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ABSTRACT 

In the last years the interest for magnetic stimulation of the 

human nervous tissue has increased considerably, because 

this technique has proved its utility and applicability both as 

a diagnostic and as a treatment instrument. Research in this 

domain is aimed at removing some of the disadvantages of 

the technique: the lack of focalization of the stimulated 

region and the reduced efficiency of the energetic transfer 

from the stimulating coil to the tissue. Better stimulation 

coils can solve these problems. Designing coils is so far a 

trial-and error process, relying on very compute-intensive 

simulations. In software, such a simulation has a very high 

running time (several hours for complicated geometries of 

the coils). This paper proposes and demonstrates an FPGA-

based hardware implementation of this simulation which 

reduces the computation time by 4 orders of magnitude. 

Thanks to this powerful tool, some significant 

improvements in the design of the coils have already been 

obtained. 

 

1. INTRODUCTION 

The preoccupation for improving the quality of life, for 

persons with different handicaps, led to extended research 

in the area of functional stimulation. Due to its advantages 

compared to electrical stimulation, magnetic stimulation of 

the human nervous system is now a common technique in 

modern medicine [1]. 

 A difficulty of this technique is the need for accurate 

focal stimulation. Another one is the low efficiency of 

power transfer from the coil to the tissue. To address these 

difficulties, coils with special geometries must be designed. 

 Because of the diversity of the medical applications 

involved, the design of the coils requires testing a large 

number of geometries in order to find an adequate solution 

for the desired application [2]. 

 One of the major problems that appear in the design 

phase of such coils is the computation of the inductivity of 

the stimulating coil. For simple shapes of the coils 

(circular), one can determine analytical computation 

formulas [3] which are extremely complicated. When, 

however, the shape and the spatial distribution of the coil’s 

turns do not belong to one of the known structures, a 

numerical method needs to be used for determining the 

inductivity of the coils. 

 The idea of the computation method is to divide the 

coils in small portions. Starting from this method, two 

computation systems are presented in the paper:  

• The first one is classical and it just consists of a 

software implementation (Matlab);  

• The second one consists of realizing a hardware 

architecture that exploits the intrinsic parallelism 

of the problem. The physical support of this 

architecture is an FPGA device.  

 The problem with the software implementation is its 

running time. Coils are designed by trial-and-error, and this 

approach is impractical if each trial requires half a day of 

computation. Besides, as this time grows with the 

complexity of the coil, it prevents designing complex coils. 

This paper shows that FPGA-based hardware acceleration 

is able to solve this bottleneck. 

 The rest of the paper is organized as follows: Section 2 

briefly presents the inductivity computation process. In 

section 3 some considerations are made about the software 

implementation. Section 4 deals with the hardware 

implementation and presents the global architecture as well 

as the architecture of the main building blocks. Section 5 

makes a comparison between the two implementations in 

terms of running speed and results obtained, and Section 6 

presents the main conclusions of this work. 

 

2. INDUCTIVITY COMPUTATION 

The simulation of magnetic stimulators with complex forms 

requires dividing their coils in several parts. The self-

inductance of the circuit, divided in n parts, can be 
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computed with formula (1). This mainly adds up the self-

inductivities of the separate segments with the mutual 

inductivities of all the involved segments. The method is 

described in [4] and in more detail in [5]. 
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 The self-inductivity of a short straight conductor, with 

round cross-section, for low frequencies, is given below: 
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where l is the conductor’s length, and r the radius of its 

cross-section. The mutual inductivity between two straight 

conductors converging into a point is evaluated as: 
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 The given quantities are represented in Figure 1, with a 

and b representing the length of the conductors, and φ the 

angle between them. 
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Fig. 1.  Computing the mutual inductivity between two 

converging conductors 

 For the general case, we consider two conductor 

segments in space. The first segment is delimited by the 

points of coordinates (xa, ya, za) and (xb, yb, zb), while the 

second segment is delimited by the points of coordinates 

(xc, yc, zc) and (xd, yd, zd), as shown in Figure 2. 
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Fig. 2.  Two segments in space 

 On the second segment, we consider a point of 

coordinates (x, y, z). The parametric equation of the second 

segment is: 
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 With the above geometrical coordinates, we can find the 

mutual inductivity between these segments (using 

Neumann formula). For two circuits, Γ1 and Γ2, in a 

homogenous media with µ permeability, the mutual 

magnetic flux Φ21 is: 
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 Since circuits Γ1 and Γ2 are shaped like two straight 

segments, the mutual flux can be evaluated by integrating 

the magnetic vector potential created by the first segment 

along the second one. Considering the magnetic vector 

potential generated by a conducting segment, the mutual 

inductivity can be computed using the following equation: 
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 The vectors in equation (6) are: 

