C =}. One can prove that

D, (X}) has levek if > 1 (see [LStRE8)).

e We say thatv < n < wj is indecomposable if n cannot be represented as+ne with 1y, n2 <n. Itis
known that the indecomposable ordinals aredfavith 1 <6 <w; (see IV.2.16 in[[Lev79)).

Proof of Theorem 1.2.

¢ We have already said that the existence of the continuoesttaj f : C' — B given by Lusin and Souslin’s
Theorem had already been used by Arnold[in JA[n83] to proat évery Borel subset &£, for a finite
alphabetY, is accepted by a non-ambiguous finitely branching tramsitiystem with Biichi acceptance
condition. We now recall the definition of these transitigetems.

A Biichi transition system is a tuple7 = (X, Q, 0, qo, @), whereX is a finite input alphabet]) is
a countable set of states,C ) x X x @ is the transition relationgy € @ is the initial state, and); C @
is the set of final states. A run @f over an infinite words € X¢ is an infinite sequence of statés);>o,
such that ¢y = qo, and for eachi > 0, (¢;,0(i),t;+1) € 0. The run is said to be accepting iff there are
infinitely many integers such that; is in Q.

The transition system is said to b@n-ambiguous if each infinite worde € X has at most one
accepting run by .

The transition system is said to fenitely branching if for each state; € @ and eachu € %, there
are only finitely many stateg such thatq, a, ¢’) € 4.

Our first idea was to code the behaviour of such a transitistesy. In fact this can be done on a part
of infinite words of a special compact skt . However we shall have also to consider more general sets
Ky ; and then we shall need the hypothesis ofE@emeasurability of the functiorf, which is given by
Kuratowski’'s Theorem.



¢ \We now come to the proof of Theorem 1.2.

(a) We may assume thz&? CT, otherwisel’ = {(}} sinceAg(I‘) CT, in which cased:=( is suitable. This
implies thatA? C T sinceAY(T") CT.

elet BET(2¥)\T, and Py, :={a€2¥ | Ym€w In>m «a(n)=1}, which is homeomorphic te* (we
associat®’®10°M1... to S ew®). As BT, ,, Theorem 1.4 give€’ € I1Y(P,,) and f. By Proposition
11 in [CecO¥], it is enough to findl C 4<“. The dictionaryA will be made of two pieces: we will have
A=pUm. The setr will code f, and7* will look like B on some nice compact sekSy ;. Outside a
countable family of compact sets, we will higie so thatA>° will be the simple sep.*°.

e We set@ := {(s,t) € 2<¥ x2<¥ | |s| = |t|}. We enumerat€) as follows. We start withy, := (0, 0).
Then we put the sequences of lengtbf elements of x 2, in the lexicographical orderingy; := (0, 0),
q2:=(0,1), g3:=(1,0), g2:= (1, 1). Then we put tha6 sequences of length g5 := (0%,0?), gs:= (02,01),
... And so on. We will sometimes use the coordinategof= (¢%, ¢&). We putM; :=%,;; 471. Note
that the sequend@\;) <., is strictly increasing, and that,; is the last sequence of lengttof elements of
2% 2.

o If I € wand(a;)ic € (w<¥), then™,; a; is the concatenationy ... a;_;. Similarly, "¢, a; is the
concatenatiomgay . . .

o Now we define the “nice compact sets”. We will sometimes vieag an alphabet, and sometimes view it
as a letter. To make this distinction clear, we will use thielta@e notatior2 for the letter, and the lightface
notation2 otherwise.

We will have the same distinction withinstead of2, so tha = {0,1},3 = {0,1,2},4 = {0,1, 2, 3}.
Let V, 7 be non-negative integers wifli < M;. We set

Ky = {v=2" 7 [ Ticw m; 2Mitit1 3 2Mivit1 €4 | View m; €2 }.
As the mappy ;: Ky ; — 2% defined bypy ;(7) := (m;)icw is @ homeomorphisn¥y ; is compact.
e Now we will define the sets that “look lik8”.

- We define a functior: B xw — Q by c¢(a, 1) :=[f~(a), a][l. Note thatQ is countable, so that we equip
it with the discrete topology. In these conditions, we prthagc is Zg-measurable.

For anyq € Q, it holds thatc=!({¢}) = {(a,]) € Bxw | f~%a)[l =¢° and afl = ¢*}. But
o[l = ¢' means that!'=|¢'| and« belongs to the basic open s&f:”. In the same fashion; ~! () [l = ¢"
means that = |¢°| and f~!(c) belongs to the basic open s&t0”, or equivalently that f = |¢°| and
a = f(f~'(a)) belongs tof [C'N Nypl". As f[C'N Nyl is aX? subset ofB, ¢! ({¢}) is a % subset of
Bxw andc is 3¢-measurable.

- Let N be an integer. We put

En:={ac2”|¢yaeB and c(¢ka,|qi]) =qn }.
Note thatFy={ «€2“ | «€ B and ¢(a,0)=0}= B. Let us prove thatly € I'(2*) for each integerV.



As ¢ is Z{-measurable andgy} € AJ(Q), we getc™'({gn}) € AZ(B xw). Note that the map
S:{a€2¥ | ghya € B} — Bxw defined byS(a) := (¢}, |g|) is continuous, so thdty =S~ [c 1 ({gn})]
isin Al({e€2¥ | gyae B}). As Be I'(2¥) and the mapy— gy« is continuous{a €2 | gya € B} is
in T'(2¥). ThusEy €T'(2) sinceA(T") CT.

Now we define the transition system obtained frém
- If me2andn, pew, then we writen = p if q2<q2 andqll,:q}lm.

- As f is continuous or@, the graph Gff) of f is a closed subset 61x2*. AsC isII{(Py,), Gr(f) is also a
closed subset aP,,x2¢. So there is a closed subgebf 2¢x2* such that Gff) = FN(Pxx2*). We identify
2 x 2@ with (2 x 2)“, i.e., we view(3, a) as[3(0), a(0)], [3(1), a(1)],... By Proposition 2.4 in[[Kecd5],
there isk C (2x2)<%, closed under initial segments, such that {(3, a) €2“x2% | Vkew (B, a)[k€ R}.
Notice thatR is a tree whose infinite branches form the Betin particular, we get

(3,0)€GI(f) & BEPy andVkcw (B,a)[kER.

-We setQ:= {(t,s) e R | t#0 and ¢(|t|—1) =1}. Notice thatQ s is simply the set of pairét, s) € R
such that the last letter ofis al.

We have in fact already defined the transition systEmbtained fromf. This transition system has a
countably infinite se@ of states and a s€} s of accepting states. The initial stategis= ((}, ). The input
alphabet i2 = {0,1} and the transition relatiot C @ x 2 x @ is given by: ifm € 2 andn, p € w then
(gn,m,qp) € 0iff n 2.

Recall that a run of is said to be Biichi accepting if final states occur infinitefien during this run.
Then the set of-words over the alphab&@twhich are accepted by the transition syst&nfrom the initial
stategy with Blichi acceptance condition is exactly the Borel Bet

o Now we define the finitary language We set

(

sE4<w ‘ Hj,ZEw H(mi)iSZEQIJrl H(Tli)igl, (pi)z'gh (Ti)iglelerl

no < M;
and
Vi<l n; S p; and pi+r; = My
Ti= and
Vi<l pi = njt1
and
dp, le
and
s = Aigl 2Mi my; 2Pi 2T 3 2T

\

e Let us prove thapy ;[7>° N Ky ;| = Ey if N <M;.



Letyen™ N Ky, ;, anda:=py ;(v). We can write
~ ~ k b ook k
V= "kew | iy, 27 mp 2P 277 327 .

k
As this decomposition of is in 7, we haven} i plif i <lg, pF=nk , if i<l andqp;c €Qy, for each
k

k € w. Moreover,p¥ =nkt! for eachk € w, sincey € Ky ; implies thatp? +rF =rk 4kt =M (..
Py, 0 Y J Py, T, =T, T J+14

for some integem. So we get
a(0) a(1) a(lo) a(lo+1) 1 a(lo+2) a(lo++1) 4
N—>p8—>... —>p?0 - "py = ... = py -
In particular we have
qo%q0< <q0 <q0< %qol
N pg ... plOO pé ... pll ...

because: * p implies thatg) < ¢J. Note that|q11),€ |=|gN|+3;<k (I;+1), so that the sequenqée]gk Nkecw
U - U

is strictly increasing sincé’| = |¢.| for each integen. This implies the existence af € P, such that

qgk < [ for eachk € w. Note thatg € P,, because, for each integér G € Q. Note also that
U k

(B,qka)[k € R for infinitely manyk’s. As R is closed under initial segments?, ¢}, «)[k € R for every
k €w, so thatg},a= f(3) € B. Moreover,

c(aya lay ) =BTlan | an) = (a¥ an) =an.

andae Ey.

Conversely, leto € En. We have to see that := go;,lj(a) € . Asy € Ky, we are allowed
towritey = 2V 7 [ Tiew a(i) 2Mi+i+r 3 Mivit1 | We sets := f~1(gla). There is a sequence of

integers(k;);c., such thatg, = (3, ¢, ) [l. Note thatN' 0 Kt 141 ) Klgij42--- AS N < M; we get
kgt 14it1 < Mj4iv1. SO we can defineg:= N, Po ::k|‘_111v‘+1’_ o ::Mj+1—p0, 1= Po- S_imilarly, we can
definep; := k\tz}v|+2’ r1:=M;j12—p1. We go on like this until we find somg,, in Q. This clearly defines

a word inw. And we can go on like this, so thate 7°°.

Thus7>* N Ky ; is in T'(Ky,;) € I'(4¥). Notice that we proved, among other things, the equality
©0,0[m>° N Ko,0]=B. In particular,7 N K o is I'-complete ink .

Notice thatr*° codes onkK o the behaviour of the transition system acceptihgn a similar way,w>
codes onK y ; the behaviour of the same transition system, but startiisgtithe from the statey instead
of the initial stategy. But somew-words in7*° are not inKy o and not even in any<y ; and we do not
know what is exactly the complexity of this setwfwords. However we remark that all the wordstave
the same forn2™¥ — [ 7, m; 2% 3 2%t .

e We are ready to defing. The idea is that an infinite sequence containing a word @annot be in the
union of theKy ;'s.



We set

S€4<w ‘ dlecw H(mi)i§l+1€2l+2 dN cw H(R)Z’SlJrl, (Ri)i§l+1 Ewl+2

Vi<i+1 Jjew Pi=M;
we = and
P#R
and
L s = 2NA [Aigl+1 my; 2Pi 32Ri] )

sE4<w | dlew H(mi)i§l+1€2l+2 dN cw H(Pi)igl-i-la (Ri)i§l+1 Ewl+2

Vi<l+1 Jjew PB=M,;

put = and :
Jj€w (B=M; and Py # Mj1)
and
( s=2N 7 [Tiqy m; 28 327
po=p0Upt.

All the words in A have the same for@" ~ [ ~;; m; 2% 3 2% ]. Note that any finite concatenation of
words of this form still has this form. Moreover, such a cdeaation is iny’ if its last word is ing’.

e Now we prove thap> is “simple”. The previous remarks show that
pC={y€4¥|3ie2 Vjew Ik,ncw e ()" n>j and y[k="1<, t(I) }.
This shows thati> € TI9(4“).
e Note again that all words id have the same for@" ~ [ ~,<; m; 2% 3 2% ]. We set
P:={2N 7 [Tie, m; 2P0 325 €49 | (my)icw €2%, N €w, (P)icw, (Ri)ico €w* and
View 3jew P=M;}.
We define a mag': P\ u™> — ({0} U u) xw? as follows. Lety:=2" = [ 7ic, m; 25 3 28 | € P\ pu°°,
andjo € w with Py= Mj()' If AS KN,jo—lf then we pUTF(’y) = (@,N, ]0) If Y ¢ KN,jo—la then there is
an integerl maximal for whichP; # R; or there isj € w with P, = M; and P,; # M. Let j; € w with
P :Mj1' We put
F(y):=2" 7 [Tz mi 27 325 ] 7 myy 201 3 Ry, ).

o Fix y€ A®, If v ¢ u™>, theny € P\ u>®, F(v):=(t,S, ) is defined. Note that2° <+, and thatj > 0.
Moreover,y—t 25 € K ;1. Note also that < M;_, if =0, and that 2° ~(|¢t|+S) 2 3¢ u. Moreover,
there is an integeN <min(M;_1,S) (N =S if t=0) such thaty—t 25—~ € 7°° N K ;_1, since the last
word in i in the decomposition of (if it exists) ends before 2°.
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e In the sequel we will say thdt, S, j) € ({0} U u) x w? is suitable if S<M; if t=0,t(|t|-1)=3if tep,
andt 2% m 2Mi+1 3¢ 11 if me2. We set, for(t, S, j) suitable,

Psj={v€4”|t2°<y andy—t2%€Ky; }.

