
HAL Id: ensl-00169909
https://ens-lyon.hal.science/ensl-00169909v1

Preprint submitted on 11 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-BASED COMPUTATION OF THE
INDUCTANCE OF COILS USED FOR THE

MAGNETIC STIMULATION OF THE NERVOUS
SYSTEM

Ionuţ Trestian, Octavian Creţ, Laura Creţ, Lucia Văcariu, Radu Tudoran,
Florent de Dinechin

To cite this version:
Ionuţ Trestian, Octavian Creţ, Laura Creţ, Lucia Văcariu, Radu Tudoran, et al.. FPGA-BASED
COMPUTATION OF THE INDUCTANCE OF COILS USED FOR THE MAGNETIC STIMULA-
TION OF THE NERVOUS SYSTEM. 2007. �ensl-00169909�

https://ens-lyon.hal.science/ensl-00169909v1
https://hal.archives-ouvertes.fr

FPGA-BASED COMPUTATION OF THE INDUCTANCE OF COILS USED FOR THE

MAGNETIC STIMULATION OF THE NERVOUS SYSTEM

Ionuţ Trestian, Octavian Creţ, Laura Creţ,

Lucia Văcariu, Radu Tudoran

Computer Science Department

 Technical University of Cluj-Napoca

 26 Bariţiu street, Cluj-Napoca, Romania

 email: Octavian.Cret@cs.utcluj.ro

Florent de Dinechin

LIP, Ecole Normale Supérieure de Lyon

UMR CNRS/INRIA/ENS-Lyon/Université

Claude Bernard Lyon 1

46 allée d'Italie, 69364 Lyon cedex 07, France

 email: Florent.de.Dinechin@ens-lyon.org

ABSTRACT

In the last years the interest for magnetic stimulation of the

human nervous tissue has increased considerably, because

this technique has proved its utility and applicability both as

a diagnostic and as a treatment instrument. Research in this

domain is aimed at removing some of the disadvantages of

the technique: the lack of focalization of the stimulated

region and the reduced efficiency of the energetic transfer

from the stimulating coil to the tissue. Better stimulation

coils can solve these problems. Designing coils is so far a

trial-and error process, relying on very compute-intensive

simulations. In software, such a simulation has a very high

running time (several hours for complicated geometries of

the coils). This paper proposes and demonstrates an FPGA-

based hardware implementation of this simulation which

reduces the computation time by 4 orders of magnitude.

Thanks to this powerful tool, some significant

improvements in the design of the coils have already been

obtained.

1. INTRODUCTION

The preoccupation for improving the quality of life, for

persons with different handicaps, led to extended research

in the area of functional stimulation. Due to its advantages

compared to electrical stimulation, magnetic stimulation of

the human nervous system is now a common technique in

modern medicine [1].

 A difficulty of this technique is the need for accurate

focal stimulation. Another one is the low efficiency of

power transfer from the coil to the tissue. To address these

difficulties, coils with special geometries must be designed.

 Because of the diversity of the medical applications

involved, the design of the coils requires testing a large

number of geometries in order to find an adequate solution

for the desired application [2].

 One of the major problems that appear in the design

phase of such coils is the computation of the inductivity of

the stimulating coil. For simple shapes of the coils

(circular), one can determine analytical computation

formulas [3] which are extremely complicated. When,

however, the shape and the spatial distribution of the coil’s

turns do not belong to one of the known structures, a

numerical method needs to be used for determining the

inductivity of the coils.

 The idea of the computation method is to divide the

coils in small portions. Starting from this method, two

computation systems are presented in the paper:

• The first one is classical and it just consists of a

software implementation (Matlab);

• The second one consists of realizing a hardware

architecture that exploits the intrinsic parallelism

of the problem. The physical support of this

architecture is an FPGA device.

 The problem with the software implementation is its

running time. Coils are designed by trial-and-error, and this

approach is impractical if each trial requires half a day of

computation. Besides, as this time grows with the

complexity of the coil, it prevents designing complex coils.

This paper shows that FPGA-based hardware acceleration

is able to solve this bottleneck.

 The rest of the paper is organized as follows: Section 2

briefly presents the inductivity computation process. In

section 3 some considerations are made about the software

implementation. Section 4 deals with the hardware

implementation and presents the global architecture as well

as the architecture of the main building blocks. Section 5

makes a comparison between the two implementations in

terms of running speed and results obtained, and Section 6

presents the main conclusions of this work.

