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We make time resolved velocity measurements of steel spheres in free fall through liquid using a continuous ultrasound technique. We explore two different ways to induce large changes in drag on the spheres: 1) a small quantity of viscoelastic polymer added to water and 2) altering the surface of the sphere. Low concentration polymer solutions and/or a pattern of grooves in the sphere surface induce an early drag crisis, which may reduce drag by more than 50 percent compared to smooth spheres in pure water. On the other hand, random surface roughness and/or high concentration polymer solutions reduce drag progressively and suppress the drag crisis. We also present a qualititative argument which ties the drag reduction observed in low concentration polymer solutions to the Weissenberg number and normal stress difference.

Introduction

Reduction of drag in turbulent flows due to a small quantity of viscoelastic polymer added to the fluid has been the subject of intense research for more than 50 years (e.g. [1,2]). For example, the addition of as little as 5 parts per million (ppm) of polyacrylamide to turbulent pipe flow can result in an increase in flow speed of 80 percent for a given imposed pressure drop [START_REF] Toms | Proc. Int. Congress. Rheology[END_REF]. Similar flows with rough or structured wall surfaces have also been shown to exhibit reduction in drag (e.g. [START_REF] Vlachogiannis | [END_REF]5]). Our experiments address drag reduction by similar mechanisms for bluff bodies, which has received far less attention in spite of the potential impact on a broad range of phenomena and applications (aircraft, underwater vehicles and ballistics, predicting hail damage, sports ball aerodynamics, fuel pellets, etc.).

The aim of our work is to explore the influence of polymer additives in the fluid as well as sphere surface structure on the drag experienced by free falling spheres. Before we review the literature on these topics, let us first recall the main characteristics and terminology of high Reynolds number flow around spheres. (Reynolds number is defined as Re = U D/ν where U is sphere speed, D is sphere diameter, and ν is the kinematic viscosity of the fluid.) In the range 10 4 < Re < 10 7 , two basic phenomena are responsible for the most prominent flow features: flow separation and the transition to turbulence in the sphere boundary layer. For 200 < Re < Re * w ≈ 3 × 10 5 flow separation oc-curs. (The w subscript distinguishes the value for smooth spheres in pure water from the different cases discussed later.) In this regime, laminar flow extends from the upstream stagnation point to slightly downstream of the flow separation point, i.e. the turbulence develops downstream from the separation point. In contrast, at Re just above Re * w , the boundary layer becomes turbulent upstream of the flow separation point. The resulting change in the velocity profile abruptly moves the separation point downstream. Since the drag on the sphere is dominated by pressure drag (form drag), this jump in the separation location results in a severe drop in drag, the so-called drag crisis [6,7,8,9]. In this range of Re, friction drag contributes not more than 12 percent to the total drag on a smooth sphere [6]. Although indirectly, our investigation is essentially exploring the effects of polymer additives and sphere surface structure on the dynamics of boundary layer separation and transition to turbulence. We now briefly review studies which directly address these issues. Both Ruszczycky [10] and D. A. White [11] measured drag on a falling sphere in aqueous polymer solutions at Re < Re * w . Ruszczycky studied relatively high concentrations between 2500 and 15000 ppm (by weight) of poly(ethylene oxide) (4 × 10 6 molecular weight (MW)) and guar gum (unknown MW) for a range of sphere sizes from 9.5 to 25.4 mm in diameter. Maximum drag reduction of 28 percent was found for a 25.4 mm sphere in 5000 ppm guar gum solution. For higher concentrations (15000 ppm) the drag was found to increase compared to water, probably because such high concentrations tend to be rather viscous. D. A. White used the same polymer at smaller concentrations with a similar range of sphere sizes and found a 45 percent maximum reduction in drag for a 75 ppm solution. A. White [12] and more recently Watanabe et al. [13] investigated a range of Re spanning the drag crisis. Their work suggests that at polymer concentrations above about 30 ppm, the drag crisis is replaced by a gradual decrease in drag which manifests as drag reduction for Re < Re * w and drag enhancement for supercritical Re > Re * w . This is consistent with the observations of D. A. White and Ruszczycky below the drag crisis, as well as water tunnel measurements with circular cylinders [14]. At smaller polymer concentrations (5 to 10 ppm) the situation is less clear. A. White's measurements show erratic variation of drag as Re is increased, while Watanabe et al. report no change in behavior compared to water. Cylinder studies, in contrast, show a more sharply defined drag crisis at low polymer concentration [14]. One of the goals of our work is to better understand the nature of low concentration polymer effects near the drag crisis.