Note thatP; s ; is a compact subset ¢\ >, and thatF'(vy) = (¢, S, j+1) if y€ P, 5 ;. This shows that the
Py 54's, for (¢,5, j) suitable, are pairwise disjoint. Note also that is disjoint from{J, 5 . suitable £%.5.i-

e We set, for(t, S, j) suitable andV <min(2Z;, S) (N =S if t=0),
Arsjn={7€Ps;|7—t2° Ner®nKy; }.
Note thatA; s ; v € I'(4*) since N < M;.

e The previous discussion shows that

A®=p> U U U Ar,8,j,N-
(t.5.4) suitable N < min(0;, S)
N=Sift=0

As T is closed under finite unions, the set

A= U At,84.N
N < min(M;, S)
N=Sift=10
isinT'(4¥).
e \We can write
A =p\ U Pisj| U U Arsi N Ps,j
(t,,5) Suitable (t,5,7) Suitable

Note that theP; 5;'s and {J, ¢ ;) suitable £%.s,; are A} subsets ofi” since (Pt,55)(1,5,) suitable S @
countable family of closed sets. Moreover? is aIl C T' subset of4“. This implies thatA> is in
A}-PU(T") =T. Moreover, the sel™ N Py o= N Pyg =7 N Ko is T-complete. This shows
that A> is T'-hard (any reduction with values iR is also a reduction with values i¥’). Thus A is
T'-complete.

We can now end the proof of Theorem 1.2.

(b) If ¢ =1, then we can takel ;= {s €2<¥ | 0 < s or Jkcw 10F1 < s} and A>® = 2¥\ {10°} is
»9-complete.

e If £=2, then we will see in Theorem 2 the existencedosf 2<“ such thatA*° is Eg-complete.

e SO0 we may assume that- 3, and we just have to apply (a) Io:= 22.
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(c) If £=1, then we can takel:= {0} and A> = {0>°} is II{-complete.
o If £=2, then we can takel :={0*1 | ke w} andA> = P, is II3-complete.
e SO0 we may assume that> 3, and we just have to apply (a) Io:= Hg.

(d) First notice thath(Eg) ={B\C | B,C ¢ 22}. Indeed,C is clear, and> comes from the fact that
B\C = (B UC)\C. This implies thatD»(3{) = {BUC | Be X andC € IT{}. A consequence of
this is the closure of)g(Eg) under finite unions. Another consequence&i%[Dg(Eg)] ng(Eg). Indeed,
if D:=BUC e Dy(Z)(X) and E € AY(D), then choose € 3(X) and Il € IIY(X) such that
E=%ND=IND.WegetE=(XNB)U (IINC)eDy(X)(X).

o If £ =1, then we can taked := {s € 2<% | 0 < s or Jg € w (101)71%3 < s or s = 10%} and

A% = e, [INa02yro U (Ugew Naozyr(ronyars)] U {(102)>°} is Dy (2)-complete (se§7 in [Cec0B], and
also example 9 i b]).

o If £=2, then we can takel:={s€2<¥ | 12<s or s=0} and

A> = ({O‘x’} U U N0p12> N[(2°\ Pxo) U{a€2” |Vmew In>m a(n)=a(n+1)=1}|

peEw
is Do (29)-complete (seg7 in [LecO5]).
e SO we may assume that- 3, and we just have to apply (a) 1o:= DQ(Eg).

(e) Let X be a zero-dimensional Polish space, dhd Dn(Zg)(X). By Lemma 4.2 in [VEN]E x F

is Dn(zg). Now letC C 2¢ be Dn(Eg)—compIete,h 129 x 2% — 2% continuous withC x C = h~1(C), and
f,g: X — 2% continuous withE = f~1(C) and F = g~ '(C). Itis clear that the map: X — 2 defined by
c(z):=h[f(x), g(x)] satisfiesE N F=c~1(C). This shows thaDn(Eg) is closed under finite intersections.
ThusDn(Eg) is closed under finite unions.

Note also that ifD € D,(%¢) and B € £, thenB U D € D, (%7). Indeed, let(Ap)s<, € X be an
increasing sequence with = D[(Ag)g<,]. We setBy:=0, By := B, andBa g := Ay U B if  <n. Then
(Bg)o<n C 22 is increasing, and[(By)o<y] = B U Uy 11« (A2p41 U B)\ (A2, U B)=B U D sincen
is even. This shows that i € D, () and B € II, thenB N D € D, (=2). This implies the inclusion
ALDy ()] S Dy (%)

Now we can apply (a) t& := D, (7). O

As we have said above it remains a Borel class for which we havget got a complete-power: the
classxY. Note that it is easy to see that the classical exampleX§-aomplete set, the st \ P, is not
anw-power. However we are going to prove the following result.

Theorem 2 There is a recursive (and even context-free) langudge2<“ such thatA> € 9\ I19.
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Proof. By Proposition 11 in[[Lec(5], it is enough to fidlC 3<“. We set, forj <3 ands € 3<,
nj(s) = Card(i<|s| | s(i)=7j},
T = {a€3=¥ |Vi<1+|a| na(afl)<ni(afl)}.
e We inductively define, fos €T N 3<%, s 2<% as follows:

0 if s=0,

«

s =< tTeif s=te and e<2,

t—, except that its last 1 is replaced with Osi=¢2.

e We will extend this definition to infinite sequences. To dcsthive introduce a notion of limit. Fix
(8n)new C2<¢. We definelim s, €2<“ as follows. For eache 2<,

n—oo

t< lim s, & dng€w Yn>ng t<sy,.

n—oo

o If « €T N3¥, then we setv™ := lim (a[n)”. We definee:7'N 3“ — 2¥ by e(a) := a~. Note that

n—oo
T N3»eIIY(3*), ande is a XY-recursive partial function of N 3« since fort € 2<“ we have

t<e(a) & Inpew Yn>ng t<(aln)

e WesetE:={seT N3~ | na(s)=ni(s) and s#0 and 1 <[s[(]s|—1)]"}. Note that)) # s <0,
and thats(|s|—1) =2 changes(0)=[s[(|s|—1)](0)=1into 0 if s€ E.

oIf SC3<¥, thenS*:={";;s,€3<% |lew and (s;);<; CS}. We put
A:={0} UEU{ <k (¢;1)€3~¥ | [Vi<k ¢;€({0} UE)*] and [k>0 or (k=0 and ¢;#0)]}.
Note thatA is recursive.

e In the proof of Theorem 1.2.(b) we met the §8tc 2<“ | 0<s or Ik cw 10*1 <s}. We will call this
setB, and B> =2\ {10} is XY-complete (and ever?). Let us show that1>® =e~1(B>).

- By induction onlt|, we get(st)~ = st if s,t € T'N3<%. Let us show thats3)~ =s— 5 if moreover
BeET N3,

Assume that < (s(3). Then there isn( >|s| such that, forn > my,

t=<[(s08)[m]™ =[sB[(m—|s)]” =s"[B[(m—|s])]™

This implies thatt < s—~g7 if |t| < |sT|. If || > |s|, then there isn; € w such that, form > my,
B (|tl—1s7]) < [B](m—]s])]~. Here again, we gét<s— 5. Thus(s3)~ =s— 5.

Let (si)ico CT N3<. Then™ e, s, €T, and( e $i) =icw S; , by the previous facts.
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- Let (a;)icw € (A\{0})¥ anda:="jcy, ai. ASACT, e(a) =(Ticw @)~ = icw a5 -
If ape{0} U E, thenf#a{~ <0, thuse(a) € Ny C2¢\ {10} = B*°.
If ag & {0} U E, thenao=""j< (¢;1), thusag” ="";<k (¢;"1).
If co#0, thene(«) € B> as before.
If co=10, thenk >0, so thate(«) # 10 sincee(«) has at least two coordinates equalto
We proved thatd>® C e~ (B>).
- Assume that(a) € B*. We have to finda;);c., € A\ {0} with a«=""¢,, a;. We split into cases:
1. e(a) =0%.
1.1. (0) =0.
In this casex—0€ T ande(a—0)=0°. Moreover,0 € A. We putag:=0.
1.2.a(0)=1.

In this case there is a coordingigof o equal to2 ensuring thaty(0) is replaced with & in e(«). We
putag:=af(jo+1), sothatuge EC A, a—apeT ande(a—ap) =0.

Now the iteration of the cases 1.1 and 1.2 showsdhad®°.
2. e(a) =0*+110> for somek € w.

Asin case 1, there ig € ({0} U E)* such thatg <, ¢~ =051, a—cy € T ande(a—cy) = 10°°. Note
thata(|co|) =1, a—(cpl) €T ande[a—(co1)] =0°°. We putag:=cyl, and argue as in case 1.

3. e(a)=("j<i41 0%1)0° for somel €w.

The previous cases show the existencé®f;<;11 C ({0} U E)* such thatay := ~ <41 ¢;1 < a,
a—agp T ande(a—ap) =0°°. We are done sincey € A.

4. e(a)=""je, 01,
An iteration of the discussion of case 3 shows that we candakéthe form™;<;,; ¢;1.
e The previous discussion shows th® =e =1 (B>). Ase is X9-recursive e~ (B>®) € X9(3%).
It remains to see that ! (B>°) ¢ I19. We argue by contradiction. We know th&t® = 2+\ {10}, so

e 1({10°}) = (T N 3¥)\e 1 (B*>) is aX) subset oB“ sinceT N 3“ is closed in3*. Thuse ! ({10°}) is
a countable union of compact subset8of
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Consider now the cartesian prod¢0} U E)“ of countably many copies d0} U E. The se{0} U E
is countable and it can be equipped with the discrete togolbige produc{{0} U E)“ is equipped with the
product topology of the discrete topology ¢t} U E. In these conditions, the topological sp&¢e} U E)«
is homeomaorphic to the Baire space.

Consider now the map: ({0} U E)* — e~1({10>°}) defined byh(v):=1[" e, ;] for each sequence
v="0,7,--.)€ ({0} U E)“. The maph is a homeomorphism by the previous discussion({g U E)“
is homeomorphic ta*, the Baire space* is also homeomorphic te~!({10°°}). This implies thats* is
a countable union of compact sets. But this is absurd, by fEned@.10 in [Kec95].

e [t remains to see that is context-free. We assume here that the reader is famiithrthve theory of formal
languages and of context-free languages; basic notionsoméyund in the Handbook Chaptér [ABB96].

It is easy to see that the languaféds in fact accepted by &counter automaton: it is the set of words
s€3<“ such that

V1<l<|s| na(s[l)<ni(s[l) and na(s)=ni(s) and s(0)=1 and s(|s|—1)=2.

This implies that4 is also accepted by Bcounter automaton because the class-obunter languages is
closed under concatenation and star operation. In paaticuls a context-free language because the class
of languages accepted bycounter automata form a strict subclass of the class obgtifitee languagesl

Remark. The operationy — o~ we have defined is very close to the erasing operation definddbuparc

in his study of the Wadge hierarchy (s¢e [Dyp01]). Howevehesxe modified this operation in such a way
thata ™ is always infinite whenu is infinite, and that it has the good property with regardtpowers and
topological complexity.

Question.What are the Wadge classEdor which there isA C 2<“ such that4*° is I'-complete? We have
seen that Theorem 1.2 solves completely the case wihésex Borel class, and it also solves the problem
for some more Wadge classes. The problem is solved for a feev G¥adge classes if [Le¢05]. We do not
know (yet?) any Wadge class for which this problem cannobbess.