 

( ) ( ) ( )( )
( ) ( ) ( )( ) ;dtkzzjyyixx

dtkt'zjt'yit'xdl

dcdcdc ⋅⋅−+⋅−+⋅−=

=⋅⋅+⋅+⋅=2
 

( ) ( ) ( )( )
( ) ( ) ( )( ) ;dtkzzjyyixx

dtkt'zjt'yit'xdl

dcdcdc ⋅⋅−+⋅−+⋅−=

=⋅⋅+⋅+⋅=2
 

( ) ( ) ( ) kzzjyyixxl ababab ⋅−+⋅−+⋅−=1 ;         

( ) ( ) ( ) kzzjyyixxr aaa ⋅−+⋅−+⋅−= ; 

( ) ( ) ( ) kzzjyyixxrl bbb ⋅−+⋅−+⋅−=−1 ; 

(7) 

 

while coordinates x, y, z are expressed as a function of 

parameter t, according to (4). The limits of the integral in 

equation (6) are given by t ∈[0, 1]. 

 As can be seen in the above formulas, the operations 

involved in computing the inductivity of a coil are vector 

operations. A logarithm, some division, addition and 

multiplication operations can also be observed in equation 

(6). Equation (1) is mainly an accumulation of mutual 

inductivities. The integral according to t will be evaluated 

using the trapezoidal method. 

 

3. SOFTWARE IMPLEMENTATION 

A coil is made up of a certain number of turns rolled around 

a central rod. Each turn can be considered as a perfect 

circle. The coil is structured on several vertical stages. On 

each stage there are more turns (horizontal turns). The outer 

radius of the coil will be further denoted by a. Other 

parameters are the diameter of the metallic turn and the 

distance (insulation) between consecutive turns. 



 
Fig. 3.   Coil approximation using a finite number of 

points 

 It is possible to have a different number of turns on 

every vertical stage. It is also possible to have a variable 

number of vertical stages, as shown in Figure 3, where one 

can also notice the different number of turns on each stage. 

 A complete magnetic stimulation device contains a 

Slinky coil. Considering a coil with N turns, the “Slinky-k” 

coil is generated by spatially locating these turns at 

successive angles of ( )1/180x −ki  degrees, were i = 0, 1, 

…, k-1. If the current passing through this coil is I, then the 

central leg carries the total current N x I. These coils are 

shown in Figure 4, where each rectangle represents a leaf of 

the coil, viewed in perspective. 
 

Slinky_1 
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Slinky_3 
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Slinky_5  
Fig. 4.   Magnetic coil structures of the stimulation device 

 For computing the inductance, the turns could be 

approximated by a finite number of points. We considered, 

after a series of tests, that a suitable amount of points on a 

turn is 64. 

 We therefore need to compute the inductance of such a 

coil. We have to take each of the 64 points and combine 

them into segments made up of one point and the next 

(consecutive) point in a certain direction. After this, each 

segment, one by one, is held as a reference. Then, the 

formula presented in this paragraph is applied using this 

reference segment and all the other segments on the coil. 

For each pair of segments a value is obtained. These values 

must be added in order to obtain the coil’s total inductance. 

 There are two phases for the functioning of the software 

implementation: 

• In Phase 1, the coordinates of the points are 

generated. These are computed using 

trigonometric functions. The results produced in 

this phase are also used in the hardware 

implementation. 

• In Phase 2, the actual computation of the values is 

performed. As mentioned before, in order to 

compute the inductivity, we accumulate the values 

corresponding to the mutual inductivities. 

 When we evaluate pairs of segments on the coil, three 

distinct cases can arise: 

• The two segments are actually the same segment. 

In this case we add the segment’s own self-

inductivity given by Equation (2). Since all 

segments have the same characteristics, this value 

is the same for all segments. 

• The two segments are neighboring segments, that 

is, they have exactly one common point. In this 

case their mutual inductivity is given by Equation 

(3). Since the configuration is the same for all 

pairs of neighboring segments, this too is a 

constant value. 

