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Interpolation in Valiant’s theory

Pascal Koiran and Sylvain Perifel

LIP⋆, École Normale Supérieure de Lyon.
[Pascal.Koiran,Sylvain.Perifel]@ens-lyon.fr

Abstract. We investigate the following question: if a polynomial can
be evaluated at rational points by a polynomial-time boolean algorithm,
does it have a polynomial-size arithmetic circuit? We argue that this
question is certainly difficult. Answering it negatively would indeed imply
that the constant-free versions of the algebraic complexity classes VP and
VNP defined by Valiant are different. Answering this question positively
would imply a transfer theorem from boolean to algebraic complexity.
Our proof method relies on Lagrange interpolation and on recent re-
sults connecting the (boolean) counting hierarchy to algebraic complex-
ity classes. As a byproduct we obtain two additional results:

(i) The constant-free, degree-unbounded version of Valiant’s hypothe-
sis VP 6= VNP implies the degree-bounded version. This result was
previously known to hold for fields of positive characteristic only.

(ii) If exponential sums of easy to compute polynomials can be computed
efficiently, then the same is true of exponential products. We point
out an application of this result to the P=NP problem in the Blum-
Shub-Smale model of computation over the field of complex numbers.

1 Introduction

Motivation – The starting point of this paper is a question raised by Christos
Papadimitriou in a personal communication to Erich Kaltofen1:

Question (*)
If a multivariate polynomial P can be evaluated by a (boolean)
polynomial-time algorithm on rational inputs, does that imply that
P can be computed by a polynomial-size arithmetic circuit? In such
a circuit, the only allowed operations are additions, subtractions,
and multiplications.

This question can be interpreted in several ways: one should at least state
in which ring the coefficients of P lie, and which constants can be used by the
arithmetic circuits. Here we will focus on polynomials with integer coefficients,

⋆ UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.
1 At the Oberwolfach complexity theory workshop where a part of this work was

presented in June 2007, several participants told P.K. that they had independently
thought of the same question.
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and most of the paper will deal with constant-free circuits. In Section 3.4 we
study the case of circuits with rational constants computing polynomials with
integer coefficients (as we shall see, this is more natural than it might seem at
first sight).

As pointed out by Papadimitriou, Strassen’s “Vermeidung von Divisionen”
(see for instance [7], chapter 7) shows that for evaluating a low-degree polynomial
P , divisions would not increase exponentially the power of arithmetic circuits. It
is indeed a natural question whether, more generally, all boolean operations can
be replaced efficiently by additions, subtractions and multiplications. Questions
of the same flavour (can “looking at bits” help for arithmetic computations?)
have been studied before. In particular, Kaltofen and Villard have shown that
looking at bits does help for computing the determinant [10].

Discussion – It is not clear what the correct answer to question (*) should
be. In this paper we will argue that answering it either way seems difficult.

A natural strategy for obtaining a negative answer to question (*) would be
to exhibit a family of polynomials that are easy to evaluate on rational inputs
but hard to evaluate by arithmetic circuits. Unfortunately, there seems to be
a lack of candidate polynomials. Another difficulty is that a negative answer
would imply the separation of the algebraic complexity classes VP0 and VNP0.
This observation is our main contribution to the study of question (*), and it
is established in Theorem 8. The classes VP0 and VNP0 are constant-free ver-
sions of the classes VP (of “easily computable polynomial families”) and VNP

(of “easily definable polynomial families”) introduced by Valiant (precise defi-
nitions are given in the next section). The separation VP0 6= VNP0 seems very
plausible, but it also seems very difficult to establish. As explained at the be-
ginning of the introduction, we study in Section 3.4 the case of circuits with
rational constants computing polynomials with integer coefficients. Allowing ra-
tional constants makes the hypothesis that question (*) has a negative answer
stronger than in the constant-free case. Accordingly, we obtain a stronger con-
clusion: we can now show that the hypothesis would imply a superpolynomial
lower bound on the size of arithmetic circuits computing the permanent.

Obtaining a positive answer to question (*) also seems difficult since it would
imply the following transfer theorem: FP = ♯P ⇒ VP = VNP (assuming that
FP = ♯P, the permanent must be in FP; a positive answer to question (*) would
therefore imply that the permanent is in VP, and that VP = VNP by complete-
ness of the permanent). Unfortunately, in spite of all the work establishing close
connections between the boolean model of computation and the algebraic mod-
els of Valiant and of Blum, Shub and Smale [2,4,5,8,9,13,14,15] no such transfer
theorem is known. In fact, we do not know of any hypothesis from boolean com-
plexity theory that would imply the equality VP = VNP (but transfer theorems
in the opposite direction were established in [4]).