3 Effective descriptive set theory background.

Basic facts and notation.

e In [Mos80], the classicatrithmetical hierarchy is defined as follows (see 3E). L&t be a recursively
presented Polish spad&y (X, k)]xc., an effective enumeration of a neighborhood basis for theltgy of
X,andBC X. We say thaiB € X (X) if there is a recursive mapw —w such thatB=J,., N[X,e(3)].
If n>1is an integer, thedZ! is the class of complements of) sets. We say thaB € X, if there is
Cell’(wx X)such thatB=3"C:={z€ X | Jicw (i,r) €C}. We also setA? := X N 110,

e We say thaty € XV if {kcw | y€ N(w¥, k)} € X2V (w). Let 8 €2¥. Therelativization X?(3) of X} to
A is defined as follows. A séP C X is in X)(0) if there isQ € X (2* x X) such thatP? = Q. As before
we say thatye XP(3) if {kew | yeN(w¥, k)} € X0 (8)(w).
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e Recall the existence of@od parametrizationin XY for 0 (see 3E.2, 3F.6 and 3H.1 in [Mo$80]). This

means that there is a system of s6ts X € 29(w¥ x X) such that for each recursively presented Polish
spaceX and for eachP? C X,

D¢
PeE% & yew® P=Gy™7,

Pex’ & Fyex? p=Ggt¥.

Moreover, if X is a recursively presented Polish space of type at most. 1difimite product of spaces equal
tow, w¥ or 2¥), andY is a recursively presented Polish space, then theﬁ%@g (w¥ x X — w” recursive
so that !

(32, ) €GPV o [STY (v,2), ] €GP

e Let f: X —Y be a partial functionD CDomainf) and P C X xw. ThenP computes f on D if

xeD = Vkew [f(x)eN(Y,k) & (z,k)eP].

If P isin some pointclasg’ and computeg on D, then we say thaf is I — recursive on D. We also say
recursive on D for X{-recursive onD.

e We also recall the notation for the coding of partial reargdiunctions fromX into Y introduced in
[Mos80] (see 7A). We first define a partial functibhw“ x X —Y by

U(v,2)| < U(y,z)isdefineds 3yeY Vkew [ye N(Y,k) < (v, z, k)€ GZX*w),

U(y,x) := the uniqueyeY suchthattkecw [ye N(Y, k) < (v, x, k) € GZ-Xxw],

Now lety €w“. The function{y}*Y : X —Y is defined by{}*Y (x) :=U (v, x). Then a partial function
f:X —Y is recursive on its domain if and only if there4sc X such thatf (z) = {7}*Y () when f(x)

is defined. More generally, the functions of the fofm}*+¥" are the partial continuous functions from a
subset ofX into Y. We will write {v} instead of{y}*>¥ whenY =w*, in order to simplify the notation.

If X is of type at mostl and Z is a recursively presented Polish space, then there is asieeumap

Sai 7 1w x X —w* such that{y} Y7 (z,y) = {S5 7 (1, 2) }4 (y) i (7,2) €w? x X,
1 1

Kleene's Recursion Theorem asserts thaf ifw” x X — Y is recursive on its domain, then there is
e* € 50 such thatf (¢*, 7) = {e*}*Y (z) whenf(¢*, z) is defined (see 7A.2 iff [MosB0]).

¢ We will use the following basic maps:

- We first define a one-to-one map. >:w<* —w. Let (p,)nc. be the sequence of prime numbers. We set

<0>:=1,and, ift:= (to, ..., t;) €w'!, then we set:=< ty, ...,t; >:=plt . pi*t.

- If k€w, then we say that “S€&)” (i.e., “k is a sequence”) ik =< tg, ..., t;_1 > for somety, ..., t;_1.
- The length Itik) of kew is [ if Seq(k) andk =< t, ...,t;—1 >, 0 otherwise.

- If k,i€w, then we defingk), :=t; if Seq k), k=< to, ..., t;_1 > andi <, 0 otherwise.
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- If v € w* andi € w, then we defind~); € w* by (7):(j) := v(< i,j >). But here we do not use the
injection (i, j)— < 4,7 > above, since we want a bijection fran? into w. So we use the notation i, j >
for 2¢ - (25+1)—1, when(~); is concerned. The inverse bijection is denoted [(s)o, (s)1].

Borel codes and closure properties.

Notation. We give a coding of Borel sets slightly different from the agieen in [Mos80] (see 7B), since
there is a problem foE?. It can be found in[[Lou??]. We define by induction on the cabl ordinal > 1
the setBC; of Borel codes foﬁlg as follows. Ify € w®, then we define* cw® by v*(i):=~(i+1). We set

BCy = {v€w” [~(0)=0},

BC: = { vew” [7(0)=1 and Vicew {y*}(i)| and {y*}(i)€U;,¢ BCy } if ¢>2.
The set of Borel codes BC:=J, ., BC¢. We also seBC*:=Jy¢,,, T BC:.
Now let X be a recursively presented Polish space. We define3C — Al(X) by induction:
Uicw NIX,7*(0)] if veBCh,
Uicw X\ p*[{7*}(0)] if yeBC*.

Clearly, p*X [BC¢]=%{(X), by induction or¢. The following is a consequence of 7B.1.(ii).(a) [n [Mds80]
It expresses the fact that the class of Borel sets is unifoalsed under complementation.

Lemma 3.1 There is a recursive magp-, : w“ — w* such that for each <¢ <w; and for eachy € B¢,
u~(7y) € BC¢1, andp™ [u-(v)]=—p* () for each recursively presented Polish space

Proof. Just copy the proof of 7B.1.(ii).(a) if [Mog80]: it gives nedhan the statement ih [Mog80]. [
In the sequel we will need a refinement of 7B.1.(jii) jn [Md%80

Lemma 3.2 Let X be a recursively presented Polish space of type at most I fileee is a recursive map
uX 1w¥ x X — w* such that for each < ¢ <wy, for eachy € BC; and for eachr € X, uX (v, z) € BCk,

s *

and p¥ [uX (v, z)] = p**Y (v), for each recursively presented Polish spacte
Some of the ideas of the proof are contained in 7A.3 in [Mps80]

Proof. For¢ =1, we define a subset af* x X xw by

(v,2,k)€P & Jicw (k:<0, (7*(i)>2> a”dweN[Xv@’ (’Y*(i)>1>] >

By 3D.5in [Mos8D], XY is closed under recursive substitutions, so that 2. By 3C.4 in [Mos8p], there
is P* € A (w* x X xw?) with

(v,z,k)eP < Incw (v,z,k,n)eP*.
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We define a mag: w® x X —w* by
(j=1)o if j>0 and [y, z,(j—1)o, (j—1)1]€ P,
9(7v,2)(j) =
0 otherwise.

Clearly, g is recursive ang(~, z) € BC;.

e For the general case, we define a partial functiofw®)? x X xw—w* by
gy }(@), =] i {4*}(i)(0)=0,

{ed{y*}(@), «] i {7"}()(0) =1,

By 3G.1 and 3G.2 in[[Mos80], the collection of partial furmets which are recursive on their domain is
closed under composition, so thais recursive on its domain. Letc X such that

¢(6,7,x,z’):{

1/)(8, YT, ’L) :{V}(g’ry’ €, Z)

if ¥(e,~,,1) is defined. We define a recursive map(w)? x X — w* by

g9(y,z) if 4(0)=0,

ole1rz) = o
1’\5(2? VP Xww (v,e,v,x) if v(0)#£0.

By Kleene’s Recursion Theorem, therecisc XY such thatp(e*,v,z) = {¢*}(v, ) for each(y, z) in
w® x X. We putuX (v, ) := {*}(v,z). Note that the mapX is a total recursive map. We prove that
uX (v, ) satisfies the required properties by inductionon

e Let(y,7) € BC) x X. We haveu? (v, z)={e*}(7,2) =p(c*,v,2) = g(v, z). SouX (v, ) isin BC}, by
the previous discussion. If moreoVEris a recursively presented Polish space, then using thé pf8&.1

in [Mos80] we get
yepY () & Jicw (z,y) € N[X XY, v*(i)]
Jiew (yeN[Y, <0, <'y*(z')>2>} and meN[X, <0, ('y*(i))1>]>
Jdkew [yeN(Y,k) and (v, z, k) € P]
Jicw <yeN[Y, (i)o] and [y, z, (i)o, ()] eP*)

dicw yGN(Y, [9(%5'3)]*(2))
& yep¥lg(y,z)).

=
=
=
=

e Now let (v, z) € BCe x X, with { > 2. We have

% % P w2 )(7 , w %
uX (v, 2)={e*} (v, z) = (", y,2) =1 S(;f)) XL (Y ¥y, ).
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As~y e BC¢, {v*}(i) is defined for each integeér In particulars)(e*, v, z, i) is defined for eackyy, x, 7)
in w* x X xw since{y*}(i)(0) € 2, and equal to

W =gy ey @)} ),

This shows thafuZX (v, z)*}() is defined for each integér If {y*}(i)(0)=0, then
{ud (v, 2)"} (@) = gl{7" }@), 2] = [{7*}(0). 2],

As {v*}(i) € BOy, u [{v*}(i), x] is in BC; too. Similarly, if {v*}(7)(0)=1, then

{ud (v, 2)" }() ={eH{v" }0), ] = [{v" }(), z].

ThenuX [{y*}(i), 2] € BC, for somel < n < &, by induction assumption. This shows that (v, z) is
in BCe. If Y is a recursively presented Polish space, tbér@f [{7*}(1'),:5]) = pX Y {v*}(i)]2 by
induction assumption. This shows that[uX (v, z)]=p* <Y (7). O

Lemma 3.2 expresses, among other things, the fact that thtelatsse§32 are uniformly closed under
taking sections at points in spaces of type at mo&imilarly, we now prove another lemma stating, among
other things, that the pointclassE% are uniformly closed under substitutions of partial remergunctions
(whend below is recursive).

Lemma 3.3 Let X, Y be recursively presented Polish spaces. Then thefcé\fig:(wwﬁ—ww recursive

such that for each <¢ <wy, for eachy € BC¢ and for eachy € w*, uﬁ(’y(y, d) € BC¢. Moreover, we have

zep Y (v,0)] & {035 (z) € p¥ (v) if {5}°5Y () is defined.
Proof. For¢ =1, we chooseP € 2P (w® x X xw) such that
U(,z)| = Vkew [U(S,2)eN(Y,k) < (6,z,k)€P].
(this is possible sinc# is recursive on its domain; see 7A.1 [n [Mok80]).
By 3C.4 and 3C.5 in[[Mosg0], there B* € AY(w* x w?) with
(6, z,k)eP & Jicw <x e N[X, (i)o] and [3,k, (i)o, (i)1] € P*).

We define a map: (w*)? —w* by

(G=1)0), i >0 and |&,7*[G=Dl, ((G=1o) . (=)o) | P,
9(7.0)(j) =

0 otherwise.

Clearly, g is recursive and(~, §) € BC;.
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e For the general case, we define a partial functiofw® )3 x w — w® by

gl{v @), d] i {y*}(0)(0)=0,
(e, y,0,1):=
{e}{r* (@), 0] it {y*}()(0)=

We argue as in the proof of Lemma 3.2 to defingw®)? —w*, and we puts;* (v, 8):={e*}(7,4). The
mapui(’y is a total recursive map. We show t ’Y(y,é) satisfies the requwed properties by induction
oné.

o If (v,0) € BCy xw* and{6}*Y (z) is defined, then

zepX Y (7,0)] & Fkew xeN[X, g(v, ) (k)]
o Jkew meN[X, (K)o 0] [,fy*[(k)l],((k;)0>0,<(/<:)0)1]ep*
& Jjew Jicw <x€ X, (i)o] and [5,7*(j),(i)0,(i)1]€P*>
< Jjew [0,z,7*())]€P
& Few {5}”(96)6 Y, 7*(5)]
& {35 (x)ep (7).

o Now lety € BC; with £ >2, andd €w®. As in the proof of Lemma 3.24,"Y (v, 8) € BC¢. If {0}5Y (x)
is defined, then

vep™ (WY (110, 0) & (0P (@) e [y HL
by induction assumption. This shows that pX [ur " (v, 8)] < {6}5Y () €pY (7). O

As a corollary, one can prove the uniform closure of the p:d}i:sstseszg under fixations of recursive
arguments. It is sometimes convenient to “view a codeé3it; as an element oBC5", even it is not
formally correct. The next lemma expresses this:

Lemma 3.4 Let X be a recursively presented Polish space. Then theug s, — w* recursive such that
for eachy € BC; (resp.,BC*), uX (v) € BCy (resp.,us (7) =), andpX [uX (7)] = p™X (7).