Concerning free falling rough spheres, to our knowledge, only one experimental work exists in the literature. In this short, qualitative study, A. White explored the combined effects of surface roughness and polymer additives [15]. He found that roughening the sphere surface shifts the wake separation point downstream, reducing drag, but with both a rough surface and polymers added the separation point shifts back upstream, increasing drag. Our observations add to White's intriguing results.

Wind tunnel measurements for both spheres [16] and cylinders [17] indicate that the drag crisis is shifted to lower Re when the surface is roughened. The roughened surface triggers an early transition to turbulence in the boundary layer. Golf balls are made with surface dimples in order to reduce drag by a very similar mechanism [18]. Furthermore, Maxworthy showed that adding a trip on the upstream surface of a smooth sphere induces a turbulent boundary layer and early drag crisis [8]. We are aware of no fixed sphere studies addressing roughness and polymer effects together. We add a note of caution to the reader that fixed (wind tunnel) and free-falling spheres may not behave the same. The first case corresponds to a fixed velocity of the upstream flow, while the second corresponds to a constant force driving the motion. Unlike the fixed sphere, a falling sphere cannot exist in a steady state with Re very close to Re * w ; it is not a stable solution. Furthermore, even at terminal fall speed the wake is never truly steady. It is dynamically active with long-lived non-axisymmetric spatial structure. As a result, the "terminal" fall velocity of a sphere fluctuates in both direction and magnitude, which may lead to small discrepancies in comparing to wind tunnel data or to other free-fall experiments.

This paper is organized as follows. The next section presents the experimental procedures and equipment. In section 3 we present our measurements for the free fall of smooth or roughened spheres in water and in solutions containing small polymer amounts. We discuss our results in terms of changes in drag with varying Reynolds number, polymer concentration and surface conditions. In the last section, we link our results at low polymer concentrations to the effects of a coil-stretch transition [27].

Measurement system and technique

We measure the fall velocity of steel spheres (ball bearings with density ρ = 7.8 g/cm 3 ) with diameters ranging from 3 mm to 80 mm. Two types of sphere surfaces are investigated in addition to the polished smooth surface (see photos in fig. 1). The first type, grooved spheres, have have a regular pattern of grooves machined into the surface. The grooves are 500 µm deep, 1 mm wide. The second type corresponds to roughened surface, produced either by sanding the smooth polished spheres or by gluing onto the surface a single layer beads. In the first case, changes in the surface height are of the order of 10 microns. In the second case, we have used spherical glass beads 700 µm in diameter. The fluid vessel is 2 m tall and 30 × 30 cm in lateral dimension with walls made of 2 cm thick acrylic plate. The tank is filled with either tap water or a dilute aqueous solution of polyacrylamide (MW 5×10 6 , granulated form, Sigma-Aldrich). The polymer solutions range in concentration between 5 and 200 ppm by weight. The polymers are mixed first with 2 liters of water with a magnetic stirrer for at least 8 hours and then mixed with another 180 liters of water for 5 minutes in the experimental vessel. Tests with colored dye in the fluid confirm that this procedure effectively mixes the fluid. These polymer concentrations are in the dilute regime, significantly below the estimated overlap concentration of 1200 ppm. The Weissenberg number W i, defined as the ratio of polymer relaxation time τ R ∼ 10 -4 to flow time scale (see section 4.2 for details), ranges between 0.8 and 2.3.