• The two segments are neither the same nor 

neighboring; they are two distinct segments in 

space. For complex configurations consisting of a 

large number of turns, this is the most general 

case, which accounts for most of the computation 

time. This case is evaluated using Equation (4). 

 The software implementation takes into account these 

considerations. We evaluate the third case by computing the 

mutual inductivities of all non-intersecting segments. The 

self-inductivity of the segments and the mutual inductivities 

of each segment against its neighboring ones are multiplied 

by the number of segments and accumulated at the end. 

 In order to evaluate the mutual inductivity of two 

separate segments in space we have introduced 5 variables 

denoted var1 to var5 which correspond to vector operations 

involving the two segments as described in the previous 

section. These variables will also be used in the next 

section. The points (x0, y0, z0) and (x1, y1, z1) correspond to 

the extremities of the first segment, while (x2, y2, z2) and 

(x3, y3, z3) correspond to the extremities of the second one. 

 
)()()()()()(var 2301230123011 zzzzyyyyxxxx −⋅−+−⋅−+−⋅−=

2

23

2

23

2

232 )()()(var zzyyxx −+−+−=  

2

1003

2

1003

2

10033 ))()(())()(())()((var tzzzztyyyytxxxx ⋅−+−+⋅−+−+⋅−+−=  

2

2010

2

2010

2

20104 ))(())(())((var ztzzzytyyyxtxxx −⋅−++−⋅−++−⋅−+=  

+−⋅−+⋅−+−⋅−+⋅−= ))(()())(()(var 2010232010235 ytyyyyyxtxxxxx  

 ))(()( 201023 ztzzzzz −⋅−+⋅−  

 



 These values are used for further computing the 

accumulation value: 
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 In the formulas above there is a variable t, which is a 

factor occurring in the integral from Equation (6). 

Therefore several values need to be considered for t and 

then the integral needs to be computed using the trapezoidal 

method for values in the interval (0, 1) = [0.1, 0.2, 0.3 … 

0.9]. The process above needs to be repeated several times 

in order to compute the final inductivity of the coil. 

 The main drawback of a software implementation is the 

extremely high running time. It can be in the order of tens 

of minutes even for simple configurations, while for 

complex geometries of the coils it can exceed several hours 

(Ex: for a 58-turns coil, about 5 hours computation time on 

a recent PC). 

 Once the software simulation had been validated against 

actual coils, it was decided to try to accelerate it using 

custom hardware. 

 

4. HARDWARE IMPLEMENTATION 

4.1. Field-programmable gate arrays 

A Field-Programmable Gate Array (FPGA) is a 

semiconductor device containing programmable logic 

components (“logic blocks”), and programmable 

interconnects. Logic blocks can be programmed to perform 

simple or more complex functions. In most FPGAs, the 

logic blocks also include memory elements, from flip-flops 

to more complete blocks of memories.  

 A hierarchy of programmable interconnects allows logic 

blocks to be interconnected as needed by the system 

designer, somewhat like a one-chip programmable 

breadboard. Logic blocks and interconnects can be 

programmed by the customer/designer, after the FPGA is 

manufactured, to implement any logical function. Their 

advantages include a shorter time to market, ability to re-

program in the field to fix bugs, and lower non-recurring 

engineering costs [6].  

 

4.2. Floating point operators - FPLibrary 

Several libraries of floating-point operators for FPGAs have 

been published in the last few years. In this work, we use 

FPLibrary, developed at Ecole Normale Supérieure de 

Lyon and freely downloadable from [7]. Mantissa size and 

exponent size parameterize each operator in this library, 

allowing one to choose the precision and the dynamic range 

of the numbers. It provides operators for addition, 

subtraction, multiplication, division and square root, some 

useful conversions and some elementary functions 

(currently exponential, logarithm and sine/cosine), in 

combinatorial or pipelined flavor. It is written in portable 

VHDL. FPLibrary also offers operators for the alternative 

logarithmic number system [8]. 

 The Core Generator tool, which comes with the Xilinx 

ISE, also offers floating-point operators. FPLibrary was 

chosen essentially because it offers a logarithm [9] which is 

not available in the Core Generator. However, it also 

proved more area-efficient. As our design requires a large 

number of operators in a tree-like pipeline, latency was not 

our main concern.  

 

4.3. System architecture 

The hardware implementation implies the same two phases 

as the software one, but Phase 1 is not computation-

intensive and its implementation is kept in software. 