2. INDUCTIVITY COMPUTATION

The simulation of magnetic stimulators with complex forms

requires dividing their coils in several parts. The self-

inductance of the circuit, divided in n parts, can be

mailto:Octavian.Cret@cs.utcluj.ro
mailto:Florent.de.Dinechin@ens-lyon.org

computed with formula (1). This mainly adds up the self-

inductivities of the separate segments with the mutual

inductivities of all the involved segments. The method is

described in [4] and in more detail in [5].

()kiforMLL

n

k

n

i

ki

n

k

k ≠+= ∑∑∑
= ==

,

1 11

 (1)

 The self-inductivity of a short straight conductor, with

round cross-section, for low frequencies, is given below:

−+−=

2

2

0

445

128

4

32
ln

2 l

r

l

r

r

ll
L

ππ

µ
(2)

where l is the conductor’s length, and r the radius of its

cross-section. The mutual inductivity between two straight

conductors converging into a point is evaluated as:

−+

++
+

−+

++
ϕ

π

µ
=

abc

cba
lnb

bac

cba
lnacosM

4

0 (3)

 The given quantities are represented in Figure 1, with a

and b representing the length of the conductors, and φ the

angle between them.

a

b
c

ϕ

Fig. 1. Computing the mutual inductivity between two

converging conductors

 For the general case, we consider two conductor

segments in space. The first segment is delimited by the

points of coordinates (xa, ya, za) and (xb, yb, zb), while the

second segment is delimited by the points of coordinates

(xc, yc, zc) and (xd, yd, zd), as shown in Figure 2.

1Γ

(xa,ya,za)

rl 1 −
1l

(xb,yb,zb)

(x,y,z)

(xd,yd,zd)

(xc,yc,zc)

r 2Γ 2l

Fig. 2. Two segments in space

 On the second segment, we consider a point of

coordinates (x, y, z). The parametric equation of the second

segment is:

()
()
()

−+=

−+=

−+=

tzzzz

tyyyy

txxxx

cdc

cdc

cdc

 (4)

 With the above geometrical coordinates, we can find the

mutual inductivity between these segments (using

Neumann formula). For two circuits, Γ1 and Γ2, in a

homogenous media with µ permeability, the mutual

magnetic flux Φ21 is:

∫ ∫
Γ Γ

==Φ

2 2

2212121

S

dlAdSB
(5)

 Since circuits Γ1 and Γ2 are shaped like two straight

segments, the mutual flux can be evaluated by integrating

the magnetic vector potential created by the first segment

along the second one. Considering the magnetic vector

potential generated by a conducting segment, the mutual

inductivity can be computed using the following equation:

∫
Γ

⋅⋅
⋅

−

⋅
−+−

⋅=

2

2

1

1

1

1

1

1

1
1

0

21
ln

4
dl

l

l

l

rl
r

l

rl
lrl

L
π

µ
(6)

 The vectors in equation (6) are:

() () ()()
() () ()() ;dtkzzjyyixx

dtkt'zjt'yit'xdl

dcdcdc ⋅⋅−+⋅−+⋅−=

=⋅⋅+⋅+⋅=2

() () ()()
() () ()() ;dtkzzjyyixx

dtkt'zjt'yit'xdl

dcdcdc ⋅⋅−+⋅−+⋅−=

=⋅⋅+⋅+⋅=2

() () () kzzjyyixxl ababab ⋅−+⋅−+⋅−=1 ;

() () () kzzjyyixxr aaa ⋅−+⋅−+⋅−= ;

() () () kzzjyyixxrl bbb ⋅−+⋅−+⋅−=−1 ;

(7)

while coordinates x, y, z are expressed as a function of

parameter t, according to (4). The limits of the integral in

equation (6) are given by t ∈[0, 1].

 As can be seen in the above formulas, the operations

involved in computing the inductivity of a coil are vector

operations. A logarithm, some division, addition and

multiplication operations can also be observed in equation

(6). Equation (1) is mainly an accumulation of mutual

inductivities. The integral according to t will be evaluated

using the trapezoidal method.

3. SOFTWARE IMPLEMENTATION

A coil is made up of a certain number of turns rolled around

a central rod. Each turn can be considered as a perfect

circle. The coil is structured on several vertical stages. On

each stage there are more turns (horizontal turns). The outer

radius of the coil will be further denoted by a. Other

parameters are the diameter of the metallic turn and the

distance (insulation) between consecutive turns.