Proof. We defineR € XP(w¥ x X) by (7,2) € R & Jicw z € N[X,v*(i)]. As R € XY there is
C eIl (wxw”x X) such thatR=3“C. Leteg € X} such that-C'=J,.,, N[wxw* x X, eo(i)]. Note that
0"gp € XY N BCOy and—C = p**«“"*X(07¢p). Using Lemma 3.2, we see the existenceot % such

w® w,w

that {0} (7, 1) =u¥>“" (0" g, i,v) for each(v, i) € w* xw. Then we define (v ):=17585," * (0.7)
1
if ye BCy, other\lee. O

We now prove another lemma stating, among other thingsthbqiointclassexg are uniformly closed
under finite intersections and unions:

Lemma 3.5 Let X be a recursively presented Polish space. Thene}(is 2 X w X wY — w recursive such
that for each(¢, a,n,v) € (w1 \{0}) x2xw xw®,

(@) If (v); € BCy U BC¢ for eachi < n, thenu (a,n,7) is in BCy U BC¢. Moreover, the equalities
X [ (0,1, = i ¥ [(0)i) @ndpX [u¥ (1,0 1= U 2 [(2)] ol
(b) If moreovert >2 and (v); € BC; for somei <n, thenuy (a,n,7) is in BCk.
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Proof. For¢ =1, by 3B.2 in [Mos8] there ig : w® — w recursive such that, fdt, n) € w?,

() NIX, (wil= ] NIX, f(u,n,m).

i<n mew

We setg(a, n,7)(0):=0 and
01,3+ 1=7 (< [l [ () ] [l [ (), ] 200 )
([0 1 (o<,

0 otherwise.

9(1,n,7)(z’+1):{

Note thatg(a, n,v) € BC. If (v); € BC; for eachi <n, then we get

pX[9(0,1,7)] = Ujews NIX,9(0,n ,7)(z+1)]
= Ugmyew2 N < [Mol*[(G)ols - [(Vnl*[(5)n] >,n,m)]

X
U]ew ﬂz<n N< s ’Y (] i
N

z<n ]Ew ( ()i *(J>
= ﬂzgn [( )z]

\_/

Moreover,

PMon )= NX. g nrl=U U N(X0000) =U »¥ 104

1€w i<n jEw i<n

e For the general case, using Lemma 3.4 we define a partialidmictw® x w? — w® by

uX[(0)3) M@ if i<,
(- (0D T 152

It allows us to define another partial functignw® x 2 x w x w* X w —w* by

0°° otherwise.

w(gv a,n, 77]) = {8}[1_a7 n, h(77 n7])]
We argue as in the proof of Lemma 3.2 to definend a recursive map: w* x 2 x w X w* — w* by

g(a,mn,v) if (7);(0)=0 for eachi <n,
SO(E?ajn?fy):z 1/\Sw“’><2><w><w“’,w,w“’

0 (v,e,a,m,7y) if (7);(0)#0 for somei <n.

By Kleene’s Recursion Theorem, theresise 50 such thatp(c*, a, n, v) = {e*}(a, n,v) for each(a, n,v)
in 2xwxw”. We putuj (a,n,7) := {*}(a,n,7). The mapuy is a total recursive map. We show that

ujf(a, n,~y) satisfies the required properties by inductionéon
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e Assume thaty), € BC for eachi <n. We haveujf(a, n,v)=g(a,n,vy), SO we are done, by the previous
discussion. Assume now that> 2, and that(vy); € BCy U BC; for eachi < n. We may assume that

(7)i € BCg¢ for somei < n. Then{ <uf[(7)i])*}(kz) is defined for each integédr. In particular,h(~y, n, j)
andi(c*, a,n,, j) are defined for eactu, j) in 2 xw. Thus{u} (a,n,7)*}(j) =uf [1—a,n, h(v,n,j)]
is defined for each integer As {(uf[(fy)i])*}(k) is in someBC(,, with 1 <n, <¢ for each integet.,
there is1 <7 < ¢ such that(h(y,n,j))i is in BCy U BC,, for eachi <n. By induction assumption, we

getuy [1—a,n, h(v,n,j)] € BC; U BC,. This shows that (a,n,~) € BC¢. Moreover, by induction
assumption we get

P 0.0,9)] = Ujew ~Uien 0¥ | (hGim.9)) |

i

= Mica P (wX10)2)

= Nicn P [(Mil-
Similarly, we geto™ [uf (1,7, )]=U,<, »™*[(7)il- -

In the sequel we will need a last closure property, asseréingong other things, that the pointclasses
3¢ are uniformly closed undei:

Lemma 3.6 (a) There is a recursive map; :w“ — w* such that for eachh <¢ <w; and for eachye BC,
u3(v) € BCe, andz € p~ [uz(y)] & Incw (n,z)€ p~*X(v), for each recursively presented Polish space
X and for eachr € X.

(b) There is a recursive map ) :w*” —w* such that for each <& <wi, (v), € BC; for eachn € w implies

thatu(v) € BCe, andz € p~ [uy(7)] & Incw x € pX[(v)n] for each recursively presented Polish space
X and for eachr € X.

Proof. (a) By 3B.1 in [Mos8P], there arg andh recursive such thaV (wx X, k) = N|w, g(k)]x N [X, h(k)]
for each integek. If v(0) =0, then we put

h(7*(G=1o) i 5>0 and (=11 €N [w,g(v[(G=10) |
uz(7)(j) =

0 otherwise.

Using Lemma 3.2, we define a partial functignw® x w — w* by

£ = ({" @ (0)o)-
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As f is recursive on its domain, theredg € X0 such thatf(v,i) = {eo}(v,4) if f(v,i) is defined.
If 4(0) # 0, then we putuz(v) == 1754, (e0,7). This defines a recursive map. If 7(0) # 0 and
1

v € BCg, then{[us(7)]*}(i) = {sgzngﬁww (e0,7)}(5) = {e0}(7,4) = f(v,). Thusus(v) € BCg, even if
~v(0)=0. Letze X. If v(0)=0, then
Inew (n,x)€p**¥(v) & IncwIpew (n,z) € NwxX,v*(p)]
& dnecwdpew nEN(w,gh*(p)]) and xEN(X, h[y*(p)])
& Jicw (i)leN[w,g@*[(i)o])] and meN[X,h(y*[(i)oD]
& zep™uz(y)].

If v(0)#£0, then

Inew (n,z)€p” ¥ (7) & Incw Ipew (n,z)¢p* X [{+*}(p)]
& Jicw - [(o,a]€pX ({77 H(n])
e Jicw mxepX[f(y,i)]
& zep*uz(y)].
(b) If (7)0(0)=0, then we put

0 if j=0,
u(.)(v)(j)i{

[(7) (=1)o)*[( —1)1] otherwise.

We define a partial functiof’ : w” x w — w® by f'(v,4) := {[(7)@),]*}H(i)1]. As f’ is recursive on its

domain, there igy € XY such thatf'(v,i) = {70} (v,1) if f'(v,4) is defined. 1f(y)o(0) # 0, then we put

uey(y) = 1“5}?’“”“’“ (70,7)- This defines a recursive map,. If {>2 and(y), € BC¢ for each integer
1

n, then{[u()(y)]" }(4) = {S;;’w’ww (70, 7)}(@) = {70} (7,7) = f'(7,4). Thusu,(v) € BC;, even if{ =1.
Letze X. If (7)g(0)=0, then
Incw repX (V)] & Incw Ipcw xEN(X, [(W)n]*(p))
& Jiew 2N (X, (1ol 101])
& zepXugy(v))-

If (7)0(0)7#0, then

Snew v€pX[(1)n] & InewIpew v¢p* ({[()nl"Hp)
)

& Jicw ~zep® ({{(Ma,lH
& dicew ﬂprX[f/(%i)]
& zepruy()]-

This finishes the proof. 0

23



The hyperarithmetical hierarchy.

The notion of a hyperarithmetical set is definedin [Mds8@E(ZB): a subset of a recursively presented
Polish space isyperarithmetical if it is Borel and has a recursive Borel code. We can define atayjih-
metical hierarchy, extending the arithmetical hierarchige following characterization of the arithmetical
pointclassest? can be found in[[Lou??]:

Theorem 3.7 Let X be a recursively presented Polish space, a1l an integer. Then
Za(X)={p*(v) [v€ X N BC,}.

Actually, we will use only a small part of it. More specificaliwe will only use the fact that ifP
is X0(X), then there isy € XY N BCy with P = pX(v). It is very simple: there is € X} such that
P =;e, N[X,e(i)] = p*(07¢). Thusy:=0"¢ is suitable. The following definition comes naturally
after Theorem 3.7, and can be found[in J[Lqu??]:

Definition 3.8 Let X be a recursively presented Polish space, ards <w;. Then we set
D200 ={p*(3) | 7€ 2P N BCe,
I(X) = 2(X),
AAX) = ZAX) NI (X).
This defines théyperarithmetical hierarchy.

Note that Lemma 3.3 (resp., 3.5, 3.6) implies that the hyfitbraetical pointclasses are closed under
recursive substitutions (resp., finite intersections amdns,3“). Now we construct recursive maps giving
codes for the basic neighborhoods and their complementicespof type at most 1.

Lemma 3.9 Let X be a recursively presented Polish space of type at most 1.

(@) There is a recursive mapy :w — w* such thatuy (k) € BCy, andp™ [un (k)] = N(X, k).

(b) There is a recursive map®,; :w— w* such thatuX (k) € BCy, and p* [uy (k)] =N (X, k).
Proof. (a) Putuy (k) :=0k0°.

(b) By 3C.3 in [Mos8p], the equivalende;, k) € R < x ¢ N (X, k) definesR € XP(X xw). By Theorem
3.7 there isyo € XY N BC; with R=p**“ (). Using Lemma 3.2 we setX, (k) :==u¥ (o, k). O

Now we use this to prove that, uniformly §n> 2, a set in the pointclasE‘g(X) (resp.,Eg(X)) is the
disjoint union of sets irl'IO<£ (resp.,Hgg), if X is a space of type at most 1. We will use the notation

E:L.J E;

€W

to express the fact thd is the disjoint union of the&Z;’s.
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Lemma 3.10 Let X be a recursively presented Polish space of type at most I fhieee is a recursive map

uf :w” —w* such thatuy (v) € BC; if v € BCy, for eachl <¢ <w;. Moreover,

(@) There is a recursive map :w* xw — w* such that

(1) uX (,1) € BCy for each(v, i) €w® x w.

(2) {[ux (1))} (i) is defined, inBC1, ¥ ({[u (N]7}0)) € AL and =X ({[uX (N]7H@) ) =X [ (3,7)]
for each(y,i) € BCy X w.

(b) If 1<€<w; and e BCk, thenp™ (7) = ~* ({[ugf(y)]*}(i)).

s

Proof. For & =1, we first define a mag : w* x w — w*, using Lemma 3.9, as follows:
3 wXn ()] if <,
(o)) =
J

As [ is recursive, the formula¥ (v,4) :=uf [0,4, f(v,1)] definesu recursive such that (v,i) € BC,
for each(v, i) € w* xw (see Lemma 3.5). Then, using Lemma 3.9, we define a fmap x w — w®:

un[y*(2)] if j>i.

un[y* ()] if 5 <i,

(f(%i)>j:{ .