The spheres are released at the top of the vessel using an electromagnet. The speed of the ball is obtained using a continuous ultrasound technique. This technique is described in more detail in previous publications [20,21], but we briefly describe it here. One ultrasound transducer positioned at the top of the vessel emits sound at 2.8 MHz into the fluid. As the sphere falls it scatters sound at a Doppler shifted frequency which is measured with a second ultrasound transducer located near the emitter. The recorded signal is processed to recover the vertical component of the sphere velocity. The processing entails mixing the recorded signal with a 2.8 MHz sinusoid, low pass filtering, decimating to a lower sample rate, and finally using a parametric time-frequency analysis algorithm (MVA, see ref. [21]) to recover the time varying Doppler shifted frequency. The resulting absolute precision for the velocity measurement is about 2 cm/s with a relative precision in mm/s. With typical fall speeds of several m/s, this is better than 1% precision. At such high Reynolds numbers (10 4 -10 6 ), the flow in the wake contains significant nonaxisymmetric flow structures [7], which often cause some lateral motion of the sphere. We present data only from trajectories that remained at least one sphere diameter away from the vessel walls throughout the fall. Based on studies of tunnel blockage effects for fixed spheres, we expect that walls have less than 5% influence on measured drag coefficients [16]. Furthermore, any wall influence is similar for the different polymer solutions and sphere surfaces allowing for meaningful comparisons between the different cases.

Experimental results

In this section, we present our observations in the form of either drag coefficient estimates or velocity time series. Each presented measurement is the result of averaging over several trajectories under the same conditions. We find that each drop is reproducible up to instantaneous differences of a several percent. We first discuss our measurements of smooth spheres falling in water, which provide a baseline for comparisons to the results from our experiments with polymer solutions and rough spheres. Next, we present measurements of smooth sphere behavior in polymer solutions. Then we explore the consequences of surface grooves or roughness in water. And finally, we address the combined case of altered-surface spheres in polymer solutions.

Water

We show in fig. 2(a) the fall velocity time series for the spheres with diameter D varying between 6 mm and 80 mm. As the spheres are released from rest, they accelerate until a terminal velocity U T is reached -although for the larger spheres the water tank is not sufficiently tall for this steady state to be reached. The dynamics at the onset of motion is quite complex. Added mass effects, as well as wake-induced lift forces and history forces play a role [19,20]. However when the Reynolds number is large the dominant forces at work during the vertical fall of the sphere are the gravitational force F B = 1/6(ρ S -ρ F )πD 3 g and an effective drag force

F D = 1/8C D πρ F D 2 U 2 T
, where C D is the usual drag coefficient; ρ F and ρ S are the fluid and sphere densities. In the steady state, these forces balance and one may then compute the drag coefficient as

C D = 4 3 (ρ S /ρ F -1)Dg U 2 T . (1) 
We note here that, unlike wind tunnel experiments, the velocity is not prescribed so that both C D and Re are empirically computed from the data -the equation above may be viewed as an implicit relationship for C D (Re)Re 2 as a function of the control parameters of the experiment. We observe that during the approach to terminal speed, the trajectories for different sphere sizes are fully characterized by one time scale τ and the terminal speed U T . We may extract τ and U T from each velocity time series by fitting the data to an exponential of the form, u(t) = U T (1 -e -t/τ ). In agreement with previous observations [20], the exponential is simply an effective tool used to extract τ and U T and does not accurately represent the more complex dynamics of the true trajectory. When scaled by τ and U T , all the time series in Fig. 2(a) collapse onto one curve, verifying the importance of these two characteristic quantities. Using the exponential fit on the entire time series, we take advantage of our good resolution in both time and velocity magnitude to obtain accurate measurements of U T even though the fall distance is only 2 m. Since this method integrates the whole time record of the fall, it also avoids possible errors incurred by taking single point measurements as has been done in past studies. Furthermore, inspection of the entire velocity time series is often very instructive, clearly revealing the drag crisis in some cases -see for instance the inset of fig. 2(a), where a 60 mm sphere is shown to accelerate again as its Reynolds number exceeds Re * w . We compare in fig. 3 our measurements of drag coefficients for smooth spheres in water to the free fall measurements of A. White [12] as well as the wind tunnel measurements of Achenbach [6]. We find an excellent agreement with White's data. In particular, we find that the critical Reynolds for the drag crisis is Re * w = 2.8 10 5 , a value that serves as a reference for comparison with the fall of spheres with modified surfaces and in water with additives. We also note that both White's data and ours suggest that the value of the drag coefficient just after the drag crisis for the free fall of spheres (imposed force case) is twice that observed in wind tunnel experiments (imposed velocity case).