Summary of results – Most of our results are derived from Theorem 3,
our main theorem: if the evaluation of a family of polynomials (fn) at integer
points is a problem that lies in the (non uniform) counting hierarchy, the hy-
pothesis VP0 = VNP0 implies that (fn) can be evaluated by polynomial-size
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arithmetic circuits. Theorem 8, which contains our main contribution to the
study of question (*), follows immediately since polynomial-time problems lie in
the counting hierarchy. The proof of Theorem 3 relies on techniques from [1,6]
and on Lagrange interpolation. Besides the application to question (*), we derive
two additional results from Theorem 3:

– The elements of the complexity classes VP, VNP and of their constant-free
versions are families of polynomials of polynomially bounded degree. We
show in Theorem 5 that the collapse VP0 = VNP0 would imply the same
collapse for the unbounded versions of VP0 and VNP0. For fields of positive
characteristic, the same result (and its converse) was obtained with different
techniques by Malod [16,17].

– Our third application of Theorem 3 is to the “P = NP?” problem in the
Blum-Shub-Smale model of computation over C (or more generally, fields of
characteristic 0). One natural strategy for separating PC from NPC would
be to exhibit a problem A in NPC \ PC. Drawing on results from [13], we
show that this strategy is bound to fail for a fairly large class of “simple”
problems A, unless one can prove that VP0 6= VNP0. The class of “simple”
problems that we have in mind is NP(C,+,−,=). This is the class of NP prob-
lems over the set of complex numbers endowed with addition, subtraction,
and equality tests (there is therefore no multiplication in this structure).
It contains many natural problems, such as Subset Sum and Twenty Ques-
tions [2,19], that most likely belong to NPC \ PC. As an intermediate result,
we show in Theorem 5 that if exponential sums of easy to compute poly-
nomials can be computed efficiently, then the same is true of exponential
products.

2 Preliminaries

2.1 Valiant’s Classes

In Valiant’s model, one computes families of polynomials. A book-length treat-
ment of this topic can be found in [4]. We fix a field K of characteristic zero.

An arithmetic circuit is a circuit whose inputs are indeterminates x1, . . . , xu(n)

together with arbitrary constants of K; there are +, − and ×-gates, and we
therefore compute multivariate polynomials. The polynomial computed by an
arithmetic circuit is defined in the usual way by the polynomial computed by its
output gate. The size of a circuit is the number of gates.

Thus a family (Cn) of arithmetic circuits computes a family (fn) of polynomi-
als, fn ∈ K[x1, . . . , xu(n)]. The class VPnb defined in [17] is the set of families (fn)
of polynomials computed by a family (Cn) of polynomial-size arithmetic circuits,
i.e., Cn computes fn and there exists a polynomial p(n) such that |Cn| ≤ p(n)
for all n. We will assume without loss of generality that the number u(n) of
variables is bounded by a polynomial function of n. The subscript “nb” indi-
cates that there is no bound on the degree of the polynomial, in contrast with
the original class VP of Valiant where a polynomial bound on the degree of the
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polynomial computed by the circuit is required. Note that these definitions are
nonuniform.

The class VNP is the set of families of polynomials defined by an exponential
sum of VP families. More precisely, (fn(x̄)) ∈ VNP if there exists (gn(x̄, ȳ)) ∈ VP

and a polynomial p such that |ȳ| = p(n) and fn(x̄) =
∑

ǭ∈{0,1}p(n) gn(x̄, ǭ). Sim-
ilarly, the class VΠP is the set of families of polynomials defined by an expo-
nential product of VPnb families. More precisely, (fn(x̄)) ∈ VΠP if there ex-
ists (gn(x̄, ȳ)) ∈ VPnb and a polynomial p such that |ȳ| = p(n) and fn(x̄) =
∏

ǭ∈{0,1}p(n) gn(x̄, ǭ).
We can also define constant-free circuits: the only constant allowed is then

1 (in order to allow the computation of constant polynomials). In this case, we
compute polynomials with integer coefficients. If f is a polynomial with integer
coefficients, we denote by τ(f) the size of a smallest constant-free circuit com-
puting f . For classes of families of polynomials, we will use the superscript 0 to
indicate the absence of constant: for instance, we will write VP0

nb
. For bounded-

degree classes, we are to be more careful because we also want to avoid the
computation of constants of exponential bitsize: we first need the following def-
inition.

Definition 1. Let C be an arithmetic circuit. The formal degree of a gate of C
is defined by induction:

– the formal degree of an input is 1;
– the formal degree of a gate + or − is the maximum of the formal degrees of

its inputs;
– the formal degree of a gate × is the sum of the formal degrees of its inputs.

Now, the formal degree of a circuit is the formal degree of the output gate.

We are now able to define constant-free degree-bounded Valiant’s classes. A
family of polynomials (fn) belongs to VP0 if it is computable by a family of
circuits of size and formal degree bounded by a polynomial function of n. The
class VNP0 is then defined accordingly by a sum of VP0 families, in the same
way as VNP is defined from VP.