Fig. 3. Coil approximation using a finite number of

points

 It is possible to have a different number of turns on

every vertical stage. It is also possible to have a variable

number of vertical stages, as shown in Figure 3, where one

can also notice the different number of turns on each stage.

 A complete magnetic stimulation device contains a

Slinky coil. Considering a coil with N turns, the “Slinky-k”

coil is generated by spatially locating these turns at

successive angles of ()1/180x −ki degrees, were i = 0, 1,

…, k-1. If the current passing through this coil is I, then the

central leg carries the total current N x I. These coils are

shown in Figure 4, where each rectangle represents a leaf of

the coil, viewed in perspective.

Slinky_1

Slinky_2

Slinky_3

Slinky_4

Slinky_5
Fig. 4. Magnetic coil structures of the stimulation device

 For computing the inductance, the turns could be

approximated by a finite number of points. We considered,

after a series of tests, that a suitable amount of points on a

turn is 64.

 We therefore need to compute the inductance of such a

coil. We have to take each of the 64 points and combine

them into segments made up of one point and the next

(consecutive) point in a certain direction. After this, each

segment, one by one, is held as a reference. Then, the

formula presented in this paragraph is applied using this

reference segment and all the other segments on the coil.

For each pair of segments a value is obtained. These values

must be added in order to obtain the coil’s total inductance.

 There are two phases for the functioning of the software

implementation:

• In Phase 1, the coordinates of the points are

generated. These are computed using

trigonometric functions. The results produced in

this phase are also used in the hardware

implementation.

• In Phase 2, the actual computation of the values is

performed. As mentioned before, in order to

compute the inductivity, we accumulate the values

corresponding to the mutual inductivities.

 When we evaluate pairs of segments on the coil, three

distinct cases can arise:

• The two segments are actually the same segment.

In this case we add the segment’s own self-

inductivity given by Equation (2). Since all

segments have the same characteristics, this value

is the same for all segments.

• The two segments are neighboring segments, that

is, they have exactly one common point. In this

case their mutual inductivity is given by Equation

(3). Since the configuration is the same for all

pairs of neighboring segments, this too is a

constant value.

• The two segments are neither the same nor

neighboring; they are two distinct segments in

space. For complex configurations consisting of a

large number of turns, this is the most general

case, which accounts for most of the computation

time. This case is evaluated using Equation (4).

 The software implementation takes into account these

considerations. We evaluate the third case by computing the

mutual inductivities of all non-intersecting segments. The

self-inductivity of the segments and the mutual inductivities

of each segment against its neighboring ones are multiplied

by the number of segments and accumulated at the end.

 In order to evaluate the mutual inductivity of two

separate segments in space we have introduced 5 variables

denoted var1 to var5 which correspond to vector operations

involving the two segments as described in the previous

section. These variables will also be used in the next

section. The points (x0, y0, z0) and (x1, y1, z1) correspond to

the extremities of the first segment, while (x2, y2, z2) and

(x3, y3, z3) correspond to the extremities of the second one.

)()()()()()(var 2301230123011 zzzzyyyyxxxx −⋅−+−⋅−+−⋅−=

2

23

2

23

2

232)()()(var zzyyxx −+−+−=

2

1003

2

1003

2

10033))()(())()(())()((var tzzzztyyyytxxxx ⋅−+−+⋅−+−+⋅−+−=

2

2010

2

2010

2

20104))(())(())((var ztzzzytyyyxtxxx −⋅−++−⋅−++−⋅−+=

+−⋅−+⋅−+−⋅−+⋅−=))(()())(()(var 2010232010235 ytyyyyyxtxxxxx

))(()(201023 ztzzzzz −⋅−+⋅−

 These values are used for further computing the

accumulation value:

2

5
4

2

5
23

2

1

var

var
var

var

var
varvar

log
var

var
rAccumulato rAccumulato

−

−+

⋅+=

(8)

 In the formulas above there is a variable t, which is a

factor occurring in the integral from Equation (6).

Therefore several values need to be considered for t and

then the integral needs to be computed using the trapezoidal

method for values in the interval (0, 1) = [0.1, 0.2, 0.3 …

0.9]. The process above needs to be repeated several times

in order to compute the final inductivity of the coil.