Polymer solution

We first present velocity time series for a 40 mm sphere falling in a range of polymer concentrations in fig. 4(a). We observe that at all concentrations the sphere terminal velocity is larger than in pure water; drag is reduced. This effect is greatest at small polymer concentrations, as demonstrated in fig. 4(b): drag reductions over 30% have been observed for polymer concentration less than 20 ppm, while at higher concentrations the change is 10-25%. In the 5 and 10 ppm solutions, one observes a sudden acceleration of the sphere once it achieves a velocity of about 2.5 m/s; this is the drag crisis. Examining the data for a range of sphere sizes in the 10 ppm solution (see Fig. 5(a)), we see that the critical Reynolds number is then Re * polymer ∼ 1.0 10 5 , almost a third of the value Re * w ∼ 2.8 10 5 in pure water. On the other hand, at higher polymer concentrations, we do not observe a jump in the velocity time series and their is no discontinuity in the drag C D (Re) curve. One observes that for high polymer concentrations, the drag is reduced at Re < Re * w , but enhanced for Re > Re * : in pure water a drag crisis would have occured and dramatically reduced C D but this does not happen when the polymer concentration exceeds about 100ppm as shown in Fig. 5(b). Instead the value of drag decreases continuously. These observations are consistent with the experiments of previous investigations using poly(ethylene oxide) in a similar range of concentrations [12,13]. We have not been able to reach Reynolds numbers high enough to determine whether the drag would reach a common asymptotic limit.

Rough and grooved surfaces in water

In exploring surface structure effects, we concentrate our attention on 30 and 40 mm spheres, whose Re in pure water lies just below the drag crisis. The time series in fig. 6 illustrate the different behaviors for the different surfaces we studied. In pure water, both the 30 mm grooved sphere and rough sphere behaves the same as the 30 mm smooth sphere -cf. Fig. 6(a). In contrast, adding grooves to the 40 mm sphere induces a drag crisis, as shown in Fig. 6(b). The 40 mm rough sphere showed moderate drag reduction, but not a well defined crisis. Indeed, the dynamics in Fig. 6(c) shows that the terminal velocity is increased compared to the smooth sphere, but there is no clear change in the acceleration as in the case of the grooved sphere, Fig. 6(b).

Grooves are thus able to shift the drag crisis from Re * w ∼ 2.8 10 5 to Re * grooves ∼ 0.8 10 5 . In the case of the 40 mm sphere, the terminal velocity increases from 2.5 m/s to 3.4 m/s, corresponding to a drag reduction of 46%. For the rough sphere, a drag reduction is also observed but it is limited to a 20% gain. This difference in behavior is not yet understood. One may note that a rough surface destabilizes the boundary layer but also increases friction and dissipation. Finally, we have observed that sanded spheres (rugosity of the order of 10 µm) with a diamater of 30 and 40 mm showed no change compared to smooth spheres. This indicates that surfaces modifications must exceed the thickness of the viscous sub-layer in order to produced measurable effects on the dynamics.

Rough and grooved surfaces in polymer solution

We now examine the changes in the above described behavior when polymer is added to the water. We find that the two regimes of low and high concentration -section 3.2 -are affected differently by adding grooves to the sphere surface. Results for the grooved spheres are presented in fig. 7. At low concentration the shift of the drag crisis to lower Re due to polymer is exaggerated by adding grooves to the sphere; Re * w is shifted even lower. Indeed, in a 5 ppm solution, the 30 mm grooved sphere experiences the drag crisis, whereas the same sphere in water as well as the smooth 30 mm sphere in 5 ppm solution do not. We find that the Re * grooved+poly ∼ 6 10 4 , a further gain of 20% compared to polymers alone. The same behavior is observed for the 40 mm grooved sphere at low polymer concentration. At higher polymer concentration, the spheres behave identically with or without grooves.