WKl (0)] i >
As f is recursive, and using Lemma 3.5, theregsc XY such that{eg}(v,) = uff[l,z‘,f(fy,z‘)] € B4
for each(v,i) ew® x w. We define a recursive map: w* — w® by g(v) := OAS;;’W’W (€0,7). If
(1,9) € BC1 xw, then{[g(1)]*}() = {85 (c0,1)}(0) = {e0}(3,) = uF[L,i, [(3,)] is defined,
p~ <{[g(’y)]*}(i)) € A since it is a finite union of clopen sets, ang™ ({[g(y)]*}(z’)) = pX X (7,9)].
Moreover,

X (1) = Ui NIX7*(0)] =U N[X, 7" <m\(L<J_ NX, 7 (7))
=U [ (vl @) u U (untr ()]
= U o™ (uf L3, ()] =L] =0~ ({lg()}6).
i e s 2 (7t v

SN (X [ O @) i [0 =0,

A ({16 } () otherwise,

SO thatBj Z:U Bj,i-

. =
S
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By Lemma 3.98;,=p* [uy (17" 1)) )] if [{3*}(7)](0)=0, and

oy (10710 ®)]  H)GI0) =0

-Bj;=
X[%({[{fy*}(]‘)]*}(i))] otherwise,
by Lemma 3.1. Thus
P ()= ~Bs
kew
=U N Bi\Bs
kew j<k

-UN (U - )m

kew j<k 1€W

:O M (O M BJ‘J\Bj,z‘>\Bk

kew j<k 1€w 1<t

:U< N N Jl\Bm(z')j)\Bzh(z‘)

i€w " ji<ih(i) 1<(i);

:U_'<Blh(z U U Bj i), Uﬁle>.

i€w Jj<lh(i) 1

Note that the code foB; ; is a partial recursive function of,i and j. Using Lemma 3.5, this shows
the existence of a partial functiof® : w¥ x w — w*, recursive on its domain, such that (v, ) is in

Ui<y<e BCyandp™(y) = U —pX[fX(v,1)] for eachy € BC¢ with ¢ > 2. There iss; € X such that
ZEw

(i) ={e1} (v, 1) ={S; 8@ (e, )Y if fX (v, 1) is defined. We defing : w® — w* by the formula
h(vy):= 1“5“50 “ (21,7). The maph is recursivei(y) € BC¢ and
1

o= =" (b)) 0)
if ve BC¢ and{>2.
e It remains to set; (v):=g(v) if v(0)=0, h(v) otherwise. O

Now we will show that the hyperarithmetical hierarchy magesse, i.e., the existence of sets of arbitrary
complexity undetw{'. The intuition is quite simple: we take universal sets. Bathvave to check that this
is effective.
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Notation. Recall that ifa € w®, then<,:= {(m,n) € w? | a(< m,n >) =1} (see 4A in [Mos80]), and
<a:={(m,n) €w? | a(<m,n>)=1 and a(<n,m >)#1}. The first relation is used to define the set
WO :={acw” | <, isa wellordering on its domaifin cw | n<, n}}, which is used to define

W& = sup{|a| | ac WO N 50},
where|a| is the order type o&,,. If a€w” andp € w, then we definey, € 2* Cw® by
ap(g)=1 < Sedg) and INg)=2 and a(q)=1 and Vi€2 (q); <a p.
If aecWO, thena‘p e WO and <ay is the restriction ok, to the strict<,-predecessors of.

Lemma 3.11 There is a partial function) : w* x w — w®, recursive on its domain, definedafc WO and
|Oé|p| >1, such thadoz|p| =sup] {|a|n(o¢,p)(n) |[+1 | new}.

Proof. We define a partial functiop : w* xw — w by g(a, p) :=min{m € w | m <, p} if it exists. Note
that g is recursive on its domain and defined on:= {(a,p) € WO xw | |o)p| > 1}. We define a map
h:w* xw3—w by
nif m<an<ap,
h(ca, p,m,m):=
m otherwise.

Note thath is recursive. This allows us to define a partial functionw®)? x w? — w by:

g(a,p) if n=0,
¢(6’ a’p7 n)::

hla, p,n—1, {s}gﬁx“’Q’”(a,p, n—1)] if n>1.
1

Note thaty is recursive on its domain, so that therestse XY such that{e*} (o, p, n) = ¥(e*, a, p, n) if
¥(e*, a,p,n) is defined. Now it is clear that(e*, o, p,n) is defined if(«, p) € D, by induction onn, and
that|ay, | =supT {|a <y (apm) | +1 [ n€W}. We putn(a,p)(n):={e*}(a, p,n) if (¥, o, p,n) is defined.
Clearly,n is defined onD and suitable. O

Notation. In the next lemma we identifgv*)“ with w*“, using the formula((éq)q@,) =J,. Letac WO,

Yo € w¥, andu : w¥ — w* a map. Using Lemma 3.11 we can define, by inductiorz;lc(with respect to the
wellordering<,), and if|a,| > 1, Vo, | 1:U[(’Y\a‘n(a,p)(n)|)n6w]-

Lemma 3.12 Letd <w{K, ac WO N XY with 04+1=|al, o€ XY, u:w* —w* a recursive map, ange w
such thap <. p. Theny,, |is 9.

Proof. Fix py € w with |a, | = 0. Using Lemma 3.11, we define a partial functign v x w — w* by
f(e,p) = u[({d[n(a,p)(n)]) } Note thatf is recursive on its domain. We define a partial function
Yiw? Xw—w® by e
Yo if p=npo,
Y(e,p)=
f(e,p) it p#po.
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As 1 is recursive on its domain, there é € X9 with {e*}(p) = (c*,p) if ¥(e*, p) is defined. It
remains to see that(¢*, p) is defined and equal w\a\pl if p <, p. We argue by induction on p (with
respect to the wellordering,). If p=pg, theny(c*, p) =~ = Vapo| = Nayl* Assume now thaf,| > 1,
and that the statement is proved fpsatisfying|a,,| < |,|. Theny[e*, n(a,p)(n)] is defined and equal
10 Via (o] fOF €CHR € w. Itis also equal to{e* }n(a, p)(n)]. Thus f(e*,p) is defined and equal to

u[(rﬂa‘n(a’p)(n”)new]:’Y‘a‘p‘- 0

Notation. In the next lemmag € WO. We denote), , := ||, andna,p.n :=y(ap)m)| i [ap[ > 1.

Lemma 3.13 There isu : w* — w* recursive such thaty), € BC14,,,,, for each integem implies that
u(7) € BCiy,, and(8,6) € p*" ) [u(v)] & In€w [(B)n, 8¢ o> [(7)a)-

Proof. First note that there isy € X0 with {g0}**2)*2)(n, 8,6) = [(8)n, 4] for each(n, 3,6) in
w x (2¥)2. Similarly, using Lemmas 3.2 and 3.3, we see that therg & X} such that, for eaclry,n) in

w¥ X w, {e1}(y,n) = us <u$x(2w) (ZW)Q[(v)n,eo],n) We putu(y) := 1“Sgg’w’ww (e1,7), so thatu is a

recursive map. Moreovef[u(v)]*}(n) ={e1}(y,n) =u¥ <u$x(2w)2’(2w)2[(7)n,eo],n) is defined and in

BCyyy,,.,., SO thatu(y) € BC14y, . Finally,
(8.9)€p* [u()] & Inew (8.0)¢ o> [{fu(n]}(m)]
& dnecw (8,0)¢p*) [uw(zﬁx (2) 'y)n,é‘o],n)]
& Inew (n,8,6) ¢ px @ (w7 E W)n,eo]>
& Inew [(B)n, ¢ P>V [(V)n]:

This finishes the proof. 0

Theorem 3.14 Let1<¢ <w{'X, andI” be one of the classes?, I10. Then there i3 € I'(2*)\T".
Proof. Assume first thal” = 5. As in 22.3 in [Kec95] we set
(ﬁ,é)eug{l) & Jkew B(k)=0 and de N[2¥, K],

SO thatL{Q0 € XY[(2¢)?] is universal forx!(2«). We define a recursive bijection : 2 — (2¥)? by
Vi (7) (k) :=~(2k + i), for i € 2. We setB; ':1/1*1(2/{2“’) so thatB; is X0. As in 22.4 in [Kec95], we see
that?/2, gé ITY. ThusB; ¢ I1{ sincey is a homeomorph|sm

So we may assume that> 2 and we will generalize this. Writ€ =1+6, with 1 <6 < wCK. Let
a € WO N XY with §+1 = |a|. Using the previous notation, we ggt , = supT {napn+1 | n € w} if
Nap>1, by Lemma 3.11. As in 22.3 iff [KecP5] again we inductively defiifn, , > 1,

(8,8) €Uzo & Inecw [(B)n, 8] ¢Uso ,

14+na,p 1+Wo¢ Py

so thatiZ, is universal fors) ,  (2¥).

1+na,p
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Note the existence af € w with 70, = 6. As before we puB; := ¢! (U,,), SO thatBg is notTIg. By
3

Lemma 3.3, it remains to see thag,, iS E{)Jma ,- By Theorem 3.7 there ig) € XY N BC; such that

1+na,p
w

Uz, = p(2)(). Lemma 3.13 gives, recursive. We can apply Lemma 3.12, so that | € 29 is defined
1
for eachp with p <, p. By induction we see that,, , € BC1,, ,, by Lemma 3.13. Moreover,

(8,0)€ 0% () (8,6)€ p® (l(pe . mec] ) & In€w (B, 0160 ()

This inductively shows that®*)* (v,,, )=uZ, . ThustZ,  isSf,, .

1+na,p 1+na,p

Assume now thal” = II¢. The previous facts givé; € X(2*)\II{. Butitis clear thatds := B is
in 112(2°)\ 22 O

Remark. We can define, fop € 2¢, wf =sup{la] | e WO N ZP(B)}. If X is a recursively presented
Polish space, then we can defitl(3)(X) = {p*(7) | v € ZP(8) N BC¢}, IY(B) := X2(B) and also
A(B):=Z2(8) N II(B). One can check that this definition 81(3) is equivalent to the one we gave in
section 3. The previous proof shows the existencBof Eg(ﬁ)(TJ)\HO, for 1 §£<wf. Indeed, the only

things to change in the proof are the following. In Lemma 36127, a € £9(3), f andy becomex?(3)
on their domain by 3D.7, 3G.1 and 3G.2 [n [Mds80]. Then we gaplya7A.2 in [Mos80] to get*. The
conclusion is tha’o/|a‘p| € X(B). The result follows.

4 Effective versions of Kuratowski’'s theorem.

Notation. Let ¢ <wi. Then& —1 will denote the predecessor §fif it exists, £ otherwise. We also define
E:=¢—11if £>3, £ otherwise.

Theorem 4.1 Leta€2. There is a partial functioF"*: w* — (ww)?’, recursive on its domain, such that
() For eachl <¢ <2 and for eachy € BC¢, coding B :=—p*"(v) € 102, F°(v) is defined and

(1) FO(7) € BCy (odesC i= " [FY ()] €TI).

2) f::{FP(y)}T’;’ZW defines a continuous bijection froffionto B.

(3) F¥(v) € BC1 codes an open set computing a partial functior” — w*, defined and continuous d,
which coincides withf —.

r eachl <¢ <w; and for eachy € BC, coding B:=—p2" (v) I12, F'(v) is defined an
(b) For eachl <¢ d for eachy € BCe, coding B := —p?" (7) €T, F(y) is defined and
(1) Fj () € BCy (codesC :=—p*" [ (v)] € ILY).

(2) f=={F!(7)}je."*" defines a continuous bijection frofonto B.

(3) F3 (v) € BC¢- codes aZJg, set computing a partial function: 2% — w*, defined andilg,-measurable
on B, which coincides withy —1.
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Proof. Let us look at the case whefe=1 first. We define.:w —w by

0 if ((k)1>1:0,

p(k):=< ((k)l) :
min{lcw | 15 < ~—21-} otherwise.
AS] <(k) ) o

! 2

Clearly . is recursive. Let us recall, for eaéte w, the definition of the basic neighborhood:
0 if ((k:)l)lzo,

N(w¥ k)=
{ Sew? | Vi<u(k) 6(j)= <<(k)1>0> | } otherwise.

J

We define a recursive map: w — w by

0 if ((k:)1>1:0,

< (((k)1> 0>0, o <<(k)1) 0) > otherwise.

n(k)—1

p(k):=

In 3A.2 in [Mos80] the recursive magy :w — w is defined bysg(n):=0if n=0, 1 otherwise. The recursive
presentation o2“ ensures that

0 if ((k)1>1=0,
N(2¥,k):= {ae?"! ) < (k) a(j):89[<((k)1)0> ] }otherwise.