 The main drawback of a software implementation is the

extremely high running time. It can be in the order of tens

of minutes even for simple configurations, while for

complex geometries of the coils it can exceed several hours

(Ex: for a 58-turns coil, about 5 hours computation time on

a recent PC).

 Once the software simulation had been validated against

actual coils, it was decided to try to accelerate it using

custom hardware.

4. HARDWARE IMPLEMENTATION

4.1. Field-programmable gate arrays

A Field-Programmable Gate Array (FPGA) is a

semiconductor device containing programmable logic

components (“logic blocks”), and programmable

interconnects. Logic blocks can be programmed to perform

simple or more complex functions. In most FPGAs, the

logic blocks also include memory elements, from flip-flops

to more complete blocks of memories.

 A hierarchy of programmable interconnects allows logic

blocks to be interconnected as needed by the system

designer, somewhat like a one-chip programmable

breadboard. Logic blocks and interconnects can be

programmed by the customer/designer, after the FPGA is

manufactured, to implement any logical function. Their

advantages include a shorter time to market, ability to re-

program in the field to fix bugs, and lower non-recurring

engineering costs [6].

4.2. Floating point operators - FPLibrary

Several libraries of floating-point operators for FPGAs have

been published in the last few years. In this work, we use

FPLibrary, developed at Ecole Normale Supérieure de

Lyon and freely downloadable from [7]. Mantissa size and

exponent size parameterize each operator in this library,

allowing one to choose the precision and the dynamic range

of the numbers. It provides operators for addition,

subtraction, multiplication, division and square root, some

useful conversions and some elementary functions

(currently exponential, logarithm and sine/cosine), in

combinatorial or pipelined flavor. It is written in portable

VHDL. FPLibrary also offers operators for the alternative

logarithmic number system [8].

 The Core Generator tool, which comes with the Xilinx

ISE, also offers floating-point operators. FPLibrary was

chosen essentially because it offers a logarithm [9] which is

not available in the Core Generator. However, it also

proved more area-efficient. As our design requires a large

number of operators in a tree-like pipeline, latency was not

our main concern.

4.3. System architecture

The hardware implementation implies the same two phases

as the software one, but Phase 1 is not computation-

intensive and its implementation is kept in software.

 In the Figure 5 below a block diagram of the system is

displayed. Three main blocks can be distinguished. The

most important block is the pipeline stage, which receives

values, computes them, and in a final stage accumulates

them. The pipeline will be described afterwards.

Fig. 5. Architecture of the hardware system

 The coordinates are stored in a Block RAM memory.

There are 3 memories, one for each coordinate, X, Y, and

Z. The synchronization logic, which gives the data to the

pipeline, is implemented in a special interface. This

interface consists of counters and latches. The counters are

orchestrated to generate the proper addresses, while the

latches are needed to implement a caching logic, which

saves some of the memory used.

 The pipeline stage consists of several sub-stages, based

on the computations involved:

•••• A first stage computes the variables var1, var2, var3,

var4 and var5 (the formulas were given in the

previous section). There are several operations,

which are common to the 5 variables. The pipeline

reuses the corresponding intermediate values.

•••• The second stage computes the value to be

accumulated and it is presented in Figure 6. The

latencies in this part of the pipeline are pretty large,

up to 14 cycles, corresponding to waiting for a

square root and about 29 cycles waiting for the

logarithm and other operations to finish.

•••• The third stage is the accumulator. Because

FPLibrary doesn’t provide such a component one

needed to be improvised using the existing

resources. Special considerations were made in

order to work around the specific latency that a

simple adder introduces.

 Not only the specific operators, but also buffer stages

are used, which compensate the latency introduced by some

of the operators. For instance, the addition operator always

introduces three cycles of latency and this must be

compensated with three buffers. This also goes for the

multiplication operator, which introduces four cycles of

latency.

 The design of the Accumulator is the most important

part of the pipeline’s architecture, since it computes

intermediary values and at the end provides the final result.

As mentioned above, special considerations need to be

made with regard to the accumulator because of the

latencies introduced by the adders in the FPlibrary (3

cycles).

Fig. 6. Second stage. Computing accumulation value

 The values that will be accumulated come and enter the

accumulator stage on the pin located to the left. The

accumulator has a classical structure, using a feedback

input. The process can be seen below in Figure 7.