The rough sphere did not exhibit the same behavior. Rather, the surface roughness seems to suppress the drag crisis, in agreement with the observations of A. White [15]. Our results are presented in Fig. 8, for a 40 mm sphere. When the surface is smooth, one observes as before the shift in the drag crisis and a very large terminal velocity at low polymer concentration (10 ppm), as well as a reduced drag at high concentration (200 ppm). However, for the rough sphere all dynamical v(t) curves are very close. The rough spheres experience no further decrease in drag in the polymer solutions, compared to what is already induced by the surface roughness. In fact, there even may be a slight increase in drag (of the order of 5%) when the rough sphere falls in the water and polymer solution, at any concentration.

Discussion

Experimental summary

We have conducted a series of experiments using precise and time resolved ultrasound velocity measurements to compare the behavior of rough and smooth steel spheres falling through water or dilute aqueous polymer solutions.

Remarkably, we find that in low concentration polymer solutions (5 to 20 ppm) the drag crisis happens at a lower Reynolds number than in water. By adding a pattern of shallow grooves to the sphere surface, we shift the drag crisis to even lower Re. Adding grooves to a sphere in pure water also shifts the drag crisis to lower Re. On the other hand, a sphere roughened with a layer of 700 µm beads glued to its surface never experiences a drag crisis, exhibiting nearly the same drag with or without polymers. The drag on a rough sphere is slightly less than that on a smooth sphere. For higher concentration polymer solutions (100 -200 ppm) and smooth spheres the drag crisis is suppressed and replaced by a more gradual decrease in drag as Re is increased. This high concentration behavior is largely unchanged by adding grooves to the sphere surface.

Our measurements seem to indicate that for low concentrations the polymers are able to induce the transition to turbulence but have little effect on the location of flow separation whether laminar or turbulent. That is, low polymer concentrations induce an early drag crisis, but do not greatly change the drag before and after the crisis, so that we may conclude that the location of the separation points have not been significantly changed. In fact, we have observed that the dynamical behavior v(t) is quite well modelled by a simple shift in the C D (Re) curve, coupled to a simple dynamical equation in which only the drag force is accounted for.

At high concentration and Re < Re * w (i.e. laminar flow separation), drag is reduced, which implies that the separation location is pushed downstream on the sphere surface. On the other hand, for the case of turbulent flow separation (Re > Re * w ), θ s apparently shifts upstream, which manifests as an increase in drag.

Surface roughness is commonly understood to induce an early transition to boundary layer turbulence [8], which may explain the shift in Re * w observed for the grooved sphere. On the other hand, it is difficult to explain in the same context our observation of rather weak drag reduction and apparent suppression of the drag crisis for the rough sphere. Perhaps friction drag is significant in this case. Further investigation of this curious behavior is left for future work.

Drag crisis and normal stress difference

In this section we try to rationalize the effect of the polymers on the observed drag reduction. We follow ideas proposed for drag reduction in pipes [START_REF] Lumley | [END_REF] and much devloped since (see for instance [28]). Specifically, a change of conformation of the polymer is argued to be the source of the modification of the drag crisis.

As discussed above, the drag crisis is the result of the destabilization of the laminar boundary layer [START_REF] Schlichting | Boundary layer theory[END_REF]. At a critical Reynolds number the boundary layer becomes turbulent, shifting the separation line downstream and reducing accordingly the drag on the sphere. The polymer has a priori little effect on the parameters influencing this boundary layer transition, like the viscosity η. Indeed the polymer concentration is smaller than the overlap concentration ξ ⋆ , separating the dilute from the semi-dilute regime [START_REF] Doi | The theory of polymer dynamics[END_REF] -for the polymers under consideration, this is estimated to be ξ ⋆ ≃ 1200 ppm. The shear viscosity of the polymer solutions in water, η P , is related to the polymer density according to η P = η w (1 + 1.49ξ/ξ ⋆ ) with η w the water viscosity [START_REF] Doi | The theory of polymer dynamics[END_REF]. Thus for the low concentrations under consideration here, ξ ≪ ξ ⋆ , the viscosity is close to that of water η ∼ η w .