We view 2“ as a subset af“. We denote by lgl. the partial function defined o2t’ C w*, with values in

2¢, by Idhe () := . It is recursive or2*, since the relationd € N (2¢, k)" is X (w* xw) on2¥ xw. Thus

there isdy € X0 with {65 }*“2” () =1dse () for eacha € 2%, By Lemma 3.3 we haves > (v,dy) € BCy

anda € p** [ue %" (v,80)] & a€p®(v) if y€ BC; anda 2%, As2 e IT0(w*), there isy, € 20 N BCy

with 2% = —p““ (), by Theorem 3.7. We define a recursive mjaps” — w“ by (f(7)> = if i =0,
7

“%(~, 8y) otherwise.

w
Up

If v € BC), then using Lemma 3.5 we séff(y) := u‘}’”[l, 1, f(v)], so thatF§(v) € BC, and also
29\ p2” (7) =" [F ()] since

P IEO=U 07 [(10) =0 (o) U o ™ (7 00) =\ 22 U 2 ().

i<1

ThusB=2%\p?" (7) €I1{(2*), andC = B. We setF{(v) := & if v € BC}, so that condition (2) is fullfilled.
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We defineP C2¥ xw by

(,k)eP < aeN(2*k) and [Vj<|h[gp(k)] <<(k)1>O>A<2].

J
As Pis X7, there isso € XY N BCy with P = p?"*“(gq), by Theorem 3.7. We puty(v) =« if v€ BCy,
so thatFi' () codesP computing the canonical injection frogt into w* since ifa € 2¢, then we have
a€eN(w” k) < P(a, k). Sowe are done if € BC|.

e For the general case, we give the classical scheme of thérgoinen before getting into the effective
details, to make things easier to understand. S®let Hg. There is(B;)icw C U1§n<£ 1'197 such that

B=();e,, ~Bi. Using Lemma 3.10 we will findB; ;)i jew € U<y AY with —B;= | | B; ;. We will
JEW

argue by induction og, so that we will getC; ; € IT{(w®), fi j: Cij — B, andg; ; := fl.fjl. The objects

we are looking for will be the following:

C:= {5 cw* | View [(0)i]* €Ci 5,00 and fi (s):(0) <[(5)i]*) = f0.(6)0(0) ([(5)0]*> }
F8) = fossr0) ([(5)0]*) . To defineg, we defineh : B — w* by h(a)(i):=min{jcw | a€ B, ;}. Note
thath (o) () is also the unique integgrsatisfyinga € B; ;. We will have <g(o¢)>i =h(a) (@) gi,na) () (@)
o We set
€meq & £>2andyeBC,

(€,7,6)€QT & (£,7)€Q and{e}‘;w’(“w)3(6) is defined and irBC for eachd e, ., .. BCy,

(677757 Q)EQ++ -~ (67'}/,5)€Q+ anda € B.

Assume that¢, v) € Q and~y codesB, so that{y*}(i) is defined for each integér and inBC,, for some
1<m; <&. Using Lemma 3.10, we set ; := { (uff [{'y*}(i)]) *}(j) for eachj. Note thaty; ; is recursive
in (v,4,7), v,; € BC1if {y*}(i) € BCy, andv;; € U<, <, BCy if {y*}(i) € BC*. We also have
Bij=2“\p* (7i)-

The mapF* will be obtained by Kleene’s Recursion Theorem, so that wehaive, for some suitable
g%, Fo(y) = ¢"(e%,7) = {e2}**(“)*(4). In order to describe:C, we defineR € £0[(w*)?] as follows:

(e,7,0)€R & Jicw [Fjew (@) e N (w? [{}5 ™ (3 0,007 () | or

ww72w

e m} - (100) {7 Gomon} " (1007)]:
By 3C.4 and 3C.5 in[[Mos80], there 8" € A%[(w*)? x w?] with

(c,7,0)€R & Jicw <56N[w“’,(i)0] and [¢, 7, (i)o,(i)l]eR*>.
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We define a magh : (w*)? —w® by

(Z)O if [5777() 7( ) ]GR*
Yo(e, 7)(1) =

0 otherwise.

Clearly, ¢y is recursive ande,v,d) e R < Jicw 0 € N[w“,¢o(e,v)(7)]. We define a recursive mag
by ¢o(e,v):=0"1o(e,v). Note thatyy(e,v) € BC; (we will have Fi§' () = o (e?, ), for % suitable, if
ve€BC™).

¢ We define a partial functiogh; : (w*)3 — 2% by

wv 2%

(16)01").

As 1y is recursive on its domain, theredse X0 such thaty, (¢, v, ) = {e1 } "2 (¢, v, 8) if ¥1 (e, 7, 0)
2 w w
is defined. We pup; (¢,7): S(“’ P92 61 g, ), so that (¢, v, 6) is equal tof g (2, 7)1+ 2“ (6) when
1
it is defined. Note thap, is a total recursive map.

b1(e,7,0):={ {17 (o oo }

e Now we have to describgé (e, v) coding a set computing. By the proof of 3C.3 in[[Mos§0] there are
recursive mapg’:w— w andh’:w? — w such that, for eacty, j, k) € w*” x w?,

5(j)=k & Jicw [§e N(w¥,i) and j<g (i) andh (i, j)=k].

We setk, _< ) We have, for € B,
g(@) €N (W, k)
& (1) #0 and vj <p(k) g(a)(j)=k;
& (1) #0 and vj <p(k) 9(a))gol()a] =F;
& ((69), 0 and ¥ <plk) | ((G1=0 and hfa)()o]=;) o
(>0 and g1 0 (101 11 =15) |
@( )17&0 and Vj < pu(k) {((j)lzo andaeB(j)mkj) or

(()2>0 and Ficw | g nyigol (@) € N(w*, i) and(i)1 <¢'(G) andn’[ <>1—11=kj])]-
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Buta € Bjon, < a¢p® (Vjok,) © Fewlkj=1 and a ¢ p* (y4),,)]- Thereiss; € £7 such
that {6, }>"*“?" (o, k) = if (o, k) €2% xw.

If {v*}[(3)0](0)=0, then by Lemmas 3.10 and 3.3 we get

ad 0 (o) & @€ o> [u2 (17 H(ol 1) |

= (ke (0 [ (1)@l 1)) ).
If {v*}[(j)o](0)#0, then by Lemmas 3.3 and 3.1 we get

ad p? (Vor) & (k)¢ o2 i (45000 01)]

N (a’ kj) e p2w Xw (u_‘ [ugw Xw,2% (W(j)Ovl’ 61)]> .

This shows the existence of a partial functignw® xw? — w®, recursive on its domain, such thgt(~, 5, 1)
is defined if(£,7) € Q. In this casego(v,j,1) € BCy if {v"}(j)o] € BCh, go(7,4,1) € BCy i
{y"}()ol€ BC*, and

a€Bjo < a¢p” (Yor) & (k) €p” *“[Go(v,5,1)]-

Choosey; € £ N BC, such that(a, k,5,1) € p***“*(y1) < k; = 1. Using Lemma 3.2 we see that
u?’ (y1,4,1) € BCy and (a, k) € p *“[u®’ (11,5,1)] < k; =1, for each(a, k,j,1) € 2 x w3, Using
Lemmas 3.5 and 3.6.(b), we get the existence of a partiatibmg, : w* x w — w*, recursive on its
domain, such thagy (v, 7) is defined if(¢, ) € Q. In this casego(v,j) € BCy if {v*}[(j)o] € BC1, and
90(7,7) € BCyyy, if {v*}[(§)o] € BC*. If moreovera € B, thena € B, r, < (a, k) €p” *“[g0(7, )]-

- We will have

w w¥ (W 3
IG5 h(@)[G)o] () EN(W?, 1) & (a,i)€p® *“[{e}; ) (YG)o,h(@)[G)o])]
w w¥ (w®)3 .
& Few [ (@ ier ey (350, andh(@)[(G)o] =1 |

w w¥ (w*)3
& dlew |:(O[,’L')€p2 Xw[{&}Q () (’7(.])071)] a.ndOZEB(j)O’l}

if (&,7,¢,a) € Q1. If we apply Lemmas 3.5 and 3.6.(a), then we see the existeinaepartial function
g¥: (w¥)? xw? —w*, recursive on its domain, such thgt(c, v, 7,1) is defined and iIBBC if (¢,v,¢) €QT,
in which casga, k) € p***“[¢{(e, v, 4,1)] is equivalent to

(YG)o.)] @nd (3)1 <g¢'(3) and R[4, (j)1—1]:kj].

dicw [ (Oz,i) EPQW Xw[{&};w’(ww)?)
If (&,7,6,0)€eQt, then

Jicw [g(j)o,h(a)[(j)o](a)GN(W“’J) and (j)1 <¢'(¢) and h'[i, (j)l_l]:kj]
& Jlew [ (o, k)€ p* *“[g%(e,,4,1)] and @€ Bj)o. ]
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But ¢{(¢,,4,1) could be inBC; for somel’s, and in BC* for some others. This may happen if
& > 3. This is a problem since we want to apply Lemma 3.6.(b). We sdlve this problem with
Lemma 3.4. We define a partial functign : (w“)? x w? — w® by gi(,7,4,1) = u2"**[¢{(,7, ,1)].
As p? % (gl (e,,7,D)]=p* *“[g0 (g, 7, 5, 1)] if (&,7,e) €QT, it satisfies the previous propertiesgf

- Lemmas 3.5 and 3.6.(b) imply the existence of a partial ioncgs : (w*)? x w — w*, recursive on its
domain, such thagi (s, 7, j) is defined and inBC if (&,v,¢) € Q. If moreover(¢,v,e,a) € QT T, then
(o, k) € p> *@[gl(e,, )] is equivalent to

Jicw [gq)o,h(a)[(j)o}(a)eN (w*”,4) and ()1 <g'(:) and '[i, (j)1 —1]=k; ]

We also define a partial functig) : (w*)%xw—w®. Itis defined relatively tg? exactly likegs was defined
relatively tog; . It will satisfy the previous properties gf if ¢ =2, and we will have, fo(¢,v,e,a) € QT+
anda €2,

gl@)eN(w*,k) « ((h)1) #0 andvj<pu(k) |[(()1=0 and (@, k) € 5 *[go(7.5)]) or

(()1>0 and (o, k) € > “[g8(e,7,9)]) |
- We define a partial functiops : (w*)? x w — w® by
| uF *“[go(y, )] if (3)1=0,
93(e,7,7):=

93(8,7,9) i (§)1>0.

Note thatg} is recursive on its domain, and (s, v, j) is defined and iBC'if (¢,7,e) € Q. We also define
a partial functiong? : (w*)? x w — w®. It is defined relatively tq;), like g1 was defined relatively tg.,
except thay$ (s, v, j) := go(v, j) if (j)1 =0. The functiong) will satisfy the previous properties of if
£=2.

- By Lemma 3.5, we get the existence of a partial funcg@m (w“)2 X w — wY, recursive on its domain,
such thay} (e, v, m) is defined and iBC'if (¢,v,¢) € Q™ and, if moreovel¢, v,e,a) €Q™ T, then

(o, k) €p” " “gi(e, 7, m)] & ((k)l)l%o and p(k)=m and Vj<m (a,k)€p* *“[gi(e,7,)]-
Thus(&,v, e, ) € QT will imply that

g(@)EN(W* k) « ((k)l)l%o and Vj <pu(k) (a,k)€p* *“[g3(e,7.5)]
& dmew [((k)1)17é0 and pu(k)=m and Vj<m (a, k:)epzwx“’[gé(a,'y,j)]]

& Imew (a,k)ep* *“[gi(e,y,m)].

We also define a partial functig) : (w*)?xw —w®. Itis defined relatively tg$ exactly likegi was defined
relatively togi. It will satisfy the previous properties of if £¢=2.
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- By Lemma 3.6.(b), we get the existence of a partial functign (w~)? — w*, recursive on its domain,
such thatpl (¢, ) is defined and iBC'if (¢,v,¢)€Q*, and

g(@) EN(W, k) & (o k) €p” *“[p3(e,7)]
if (&,7,¢,a)€QTT. We also define a partial functigr) : (w~)? —w®. It is defined relatively tg exactly
like o} was defined relatively tg}. It will satisfy the previous properties of} if £ =2.