 In the Figure 5 below a block diagram of the system is 

displayed. Three main blocks can be distinguished. The 

most important block is the pipeline stage, which receives 

values, computes them, and in a final stage accumulates 

them. The pipeline will be described afterwards.  

 

 
Fig. 5.  Architecture of the hardware system 

 The coordinates are stored in a Block RAM memory. 

There are 3 memories, one for each coordinate, X, Y, and 

Z. The synchronization logic, which gives the data to the 

pipeline, is implemented in a special interface. This 

interface consists of counters and latches. The counters are 

orchestrated to generate the proper addresses, while the 

latches are needed to implement a caching logic, which 

saves some of the memory used.  

 The pipeline stage consists of several sub-stages, based 

on the computations involved: 

•••• A first stage computes the variables var1, var2, var3, 

var4 and var5 (the formulas were given in the 

previous section). There are several operations, 

which are common to the 5 variables. The pipeline 

reuses the corresponding intermediate values. 

•••• The second stage computes the value to be 

accumulated and it is presented in Figure 6. The 

latencies in this part of the pipeline are pretty large, 



up to 14 cycles, corresponding to waiting for a 

square root and about 29 cycles waiting for the 

logarithm and other operations to finish. 

•••• The third stage is the accumulator. Because 

FPLibrary doesn’t provide such a component one 

needed to be improvised using the existing 

resources. Special considerations were made in 

order to work around the specific latency that a 

simple adder introduces. 

 Not only the specific operators, but also buffer stages 

are used, which compensate the latency introduced by some 

of the operators. For instance, the addition operator always 

introduces three cycles of latency and this must be 

compensated with three buffers. This also goes for the 

multiplication operator, which introduces four cycles of 

latency.  

 The design of the Accumulator is the most important 

part of the pipeline’s architecture, since it computes 

intermediary values and at the end provides the final result. 

As mentioned above, special considerations need to be 

made with regard to the accumulator because of the 

latencies introduced by the adders in the FPlibrary (3 

cycles). 

 
Fig. 6.   Second stage. Computing accumulation value 

 The values that will be accumulated come and enter the 

accumulator stage on the pin located to the left. The 

accumulator has a classical structure, using a feedback 

input. The process can be seen below in Figure 7. 
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Fig. 7.  Adder latency issues 

 Input numbers come serially, N1, N2, N3, N4, etc. The 

adder at the beginning of the accumulating stage adds these 

numbers. Because of the 3 cycles clock latency, when N1, 

N2, N3 have been inserted in this adder, the next numbers 

that come are to be added to the numbers that have been 

inserted 3 cycles before. For example N1 is added with N4, 

N5 with N2 and N6 with N3 respectively. The same goes for 

the next numbers, N7, N8 and N9.  

 All the numbers are added but at the end three sums are 

generated: one for the numbers N1, N4, N7 … N3k+1, the next 

for the numbers N2, N5, N8 …. N3k+2, and the last for the 

numbers N3, N6, N9 … N3k (as shown in Figure 8). 

 
Fig. 8.    Architecture of the accumulator 

 These three sums are added in the final stage of the 

accumulator to generate the exact result. This final stage 

consists of three registers that delay the three corresponding 

sums. We add these three registers together in order to 

generate the final result. 

 One idea regarding the accumulating stage of the 

computation is to keep the other stages in a Simple 

Precision Format (32 bits) and enhance only the 

accumulator (64 bits, or only with a larger mantissa). Such 

a design would greatly limit the error losses corresponding 

to the accumulation of numbers of different ranges. 

 

4.4. Hardware implementation issues 

The performance and feasibility of the hardware 

implementation largely depends on its physical support. 

Our hardware platform was a Digilent Inc. board populated 

with a Xilinx Virtex2PRO30 FPGA device. The problem 

with this implementation was that it is quite large: it 

depleted the space of the FPGA device we had available at 

this moment. To estimate the total space needed, we 

synthesized the design for a larger FPGA device (a Virtex4 

160LX). A report of the device utilization is shown below: 

 
Selected Device:   4vlx160ff1148-12  

Number of Slices:                   23656 out of 67584      35%   

Number of Slice Flip Flops:   20834 out of 135168    15%   

Number of 4 input LUTs:       44515 out of 135168    32%   

 

 The maximum frequency for this implementation was 

reported as 137.552MHz. 



 As we can see the implementation fits without problems 

on this Virtex4 board. Regarding an implementation on our 

Virtex2Pro board two options were available. 