N1

N2

N3

N5

N4

N6

N7

N8

N9
Input

Output

N1

N2

N3

N2

+ N5

N1

+ N4

N3

+ N6

N1

+ N4+ N7

N2

+ N5+ N8

N3

+ N6+ N9

Fig. 7. Adder latency issues

 Input numbers come serially, N1, N2, N3, N4, etc. The

adder at the beginning of the accumulating stage adds these

numbers. Because of the 3 cycles clock latency, when N1,

N2, N3 have been inserted in this adder, the next numbers

that come are to be added to the numbers that have been

inserted 3 cycles before. For example N1 is added with N4,

N5 with N2 and N6 with N3 respectively. The same goes for

the next numbers, N7, N8 and N9.

 All the numbers are added but at the end three sums are

generated: one for the numbers N1, N4, N7 … N3k+1, the next

for the numbers N2, N5, N8 …. N3k+2, and the last for the

numbers N3, N6, N9 … N3k (as shown in Figure 8).

Fig. 8. Architecture of the accumulator

 These three sums are added in the final stage of the

accumulator to generate the exact result. This final stage

consists of three registers that delay the three corresponding

sums. We add these three registers together in order to

generate the final result.

 One idea regarding the accumulating stage of the

computation is to keep the other stages in a Simple

Precision Format (32 bits) and enhance only the

accumulator (64 bits, or only with a larger mantissa). Such

a design would greatly limit the error losses corresponding

to the accumulation of numbers of different ranges.

4.4. Hardware implementation issues

The performance and feasibility of the hardware

implementation largely depends on its physical support.

Our hardware platform was a Digilent Inc. board populated

with a Xilinx Virtex2PRO30 FPGA device. The problem

with this implementation was that it is quite large: it

depleted the space of the FPGA device we had available at

this moment. To estimate the total space needed, we

synthesized the design for a larger FPGA device (a Virtex4

160LX). A report of the device utilization is shown below:

Selected Device: 4vlx160ff1148-12

Number of Slices: 23656 out of 67584 35%

Number of Slice Flip Flops: 20834 out of 135168 15%

Number of 4 input LUTs: 44515 out of 135168 32%

 The maximum frequency for this implementation was

reported as 137.552MHz.

 As we can see the implementation fits without problems

on this Virtex4 board. Regarding an implementation on our

Virtex2Pro board two options were available.

 The first option was to reduce the precision at which the

pipeline operated. This ensured a reduction of both the

buffer stages that provided the synchronization between the

stages and a reduction in size of the operators.

 This option was first implemented. We reduced the

mantissa of the operands by 10 bits. Instead of a large

mantissa having 23 bits, the mantissa now had only 13 bits.

Although the design fitted on a Virtex-II Pro board at about

98% of its capacity, the results obtained with this method

were discouraging. They were more then 30% off from the

actual result provided by Matlab. Therefore another method

needed to be found.

 The next option was to reduce the frequency at which

the pipeline stage operates and time-multiplex some of the

resources (square root – three occurrences in design, some

of the adders). This has the advantage of preserving the

pipeline’s precision, the cost being a reduction in speed.

Selected Device: 2vp30ff896-6

Number of Slices: 13380 out of 13696 97%

Number of Slice Flip Flops: 15350 out of 27392 56%

Number of 4 input LUTs: 24156 out of 27392 88%
 Of course we have a reduction in operating frequency:

85.714 MHz related to the weaker characteristics of the

FPGA device and the more precise timing requirements.

5. EXPERIMENTAL RESULTS

The main achievement of the hardware implementation

over the software one is the reduction in computation time.

By performing one accumulation per clock cycle the

hardware solution is indeed efficient and can be used even

for the most complex magnetic stimulation systems.

 In terms of complexity, both implementations, in

software and in hardware, have the same complexity, O(n
2
)

with n being the number of distinct segments. As we have

said the specific hardware structure performs one

accumulation per clock cycle. That means that each clock

cycle, a mutual inductivity between two segments is

evaluated. The software implementation performs the same

computations in a longer time.

 We have analyzed our software and hardware

implementations using three distinct configurations (Figure

9). The values produced by the implementations are given

in Table 1, where we can see the comparison between the

results provided by the software and the hardware solutions.

 At first we analyze simpler cases, 1 to 4 turns. The outer

turns are the widest turns on the coil while the inner turns

are the neighbors of the outer turns located closer to the

center. Then the results for the given configurations are

presented. The analyzed quantity was the inductivity. We

give also the number of segments, which determines the

complexity.