» Now we can define a partial functiasf : (w~)? — (w*)3 by

L5 (), FT (), F5 ()] i ~(0)=0,
¢ )=

[SOO (57 7)7 ©1 (87 7)7 Spg (57 7)] if 7(0) 7& 0.
As % is recursive on its domain, by Kleene’s Recursion Theoresretis:z? € E{) such that
(e} () =" (e, )

if p%(%,~) is defined. We define a partial functidff : w* — (w*)3 by F7() := {2}**:(“*)? (v), so that
F* is recursive on its domain. We already checked fffaty) is suitable ify € BC,.

So assume tha&< ¢ <w;, andy € BC; codesB :=—p*" (v) € ITZ. We will prove thatF(v) is defined
and fullfills the required properties by induction én

Note that{se}%"(“") (5) is defined and iBC for eachd € J,, . BC,, by induction assumption.
This implies that ¢, v,%) € Q™, ¢%(c%, ) and () are defined, and

F () ={e" 1 () =0 (€%, 1) = [e0(e", 7)1 (6%, 7), 08 (% )
(1) Note thatF§ () € BC sinceF§ (y) =wo(e®, v) =0"1p (e, ~). Moreover, with the previous notation,
we getd ¢ p [F¢(y)] < (¢%,7,0)¢ R < §€C, by induction assumption.

(2) We haveF ' (v) =p1(g%,), so that, by induction assumption, and for edehC,
{Ff ()32 (0) = ¢ (€%, )

ww7 o 3 w
= {7 (o000 |

(©he)

= fo ) ([B)o]7) = £(0).

Clearly, f is continuous. 1% € C andi € w, then f(d) = f; (5),(0) ([(6)&*) € B (5),(0), thus f(0) € B. Let

9, ¢’ € C such thatn := f((;) = f((;/) Thena = fi,(é)i(O) <[(5)z]*) S B( 5):(0)» SO thata is in B( )i (0)
and B; (5,(0)- This shows that);(0) = (0");(0). Thus[(6);]* = [(¢'):]* since f; (5,(0) IS One-to-one,
(0);=(¢");, andd=¢'. This shows thaf is one-to-one. Itxe B andi €w, then there |s a unique integgr
with o€ B, j,. There i’ € C; j, with a= f; ;,(6%). Put(8);:=75;6°. Thens € C anda = f(§). This shows
that f is onto.

(160l")

wv,2%

- {Ff”('yo,(a)o(O))}

35



(3) We haveFy (y) =5 (e, 7).
- If £=2, thenn; =1 for eachi, ~; ; € BC, for each(s, j). Thus

o ¢¥(¢%,7,4,1) € BCy, by induction assumption, sin({e“}gw’(ww)g(
g%(el’r)/aja l)GBC2

Y()o,1) € BC1. This implies that

o g3(e',7,4) € BCy andgd (g%, v, j) € BCy.

o gi(e',~,7) € BCy andgl(e%, v, j) € BC).

3(e
o gi(el,v,m)e BCy andgl (%, v,m) € BC;.

o py(et, ) € BCy=BC¢- andyh(c”, v) € BCh.
-If £>3, then

o gi(et,y,4,1) € BCmax2,n,,)» by induction assumption. Indeediifs), ; € BC1, theng? (!, v, 4,1)
isin BCy andgi (et,, j,1) € BCy. If V()01 € BCT, theny), . € BC%.)O, andg? (¢!, v, 4,10), gi (et 7, 4,1)
too.

© 93(e',7,7) € BCmaxz g, )-
o g3(e',7,7) € BCmax@2.n),)-
ogi(el,y,m)e BCmax; .., (2,15,,) € BCe-1-
o p3(e!,7) € BCg_1=BC;-.
Thus F3 () = ¢3(e%, v) € BCy if v € BCy, and Fy () =3 (e!, v) € BCe-. And p***“[F§(~)] computes
gonB. If «€ B andi €w, then [(g(a)) J ' = 9i,h(e) (i) (@) € C; p(a) (i) SINCEAE B (a)()- Thus
fish(@) @) [9i,n(0) () ()] =

andg(a) € C since <g(a)> (0)=h(a)(7). Moreover,

(2

Fl9()]= fo.(g(a))0 (0) <[(g(0¢))0] *> =a.
If 6 € C andi € w, then (g[f (5)])Z_ = h[f(O)]@) ™ ginrenelf(0)] = (6)i(0)7[(6)i]* = (6)i. Therefore
g[f(8)]=4. This shows thay coincides withf . O
Proof of Theorem 1.5.Lety € X N BC¢,1 with B=-p*"(v). By Theorem 4.1,

o If £=1,thenF%(y) € £, C € II7, f is a partial recursive function off, andg is a partial &)-recusive
function onB.

o If £>2, thenF! () € X and the same conclusion holds. O
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We also have a\! version of Theorem 1.5:

Theorem 4.2 Let¢ > 1 be a countable ordinal, and € IT{  , (2*) N A{. Then there i” € IT{ N Af (w*),

a Al-recursive functionf : w* — 2, and a Ai-recursive functiory : 2* — w*, such thatf|c defines a
continuous bijection frond’ onto B, g|p is Eg-measurable, ang s coincides witr(f‘c)—l.

Proof. We set={(A1)(X) = {p*(7) | v € A1 N BC¢} if 1 <& <wy. In [Cou8q], it is essentially proved
thatzg(A%) = 22 N Al. Actually, A. Louveau does not use the coding for Borel seds we use here, but

he proves this specific result, with this coding, [in [Cqu?3h lety € Al N BC¢1 with B=—p?" (7). By
Theorem 4.1,

o If =1, thenF%(y)e A, CeII{ N Al, f andg are partialA} functions onAl sets, and can be extended
to total A} maps.

o If £>2, thenF!(y) € A} and the same conclusion holds. O

5 Proof of Theorem 1.3.

The proof of Theorem 1.3.(2) is essentially identical td tifar heorem 1.3.(1), so it is enough to prove
Theorem 1.3.(1) to get Theorem 1.3. In the sequel we willmssthatt <w{'X, except where indicated. Let
us indicate the specifications of the proof of Theorem 1.2wkaneed. Theorem 3.14 givése I'(2¢)\T.
As Be Hgoﬂ, Theorem 1.5 give¢’, f andg. Here again, the dictionaryt will be made of two pieces: we
will have A=p U if £>3.

Notation. Recall thatQ := {(s, ) € 2<% x2<¢ | |s| = t|}. We will sometimes view) asQ € A)(w):

Q::{me | Seqm) and Vi<Ih(m) [Seq(m)i] and IH(m);]=2 and Vj €2 ((m)i> < 2} }
J
Implicitely, we have used the bijectiaft Q — Q defined by
I(s,t)::< < 5(0),4(0) >, ..., < s(|s|—=1),¢(|s|]—1) > >

Note that the mapy : w — w defined byy(r) := I(q,) is a recursive injection with rang®. We define a
recursive map\/ :w —w by M(j):=M; :=%;; 41,

Lemma 5.1 The sets.’, ' and i can be coded by recursive subsetssof
Proof. We define a recursive map Exp? — w coding the finite sequende:
Exp(k,j):=c < Sedc) and IHc)=j and Vi<j (c);i=k.

Using Exp, it is easy to build a recursive mgip w® — w such thatf (N, 1, m, P, R) codes the sequence
2N 7 [ i< m; 28 3 28] Then we just have to use bounded quantifiers. O
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Now we show thap* is “simple”.
Lemma 5.2 The sefu™ is 119(4%).
Proof. We have
YEN® & Ji€2 Vjcw Tkew e ()< |t|>j and y[k=""p t(I).

This shows thap>™ < H20(4“), by Lemma 5.1, since can be coded by an integer, and the restriction and
concatenation maps are recursive. O

Notation. We define a partial function: 2* xw— Q@ on B xw by ¢(a, 1) :=[g(a), a][1.
Lemmab5.3 The setE:={(N,a)cwx2¥ |acEx}isinI.

Proof. The maph :w x 2% — 2¢ defined by (N, a) := gy« is clearly recursive. From this we deduce that
FEisin I, using Lemmas 3.3 and 3.5. O

Notation. Now we code the mapgy, ;. We set Dom= {(N, j,v) € w?x4* | N < M; andy € Ky ;}.
We define a partial functiotp : w? x 4“ — 2¢ as follows: 3(N, j,v) is defined if(V, 7,~) € Dom, and its
coordinates are the coordinatesyah 2, in the same order as in(we forget the2’s and the3’s).

In the next lemma we consider the set expressing the factiawill look like B on K ;"
Lemma 5.4 The setF:={(N, j,v)eDom| ¢(N,j,v)€ En}isinI"if £>2.
Proof. We define a map: 2% x w? — 4% by

o[ 2N a(0) T [ Thew 2MUTEHD 3 MUY o(k41) ] if N<M(j),
MO"N’J)‘_{ 0 if N> M(j).

It is easy to see that is recursive. IfN <M; andyec4“, thenyc Ky ; is equivalent to
Vicw [1(0°, N, j)(i)=0 andy(i)€2] or [$(0°, N, j)(i) 0 and(i) =%(0%, N, 5)(i) .

This shows that Dong II. Then is clearly recursive on Dom. This shows tistis in " if ¢ > 2, by
Lemmas 3.3, 3.5 and 5.3. O

Now we describe the elements 4\ ;.

Notation. Recall thatP, 5 ; := { y€4“ | t 25 <~ and y—t 2% € K ; }. Note that the relation defined by
“ye Pg;"is IIY in v,t,S,j. Let(t,S, ) be suitable andV < min(M;, S) (N = S if ¢t =0). Note that
(N,j,v—t 25N) e F means that—t 25~ € 7> N Ky ;. This implies that

Arsin={7v€Ps;| (N, jy—t2°5N)eF}.

Lemma 5.5 The set ofy,t, S, j, N) €4“ x ({0} U ) xw? such that(t, S, 7) is suitable,N <min[M (), S],
N=Sift=0andvy€ A, s ;N can be coded by a set (4~ xw?) if £ >2.

Proof. Apply Lemmas 3.3, 3.5 and 5.4. d

38



Let us specify a few facts about the definitionmof

Notation. As C' is II{ and f is recursive onC, the graph G{f) of f is a II{ subset ofu* x 2*. As the
identity from 2, viewed as a subset af¥, into 2 is a partial recursive function ozt (see the proof of
Theorem 4.1), we can also say that Gris a I7 subset ofo* xw®, by Lemma 3.3. By 4A.1 in[[Mos30],
there isR € AY(w?) such thatv=f(3) < Vkew (B[k,alk)< R (recall thatf is defined at the beginning
of section 3).

e We setQ;:= {(t,s) €@ | (t,5) € Randt+# (0 andt(|t|—1)=1}. Note thatQ; can easily be coded by a
recursive subset of.

e The definition ofr is the same as the one in section 2. Here agaitan easily be coded by a recursive
subset ofv.

Proof of Theorem 1.3.(1).We refer to the proof of Theorem 1.2. We plit= 1 U 7, so thatA can be coded
by a A9 subset ofv. We will prove thatA> ¢ I'\T.

e Here again we havey ;7 N Ky ;|=En if N <M;. If yen>° N Ky ;, then the only thing to notice is

that[3[k, (¢i,)[k] € R for eachk € w.

e We also have

AOO :MOO U U U At7syj7N'
(t.5.7) suitable N < min(0;, S)
N=Sift=0

As I' is uniformly closed under finite unions, the set(9f¢, S, j) € 4% x ({#} U ) x w? such that(t, S, j)
is suitable andy € A; ¢ ; can be coded by a set (4~ xw?) if £ >2, by Lemma 5.5.

e By Lemmas 3.5, 3.6 and 5.2, we gét° c I'(4*) if ¢>3 and "= X?.

o If £>3 and "= II?, then we can write

A® = >\ ( U Pt,s,j) U U At N Psj-
( (1,5,9)

t,5,7) Suitable suitable

Thus

ooy m|e ymns
(t,5,7) (t,5,9)

suitable suitable

Here— [l‘oo U (U(t,s,j) suitable Pt,S,j)} € A3(4¥)C I'(4¥). By Lemma3.61J;, 5 ;) suitable P.5,/\At.5,j
isin I"(4¥), and by Lemma 3.5:4% is in I'(4¥). ThusA> € I"(4).

o If 1<£<2, then we argue as in the proof of Theorem 1.2. O

39



6 On the complexity of some sets of dictionaries.

The proof of Theorem 1.3 has the following consequence ordheplexity of the set&, andIl, defined
in the introduction. Recall that if <& < w1, then

Be:={AC2< | A® €%} and TI;:={AC2° | A®cIL}}.
Notation. We set
¢:={yeBC | pQW(v)GZg} and II;:={yeBC | pQW(v)GHQ}.