 The first option was to reduce the precision at which the 

pipeline operated. This ensured a reduction of both the 

buffer stages that provided the synchronization between the 

stages and a reduction in size of the operators. 

 This option was first implemented. We reduced the 

mantissa of the operands by 10 bits. Instead of a large 

mantissa having 23 bits, the mantissa now had only 13 bits. 

Although the design fitted on a Virtex-II Pro board at about 

98% of its capacity, the results obtained with this method 

were discouraging. They were more then 30% off from the 

actual result provided by Matlab. Therefore another method 

needed to be found. 

 The next option was to reduce the frequency at which 

the pipeline stage operates and time-multiplex some of the 

resources (square root – three occurrences in design, some 

of the adders). This has the advantage of preserving the 

pipeline’s precision, the cost being a reduction in speed. 

 
Selected Device:   2vp30ff896-6  

Number of Slices:                   13380 out of 13696      97%   

Number of Slice Flip Flops:   15350 out of 27392      56%  

Number of 4 input LUTs:       24156 out of 27392      88%  
 Of course we have a reduction in operating frequency: 

85.714 MHz related to the weaker characteristics of the 

FPGA device and the more precise timing requirements.  

 

5. EXPERIMENTAL RESULTS 

The main achievement of the hardware implementation 

over the software one is the reduction in computation time. 

By performing one accumulation per clock cycle the 

hardware solution is indeed efficient and can be used even 

for the most complex magnetic stimulation systems. 

 In terms of complexity, both implementations, in 

software and in hardware, have the same complexity, O(n
2
) 

with n being the number of distinct segments. As we have 

said the specific hardware structure performs one 

accumulation per clock cycle. That means that each clock 

cycle, a mutual inductivity between two segments is 

evaluated. The software implementation performs the same 

computations in a longer time. 

 We have analyzed our software and hardware 

implementations using three distinct configurations (Figure 

9). The values produced by the implementations are given 

in Table 1, where we can see the comparison between the 

results provided by the software and the hardware solutions.  

 At first we analyze simpler cases, 1 to 4 turns. The outer 

turns are the widest turns on the coil while the inner turns 

are the neighbors of the outer turns located closer to the 

center. Then the results for the given configurations are 

presented. The analyzed quantity was the inductivity. We 

give also the number of segments, which determines the 

complexity. 

 

 
Fig. 9.  Analyzed configurations 

 The results of the two methods analyzed for the three 

configurations mentioned always stayed in the range of     

3-4% of each other, with the Matlab result being slightly 

bigger than the result given by the hardware 

implementation. This can be attributed to the fact that 

Matlab uses by default double precision while in our system 

we have used only single precision operations. Indeed, a 

rough worst-case error analysis tells us that the 

accumulation, in the largest coil test, of 10.1920² floating-

point numbers introduces a cumulative rounding error that 

may invalidate up to log2(10.1920²) = 25 bits of the result, 

when the mantissa of a single-precision number holds 24 

bits only.  

 This is a worst-case situation: in an actual simulation, 

these rounding errors compensate each other, which 

explains that our results are still accurate. However, it 

shows that we will require increasing the precision of the 

floating-point format to use this architecture on larger coils. 

Fortunately, this extra precision is mostly useful in the final 

accumulator.  

 

Table 1.  Comparison of results 

Configuration Inductivity 

(Hardware) 

[µH] 

Inductivity 

(Software) 

[µH] 

Number 

of 

segments 

1 outer turn 0.097 0.097 64

2 outer  turns 0.30 0.30 128

4 turns 

(2 out. 2 in.) 

0.92 0.93 256

Slinky_1 coil 3.81 3.9 640

Slinky_2 coil 8.4 8.6 1,280

Slinky_3 coil 13.32 13.6 1,920

 

 The flexibility of FPGAs allows us to use different 

precisions in different parts of the architecture. Besides, a 

format intermediate between single and double precision 



may be used. For us, a 32- or 36-bit mantissa would already 

be overkill (double-precision has a 53-bits mantissa). We 

will test this as soon as we get hold of a board with a larger 

FPGA than the Virtex-II used here. It should be noted that 

this more accurate pipeline will require more hardware, but 

the same execution time: it will still compute one 

accumulation per cycle.  

 

Table 2.  Comparison of results 

Configuration Duration 

(hardware) 

[no. of clock 

cycles] 

Running 

speed*  

(hardware) 

[seconds] 

Running 

speed 

(software) 

[seconds] 

1 outer turn 40,960 0.00047 4.2 

2 outer  turns 163,840 0.00194 18 

4 turns 

(2 out. 2 in.) 