Fig. 9. Analyzed configurations

 The results of the two methods analyzed for the three

configurations mentioned always stayed in the range of

3-4% of each other, with the Matlab result being slightly

bigger than the result given by the hardware

implementation. This can be attributed to the fact that

Matlab uses by default double precision while in our system

we have used only single precision operations. Indeed, a

rough worst-case error analysis tells us that the

accumulation, in the largest coil test, of 10.1920² floating-

point numbers introduces a cumulative rounding error that

may invalidate up to log2(10.1920²) = 25 bits of the result,

when the mantissa of a single-precision number holds 24

bits only.

 This is a worst-case situation: in an actual simulation,

these rounding errors compensate each other, which

explains that our results are still accurate. However, it

shows that we will require increasing the precision of the

floating-point format to use this architecture on larger coils.

Fortunately, this extra precision is mostly useful in the final

accumulator.

Table 1. Comparison of results

Configuration Inductivity

(Hardware)

[µH]

Inductivity

(Software)

[µH]

Number

of

segments

1 outer turn 0.097 0.097 64

2 outer turns 0.30 0.30 128

4 turns

(2 out. 2 in.)

0.92 0.93 256

Slinky_1 coil 3.81 3.9 640

Slinky_2 coil 8.4 8.6 1,280

Slinky_3 coil 13.32 13.6 1,920

 The flexibility of FPGAs allows us to use different

precisions in different parts of the architecture. Besides, a

format intermediate between single and double precision

may be used. For us, a 32- or 36-bit mantissa would already

be overkill (double-precision has a 53-bits mantissa). We

will test this as soon as we get hold of a board with a larger

FPGA than the Virtex-II used here. It should be noted that

this more accurate pipeline will require more hardware, but

the same execution time: it will still compute one

accumulation per cycle.

Table 2. Comparison of results

Configuration Duration

(hardware)

[no. of clock

cycles]

Running

speed*

(hardware)

[seconds]

Running

speed

(software)

[seconds]

1 outer turn 40,960 0.00047 4.2

2 outer turns 163,840 0.00194 18

4 turns

(2 out. 2 in.)

655,360 0.00764 72

Slinky_1 coil 4,096,000 0.04705 420

Slinky_2 coil 16,384,000 0.19411 1,680

Slinky_3 coil 36,864,000 0.42941 3,600
* at 85.714 MHz, clock period 11.66 ns

 One can see from Table 2 that the software running time

is very large. That is why software computation becomes

prohibitive for large systems. The largest such system we

have analyzed (a coil consisting of 58 turns) took nearly 5

hours to compute in software.

As a global comparison, the hardware solution runs

approximately four orders of magnitude faster then the

software one. The frequency is related to the physical

board we had available, but for a more recent FPGA chip

(i.e. Virtex4LX160, for which we did some simulations, or

Virtex5), the device’s capacity as well as the working

frequency will increase, thus leading to an improved

performance.

6. CONCLUSIONS AND FUTURE WORK

The equipment used in magnetic stimulation of the nervous

system is costly and bulky. This is mainly due to the fact

that the currents flowing through the stimulation coil are

very intense (kA), leading to coil heating and strong

electromagnetic forces that might destroy the coil.

Therefore, magnetic coil design is one of the most

important aspects of the technique of magnetically

stimulating the nervous system.

 An adequate geometry of the coil can lead to a better

focality of the stimulus (the ability of a coil to stimulate a

small area of the tissue) and it can also improve the

efficiency of the energy transfer from the coil to the target

tissue. The form and size of the turns, their position inside

the coil, the insulation gap between turns are all important

parameters that should be considered when designing a

magnetic coil. Therefore, in order to establish the most

suitable coil geometry for a specific medical application, a

large number of structures have to be tested, making of coil

design a trial-and-error process, even if the risk involved is

only computation time.

 In a very recent paper [10], we analyzed the influence

that space distribution of the magnetic coils’ turns has on

the efficiency of energy transfer from the stimulator to the

target tissue. The analysis was performed for a Slinky_3

coil configuration (see Figure 9), with applications on

transcranial magnetic stimulation (TMS). It turned out that

the electrical energy dissipated in the circuit of the

stimulator – required in order to achieve the activation

threshold – is 25% lower for the most efficient

configuration than for the less efficient one, and the coil

heating per pulse is also 35% smaller!