Corollary 6.1 Let3 < ¢ < w;. Then there isp : w* — 22~ continuous withss; = BC N ¢~ !(X¢) and
I, = BC N o~ ().

So X, (resp.,II¢) is more complicated than the set of Borel codesmgr(resp.,ﬂg) sets, onBC, if
£>3.

Proof. Theorem 4.1 gives a partial functidi'. Recall thatF} () codes a continuous bijection defined on
a closed subset of“ if v € BC. We now express the fact that its graph is a closed subsét afw“ (see
the notation after Lemma 5.5). In Theorem 4.1, the complemp’” () is involved. This leads us to use
the mapu-, given by Lemma 3.1. There B < I1?[(w*)3] such that

(1B,0)€P & ac2 and B¢ p* (Fifu-(7)]) and a={F{[u ()]} (8)

if y€ BC. By 4A.1 in [Mos89] there isk € AY(w* x w?) such that

(v, B,0)€P & Vkew [y, B[k, alk]€R
(see the notation after Lemma 5.5).

We say thatt, s) € Q; if (t,s) €Q, [7,t,5] € R, t # 0 andt(|t|—1) =1 (we use again the definition of
Q; after Lemma 5.5, but here it is uniform ). Now we definer as we did in section 2, withgy, € Q”
instead of ¢, € Q. After a coding of4<“ with w, we can define a recursive map w* — 2 coding
p U C4<¥ (we will identify @(v) with p U , identifying w with 4<¢; the notationp instead ofy is for w
in the range of; instead of2<“ in the range ofp).

Now lety € BC. Thenu-(y) € BC, F'[u-(y)] is defined,f : —p~" (F01 [uﬁ(y)]) — p*(y) is a
bijection. The proof of Theorem 1.3.(1) shows thaty)]> is = (resp.,ITY) if p*" (v) is ¢ (resp.,ITY),
when¢ > 3. It also shows thap o <[g5(’y)]°° N KQO) =p*"(7), so thatp>” (v) is = (resp..ILY) if [5(7)]™
is 32 (resp.,ITg), when > 3. O

Corollary 6.2 Let Be Al[(2¥)2] and3 < ¢ <w;. Then there igh:2¥ — 22~ continuous such that
@) =f:={ae2¥ | B,eX} =y~ (Z¢).
() TP :={a€2¥ | B, €My} =1 !(TL).
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Proof. (a) Lety, € BC such thatB = p(2*)* (vo). By Lemma 3.2, we get®)* (7)o = p2* [u2” (70, )] for
eacha €2“. So we just have to set(a) := ¢[u? (19, «)], using Corollary 6.1.

(b) The proof is similar. O

Theorem 6.3 (Saint Raymond) Leit< ¢ <w;. Then there isB € A{[(2*)?] such thats:[ is ITj-complete.
Similarly, there isB € A{[(2+)?] such thafl1{ is IT}{-complete.

Proof. Let P C 2¥ be aIli-complete set(> € T19[(2*)?] such that-P is the first projection of7, X in
A2\ 2, and B := {(a, B) € (2*)? | [, (B)o, (B)1] € Gx X}. ThenB is clearly Borel. Ifa € P,
thenB, =0 € 3¢, soa € 2. If a ¢ P, let f € 2* such that(a, fy) € G, and f : 2 — 2 defined by
f(v) = <Bo,v>. ThenB, ={B€2” | [a,(B)o, (6)1] € Gx X} ¢ 5 sinceX = f~!(B,) ¢ T¢. Thus
ag¢ =g, We proved thak:? = P is TTj-complete. We argue similarly fdi. O

Remarks. (a) We actually proved that > 3 and P € II{(2¥), then there isM e TT[(2*)?] such that
p=x}. Similarly, there isA € 3¢[(2¢)?] such thatP =TI

(b) This proof also shows that iP € IT}(2¥), then there is\/ € IT{[(2)?] such thatP = =}, Similarly,
there isA € TT{[(2)?] such thatP =TT,

(c) This proof also shows that I? € IT3(2+), then there i€ € IT}[(2«)?] such thatP = {a €2 | C, € Al}.

Corollary 6.4 Let3<¢<w;. ThenZ, andTI; are IT}-hard (and alsa=3(22°7)\=1).
Proof. We just have to apply Theorem 6.3 and Corollary 6.2. O

Remark. Recall that if X is a recursively presented Polish space ga®*, then
SHB)(X)={Qs | Qe B} (2°x X)},

I (B):= 51 (B) and A (B) := X} (B) N 1T} (B). In [Cec05], the following sets are introduced:
Te ={AC2% | A XN A[(A)},

I :={AC2<¥ | A® cII{ N Aj(A)}.

It is proved in [LecOp] that they arH1\ Al if £ >2. Under the axiom ok }-determinacy, this implies that
they arelll-complete. Here we can say more: theyHrecomplete if¢ > 3, without axiom of determinacy.
Indeed, fix all}-complete setl C 2«. The proof of Theorem 6.3 giveB € Al[(2¢)?] such thatB,, = if
aell, andB, ¢ ¢ if ar¢ I1. Now the proof of Corollary 6.2 givesy. If a €11, thenp®” [u2" (v0, a)] =0,

and the proof of Theorem 1.3.(1) shows thata)]> = (o[u?” (79, a)])*° = > € ITI{ C A}. Thusy(a) € X

s

if a€ll. If a¢1l, theny(a) ¢ B¢, thusy(a) ¢ Xe. Thereforell =1~ (L) and X¢ is IT}-hard. AsX is
IT}, it is II}-complete. We argue similarly fo,.

Definition 6.5 LetT' be a class, and/Z” C (2v)2 universal forT'(2~). We say that/z” is a good uni-

versal for T' if for each sel‘Z/Il(?w)2 C (2¢)3 which is universal forl'[(2¥)?], there isS : (2¥)? — 2
continuous such thds(a, 3), 7] €UE” < (a, ,7) 62/11(12“1)2 for each(a, 3,7) € (2¥)3.

Proposition 6.6 Let1 <& <wy. Then there are good universals fﬁ:g Hg, >1 andI1}.
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Proof. LetT" be one of the classes of the statement,bli:?a)2 universal forT'[(2¥)2]. We define, foix € 2
ande €2, (o). €2¥ by (@) (n):=a(2n+¢). We set

U ={(c, B)€ (2) | [(@)o, (@)1, 51 €V},

It is clear that/2” € T, so that{(UZ"), | o € 2*} C T'(2¥). Conversely, letd € T'(2¥). Then the set
E:={(v,8)€(2¥)? | Be A} €T, so there isx € 2* such thatt = (V1Q2w)2)a. We define< .,.>:(2¥)2 —2¢
by <a, B3> (2n):=a(n) and<a, 3> (2n+1):=(n). We getA= (UE")<q,0>. We proved that/z" is
universal for'(2¥).

Now I(atl/ll(?w)2 be universal fol'[(2«)?], and
Fi={(8,7)€(2*)? | [(B)o, (1, 1] e "),

As F €T[(2¢¥)?], there isag € 2 such thatF' = (121(12“1)2 )ao- We get

(o, B,7) €U§2w)2 & (<a,f>,7)eF

& (a0,<a,ﬁ>,'y)€V1(12w)2
& (<ao,<a,ﬁ>>,'y) GLIIQ‘W

So we just have to Séi(oz,ﬂ)::<oz0,<a,ﬁ>>. O

Lemma 6.7 We consider the good univerda,, for 31 given by Proposition 6.6. Then there is a continu-
1
ous mape: 22~ — 2% such thatd™ = (U2 ) () for eachA € P(2<%) =227,
1

Proof. Recall thaugjf C (2¥)2 is universal for={(2¢) and defined in the proof of Theorem 3.14 as follows:
(v, @) GU%TB < dImew y(m)=0 and a € N[2¥ m].
Similarly, we can definé{g{)ww C (2¢)2 xw®, universal fors) (2 x w):
(v, a, ) eugjfx“’“ < dImew y(m)=0 and («a, B) € N[2¥ xw®, m].
Using this, we can defimz?; C (2¢)2, universal forsi(2v):

(,0) €V & TBEW (v,0.0)FUZ "
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By [Lec03] there is a continuous map 2~ x w* x w — 2<“ such that
a€A® & Fpew” Ynew [B(n+1)>0 and 7(«, 3,n) € A],
for eacha € 2% andA C2<“. We defineR € 39(2¥ x w® x 22°) by
(, B,A)eR & dnecw [B(n+1)=0 or 7(w,B,n)¢ Al
By 3C.5 in [Mos8p], there if?* C w such that

(0, 8,A)€R < Imew <a€N[2“,(m)1] and fe N[w”, (m)s] and A€ N[22~ (m)s] andmeR*>.

We defined: 22" — 2% by d(A)(m)=0 < Ae N[22~ (m)3] and me R*. If AC2<, then

aé(V;E)d(A) & JBew [d(A),a, ﬁ]ezu;‘tl)w
& Jpew ~(Imew d(A)(m)=0 and (a,ﬁ)eN[szww,m])
& Jpew ~(Imew d(A)(m)=0 and ae N[2*, (m);] and BGN[ww,(m)gD
< Jfew (a,5,A)¢R
S ae A

As V%w% € 2{[(2*)?], there isag € 2* such thatV%w} -

continuous, andVy, )a(4) = (Uz1) sjae,d(4)]- SO We just have to sefA):= S[ag, d(A)]. O
1 1

(L{g;)2)a0. As ugi is a good universal, we geét

Recall that/ (T, T7):={ae2¥ | (UL ), €T’} andA:={AC 2<% | A* c Al}.

Corollary 6.8 Let3 <¢<w;. We consider the good universals given by Proposition 6.6.

a) The set/(I1Y, 9) is ITl-complete 4/ (I12, 20) <y = <w U(Z1, 29), and the set/(Z!, 29) is
g e 1 g e 3 1 ¢ 1 =g
ITi-hard andxi\ 4.

(b) The set/ (X9, I1Y) is I -complete 4/ (X0, I19) <y I <y U(X1,I19), and the set/(Z1,T19) is
&8 1 §77¢ 3 D=7 D =7g
ITi-hard andxi\ 4.
(c) A <y U(EL, A, and the set/ (=], Al) is ITi-hard andXl\ =1. Moreover, the sal/(21, Al) is
1 1 1 1 2 3 2 1 1
IT3-complete.

Proof. (a) By Theorem 6.3 and Remark (a) just after, theré/is IT¢[(2+)?] such that>}’ is IT{-complete.
Fix ag € 2% with M = (ugg)Q)ao. We definef :2* — 2“ by f(a):=S(a, @), whereS is provided by the
fact thatuf{ig is a good universal. Then we gB' = f~!(U(I1Y, ), which proves thai/(I17, =) is
II;-hard. By [Lou8p] (or 35.H in[[Kec95])/(I12, 32) is I}, so it isII;-complete.

By Corollary 6.2, we get/ (I, =¢) <y 3 since
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By Lemma 6.7 we geE¢ <y U(X],%?). Remark (b) after Theorem 6.3 givBs= -4 € 2{[(2)?]
such thats} is TT;-complete. The beginning of the proof shows #g51, 32¢) is IT3-hard. In particular,
UE], B2) ¢35, andSe <w U(E], BP) sinceX € 5. Finally, U(X], 32) is 33 since

aEU(B],TY) & I (ugg)a:(ugé)ﬁ.
(b) The proof is very similar to that of (a).

(c) The proof of the first sentence is very similar to that 9f (ssing Remark (c) after Theorem 6.3. This
proof shows that/(X1, Al) is ITi-hard. It remains to see that(X1, A}) is ITi. Recall the existence of
I} setsW? Cw, C?” Cwx2¥ with AL (2¢)={C?" | neW?"} and

{(n,a)ewx2? | neW?* anda¢ C>"} e IT}H (wx 2*)
(see Theorem 3.3.1 i [HKL$O]). This implies that
aclU(Bh A & Inew? (u;pa:cg“.
Thusl (21, Al) is T12, andITi-complete. O
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results (see Theorem 6.3).
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