However this estimate assumes that the polymers' structure is not affected by the flow. Velocity gradients may locally induce a stretching of the polymer, which can be quantified by the Weissenberg number defined as W i = γτ R , with γ a deformation rate and τ R the polymer relaxation time. Typically, for W i < 1 the polymer is in a coil state, while for W i > 1 stetching occurs. Let us estimate W i in our geometry. The relaxation time is typically τ R ∼ η w R 3 g /k B T , with R g the radius of gyration of the polymer, R g ∼ bN νF (b the monomer size and ν F ≃ 3/5 the Flory exponent). For the polymers under investigation, τ R ∼ 10 -4 s. On the other hand the deformation rate is estimated as the shear rate in the boundary layer, i.e. γ ∼ U/δ, with U the sphere velocity and δ ∼ νD/U the typical thickness of the boundary layer (a the diameter of the sphere). This gives

W i ∼ U 3/2 τ R √ νD , (2) 
which can be rewritten

W i ∼ Re Re c 3/2 , (3) 
with a critical Reynolds number Re c defined as

Re c = D 2 ντ R 2/3 . (4) 
At Re c the polymer is thus expected to undergo -within the boundary layer -a coil-stretched transition and the drag will be accordingly be affected (as we discuss hereafter). This point is confirmed experimentally in Fig. 9 where the drag coefficient is plotted versus the reduced Reynolds number Re/Re c : the 'drag-crisis' is always found to occur for Re ∼ Re c for the different cases investigated. While a full rescaling is not expected in this plot, this figure points to the relevance of the Weissenberg number as a key parameter to the polymer induced drag crisis: it does show that the drag crisis transition with polymers, i.e. when the drag coefficient strongly decreases, occurs at a Reynolds number of the order of the critical Reynolds number, Re ∼ Re c . This indicates that the drag crisis criterion with polymers corresponds to W i ∼ 1, as also observed in earlier works.

At this level, the previous discussion suggests that the polymer effect on the drag crisis is associated with a conformation change. The question of the polymer-flow coupling however remains, and in particular the origin of an earlier destabilisation of the boundary layer. First, as the polymers in the boundary layer become stretched, most of the properties of the polymer solution in this region will change dramatically : the typical size of the polymer increases indeed from the radius of gyration to the much larger contour length of the polymer, L ≫ R g . This affects the relaxation time which now becomes τ R ∼ η w L 3 /k B T , and therefore the viscosity which increases typically by a factor (L/R g ) 3 = N 3(1-νF ) ≫ 1. However, increasing the viscosity in the boundary layer amounts to a decrease in the local Reynolds number : this would lead to a re-stabilisation of the laminar boundary layer, an effect which is opposite to the experimental observation.

Another origin has therefore to be found. We suggest that the destabilisation of the boundary layer originates in a very large normal stress difference occuring when the polymer is in its strechted state. Normal stress difference is a non-newtonian effect which is commonly observed in polymeric solutions [START_REF] Doi | The theory of polymer dynamics[END_REF]. This is known to lead for example to the Weissenberg (rod-climbing) effect. In our geometry, the normal stress difference is expected to be proportional to the square of the shear-rate according to ∆σ = σ xx -σ yy = Ψ P γ2 (5) with Ψ P a transport coefficient ; σ xx , σ yy are the normal components of the stress tensor in the x and y directions, with {x, y} local coordinates respectively parallel and perpendicular to the sphere surface (curvature effects are neglected).

Let us show that this term does destabilize the boundary layer. Classically, the boundary layer is destabilized by a negative pressure gradient term due to a decrease of the fluid velocity U e (x) in the outer layer [START_REF] Schlichting | Boundary layer theory[END_REF] : -∇P e = ρU e (x)∇U e (x), with U e (x) the fluid velocity outside the boundary layer. A stability analysis of the boundary layer with such a pressure gradient leads to a destabilization at a reduced Reynolds number [START_REF] Schlichting | Boundary layer theory[END_REF] Re δ = U δ/ν ∼ 600, corresponding to Re ∼ 10 5 . The normal stress difference adds a contribution to this term, leading to an supplementary effective pressure gradient term -∇P eff = ρU e (x)∇U e (x) + Ψ P ∇ γ2 ,