 This estimation was based on the inductivity calculus

described in this paper, and the large number of analyzed

structures required a less time-consuming computation

technique, the hardware implementation described above.

 Since every medical application requires its own

optimal structure of the magnetic coil, the results

emphasized in this paper can play an important role for

future work on coil design.

 Because of the large amount of operations involved

(several tens of millions just for one coil) it is very hard to

debug such a hardware system at least at an acceptable

level, but the obtained results show an excellent

concordance with those obtained in software. Our

implementation has the advantage of greatly speeding up

the computation time and hence shortening the design

process. On larger FPGA devices the process can achieve a

greater speed by accommodating more computational

structures in parallel. These structures would evaluate

multiple pairs of segments in parallel and accumulate them

to the final value.

 The architecture will still undergo some accuracy fine-

tuning, and benefit from soon-to come improvements to

FPLibrary, such as a combined norm operator or an

optimized accumulator. An idea is to vary the working

precision along the pipeline to increase the final accuracy.

In particular, increasing the size of the mantissa of the final

accumulator would reduce the rounding errors due to the

accumulation.

 The development of an optimized norm operator (to be

included in FPLibrary) will provide a space efficient

alternative to the combination of multipliers and adders we

currently use in the implementation and would probably

enhance the latency as well.

 The next step of this research will consist of a study on

50 cases of coils with large numbers of turns (more than 70

turns, in the different configurations: Slinky_2, Slinky_3,

Slinky_4 and Slinky_5). The powerful FPGA-based

computational tool described in this paper allows us to

compute both the coil’s inductivity and the magnetic field’s

value on a given point in a short time (a few minutes, which

is much less than the time that a software run would require

– remember that for a 58-turns coil, the necessary time is 5

hours, and the runtime grows in a quadratic fashion!).

7. REFERENCES

[1] D. Mozeg and E. Flak. “An Introduction to Transcranial

Magnetic Stimulation and Its Use in the Investigation and

Treatment of Depression”. University of Toronto Medical

Journal, vol. 76, no.3, 1999, pp. 158-162.

[2] Griškova1, I., Höppner, J. “Transcranial magnetic

stimulation: the method and application”. Medicina

(Kaunas) 2006; 42(10), pp. 792-804.

[3] K. S. Han. “Self-inductance of air-core circular coils with

rectangular cross section”, IEEE Transactions on Magnetics,

vol. 23, no. 6, November 1987, pp. 3916- 3921.

[4] L Creţ, R. Ciupa, “Remarks on the Optimal Design of Coils

for Magnetic Stimulation”, ISEM Proceedings, Bad Gastein,

Austria., 2005, pp. 352-354.

[5] P. Kalantarov, L. Teitlin. “Calculul inductivităţilor”, Ed.

Tehnică, Bucuresti, 1958.

[6] D. Guell, T. El-Ghazawi, K. Gaj, and V. Kindratenko.

“High-Performance Reconfigurable Computing”, IEEE

Computer, vol. 40, no. 3, March 2007, pp. 23-27.

[7] http://perso.ens-lyon.fr/jeremie.detrey/FPLibrary/

[8] S. Collange, J. Detrey, and F. de Dinechin. “Floating Point

or LNS: Choosing the Right Arithmetic on an Application

Basis.” Proceedings of the 9th EUROMICRO Conference on

Digital System Design, Dubrovnik, Croatia, August 2006,

pp. 197-203.

[9] J. Detrey, F. de Dinechin. “A Parameterizable Floating-Point

Logarithm Operator for FPGAs”. Proceedings of the 39th

Asilomar Conference on Signals, Systems & Computers,

November 2005, pp. 1186 – 1190.

[10] L. Creţ, M. Pleşa, D. D. Micu and R. Ciupa. “Magnetic

Coils Design for Focal Stimulation of the Nervous System”,

Proceedings of EUROCON 2007, IEEE International

Conference on Computer as a Tool, 9-12 September 2007,

Warsaw, Poland.

	1. INTRODUCTION
	2. INDUCTIVITY COMPUTATION
	3. SOFTWARE IMPLEMENTATION
	4. HARDWARE IMPLEMENTATION
	4.1. Field-programmable gate arrays
	4.2. Floating point operators - FPLibrary
	4.3. System architecture
	4.4. Hardware implementation issues

	5. EXPERIMENTAL RESULTS
	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