655,360 0.00764 72 

Slinky_1 coil 4,096,000 0.04705 420  

Slinky_2 coil 16,384,000 0.19411 1,680 

Slinky_3 coil 36,864,000 0.42941 3,600 
* at 85.714 MHz, clock period 11.66 ns 

  

 One can see from Table 2 that the software running time 

is very large. That is why software computation becomes 

prohibitive for large systems. The largest such system we 

have analyzed (a coil consisting of 58 turns) took nearly 5 

hours to compute in software.  

As a global comparison, the hardware solution runs 

approximately four orders of magnitude faster then the 

software one. The frequency is related to the physical 

board we had available, but for a more recent FPGA chip 

(i.e. Virtex4LX160, for which we did some simulations, or 

Virtex5), the device’s capacity as well as the working 

frequency will increase, thus leading to an improved 

performance. 

 

6. CONCLUSIONS AND FUTURE WORK 

The equipment used in magnetic stimulation of the nervous 

system is costly and bulky. This is mainly due to the fact 

that the currents flowing through the stimulation coil are 

very intense (kA), leading to coil heating and strong 

electromagnetic forces that might destroy the coil. 

Therefore, magnetic coil design is one of the most 

important aspects of the technique of magnetically 

stimulating the nervous system.  

 An adequate geometry of the coil can lead to a better 

focality of the stimulus (the ability of a coil to stimulate a 

small area of the tissue) and it can also improve the 

efficiency of the energy transfer from the coil to the target 

tissue. The form and size of the turns, their position inside 

the coil, the insulation gap between turns are all important 

parameters that should be considered when designing a 

magnetic coil. Therefore, in order to establish the most 

suitable coil geometry for a specific medical application, a 

large number of structures have to be tested, making of coil 

design a trial-and-error process, even if the risk involved is 

only computation time. 

 In a very recent paper [10], we analyzed the influence 

that space distribution of the magnetic coils’ turns has on 

the efficiency of energy transfer from the stimulator to the 

target tissue. The analysis was performed for a Slinky_3 

coil configuration (see Figure 9), with applications on 

transcranial magnetic stimulation (TMS). It turned out that 

the electrical energy dissipated in the circuit of the 

stimulator – required in order to achieve the activation 

threshold – is 25% lower for the most efficient 

configuration than for the less efficient one, and the coil 

heating per pulse is also 35% smaller!  

 This estimation was based on the inductivity calculus 

described in this paper, and the large number of analyzed 

structures required a less time-consuming computation 

technique, the hardware implementation described above. 

 Since every medical application requires its own 

optimal structure of the magnetic coil, the results 

emphasized in this paper can play an important role for 

future work on coil design. 

 Because of the large amount of operations involved 

(several tens of millions just for one coil) it is very hard to 

debug such a hardware system at least at an acceptable 

level, but the obtained results show an excellent 

concordance with those obtained in software. Our 

implementation has the advantage of greatly speeding up 

the computation time and hence shortening the design 

process. On larger FPGA devices the process can achieve a 

greater speed by accommodating more computational 

structures in parallel. These structures would evaluate 

multiple pairs of segments in parallel and accumulate them 

to the final value. 

 The architecture will still undergo some accuracy fine-

tuning, and benefit from soon-to come improvements to 

FPLibrary, such as a combined norm operator or an 

optimized accumulator. An idea is to vary the working 

precision along the pipeline to increase the final accuracy. 

In particular, increasing the size of the mantissa of the final 

accumulator would reduce the rounding errors due to the 

accumulation. 

 The development of an optimized norm operator (to be 

included in FPLibrary) will provide a space efficient 

alternative to the combination of multipliers and adders we 

currently use in the implementation and would probably 

enhance the latency as well.  

 The next step of this research will consist of a study on 

50 cases of coils with large numbers of turns (more than 70 

turns, in the different configurations: Slinky_2, Slinky_3, 

Slinky_4 and Slinky_5). The powerful FPGA-based 

computational tool described in this paper allows us to 

compute both the coil’s inductivity and the magnetic field’s 

value on a given point in a short time (a few minutes, which 

is much less than the time that a software run would require 



– remember that for a 58-turns coil, the necessary time is 5 

hours, and the runtime grows in a quadratic fashion!). 
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