where γ ≃ U e (x)/δ(x) and δ(x) ≃ νx/U e (x) the local thickness of the boundary layer. It is easy to verify that this supplementary contribution to the effective pressure gradient will be negative -and therefore destabilizing -, before the classical contribution ρU e (x)∇U e (x). Moreover in the stretched state -for W i > 1-, one may verify that this contribution is dominant as compared to the classical one. The ratio ∆ between these two terms is of order ∆ ∼ Ψ P γ2 /ρU 2 e . Using Ψ P ∼ η P τ P with η P the polymer contribution to the viscosity and τ P the polymer relaxation time [START_REF] Doi | The theory of polymer dynamics[END_REF], one deduces ∆ ∼ U τ P /D ∼ (L/R g ) 3 / √ Re c (for Re = Re c ). In our case, with Re c ∼ 10 5 , (L/R g ) 3 = N 3(1-νF ) ∼ 2.10 5 (N ≃ 35.10 3 ), one has ∆ ∼ 10 3 ≫ 1. This term thus leads to a strong destabilization as soon as the polymer is stretched.

To summarize, for Re ≥ Re c the coil-stretched transition occurs for the polymer in the boundary layer, and the existence of a normal stress difference induces a strong destabilization of the laminar boundary layer. This scenario gives the trends of the underlying mechanisms leading to a shift of the drag crisis even for very small amounts of polymers. For the polymer additive to have an effect, the critical Reynolds number has to be lower than the critical Reynolds number for the drag crisis in pure water, < Re ⋆ w . This provides a condition in terms of the size of the falling object but also a minimal polymer weight (since τ R ∝ N 3ν ). To go further, a more detailed stability analysis of the boundary layer with the supplementary normal stress difference is needed. We leave this point for further studies.
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 1 Fig. 1. SETUP: the vertical velocity of falling steel spheres is measured with an ultrasound device. The fluid is tap water, pure or with small amounts of pomymer additives. Smooth, grooved, and rough spheres are tested.
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 2 Fig. 2. WATER & SMOOTH SPHERES: (a) Time series of the spheres vertical velocity u(t) during their free fall. The inset shows the drop -with a non zero initial velocity -of a 60 mm sphere: as its velocity reaches 3.5 m/s it meets the drag crisis. (b) Comparison of the experimental data with a model u(t) = UT (1 -exp(-t/τ )) exponential evolution. The parameters (τ, UT ) are obtained using a multidimensional unconstrained nonlinear minimization (Nelder-Mead) with MAT-LAB. The inset shows the evolution of the characteristic time τ with the Reynolds number. Note the sharp change in behavior near the drag crisis.
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 3 Fig.3. DRAG COEFFICIENT measurements for smooth spheres in water. Red Circles -our data; solid circles -Achenbach (wind tunnel)[16].
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 4 Fig. 4. POLYMERS : (a) Fall velocity time series of a 40 mm sphere in water, and polymer solutions with concentration increasing from 5 to 200 ppm. In the 5 and 10 ppm solutions the sphere undergoes a drag crisis where none existed for the pure water case. (b) Percentage change of terminal velocity UT for increasing polymer concentration compared to pure water case for 40 mm sphere.
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 5 Fig. 5. POLYMERS : Drag coefficient measurements for smooth spheres in water (solid circles) compared to polymer solution (open circles). (a) In 10 ppm solution the drag crisis is shifted to lower Re. (b) In 200 ppm solution the drag crisis is replaced by a gradual decrease in drag.
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 6 Fig.6. ROUGH & GROOVED SPHERES: velocity time series for grooved (dashed line) and rough spheres (dahs-dotted line) compared to smooth spheres (solid line) in pure water. The grooved surface induces an early drag crisis.
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 78 Fig. 7. GROOVED SPHERES & POLYMERS: At low polymer concentration (left column) adding grooves to the sphere induces an even earlier drag crisis compared to the smooth sphere. At high concentration (right column) grooves do not change the observed dynamics.

Fig. 9 .

 9 Fig. 9. Drag coefficient versus the reduced Reynolds number Re/Rec. The different symbols correspond to various concentrations of polymers: (•) 10ppm; (square) 25ppm; (⋄) 50ppm; (△) 100ppm; (▽) 200ppm. Lines are a guide to the eye. For a given polymer concentration, the different experimental points correspond to different size of the falling sphere (from left to right, D = 3, 6, 10, 20, 30, 40, 50, 60mm).
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