Remark 1. The hypothesis τ(PERn) = nO(1) used in [6] is implied by the hy-
pothesis VNP0 ⊂ VP0

nb
and hence by VP0 = VNP0. As mentioned in [6], the

converse τ(PERn) = nO(1) ⇒ VNP0 = VP0 is not known to hold, because the
family (PERn) is not known to be VNP0-complete in a constant-free context
(the proof of completeness of Valiant [20] indeed uses the constant 1/2). We
will mostly be concerned by the hypothesis VP0 = VNP0, but we will come to
the hypothesis τ(PERn) = nO(1) in Section 3.4 when dealing with circuits with
constants.

2.2 Counting Classes

In this paper we will encounter several counting classes, in particular the counting
hierarchy defined below. Let us first see two classes of functions, ♯P and GapP.
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Definition 2. – The class ♯P is the set of functions f : {0, 1}∗ → {0, 1}∗ such
that there exist a language A ∈ P and a polynomial p(n) satisfying

f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ A}.

– A function f is in GapP if it is the difference of two functions in ♯P.

Returning to classes of languages we recall the definition of the counting hierar-
chy, introduced by Wagner [21]. It contains all the polynomial hierarchy PH and
is contained in PSPACE. It is defined via the “majority” operator C as follows.

Definition 3. – If K is a complexity class, the class C.K is the set of lan-
guages A such that there exist a language B ∈ K and a polynomial p(n)
satisfying

x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} ≥ 2p(|x|)−1.

– The i-th level CiP of the counting hierarchy is defined recursively by C0P = P

and Ci+1P = C.CiP. The counting hierarchy CH is the union of all these levels
CiP.

Level 1 of CH, that is, C.P , is also called PP. Since Valiant’s classes are nonuni-
form, we will rather work with nonuniform versions of these boolean classes, as
defined now following Karp and Lipton [11].

Definition 4. If K is a complexity class, the class K/poly is the set of languages
A such that there exist a language B ∈ K, a polynomial p(n) and a family of
words (called advices) (an)n≥0 satisfying

– for all n ≥ 0, |an| ≤ p(n);
– for all word x, x ∈ A ⇐⇒ (x, a(|x|)) ∈ B.

Remark that the advice only depends on the size of x: it must therefore be the
same for all words of same length.

2.3 Sequences of Integers

Our aim now is to introduce a notion of complexity of a sequence of integers.
In order to avoid dealing with the sign of integers separately, we assume that
we can retrieve it from the boolean encoding of the integers. For example, the
sign could be given by the first bit of the encoding and the absolute value by
the remaining bits.

Definition 5. A sequence of exponential bitsize is a sequence of integers (a(n, k))
such that there exists a polynomial p(n) satisfying:

1. a(n, k) is defined for n, k ∈ N and 0 ≤ k < 2p(n);
2. for all n > 1, for all k < 2p(n), the bitsize of a(n, k) is ≤ 2p(n).
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From a(n, k), the following language is then defined:

Bit(a) = {(1n, k, j, b)| the j-th bit of a(n, k) is b},

The reader should be aware that the above definition and the next one are not
quite the same as in [6]: we use a unary encoding for n instead of a binary
encoding.

Definition 6. A sequence a(n, k) of exponential bitsize is definable in CH/poly

if the language Bit(a) is in CH/poly.

Remark 2. We shall also meet sequences with more than two parameters (n, k),
for example a(n, α(1), . . . , α(n)) for some integers α(i). In order to see it as a
sequence with two parameters, (α(1), . . . , α(n)) will be considered as the encoding
of a single integer. The parameter n might also be given as a subscript, as in
fn(k), which should better be written f(n, k).

Let us now propose a similar definition for families of polynomials.

Definition 7. Let (fn(x1, . . . , xu(n))) be a family of polynomials with integer
coefficients. We say that (fn) can be evaluated in CH/poly at integer points if
the following conditions are satisfied:

1. the number u(n) of variables is polynomially bounded;
2. the degree of fn as well as the bitsize of the coefficients of fn are bounded by

2p(n) for some polynomial p(n);
3. the language {(1n, i1, . . . , iu(n), j, b)| the j-th bit of fn(i1, . . . , iu(n)) is b} is

in CH/poly.

Remark 3. The same definition can be made for other complexity classes than
CH/poly. For instance, if we replace CH/poly by P we obtain the notion of “poly-
nomial time evaluation at integer points”. This notion will be useful for the study
of question (*).

The following lemma is obvious from these definitions.

Lemma 1. The family (fn(x1, . . . , xu(n))) can be evaluated in CH/poly at inte-
ger points if and only if the sequence of integers a(n, i1, . . . , iu(n)) = fn(i1, . . . , iu(n))
is definable in CH/poly.

The following theorem of [1, Theorem 4.1] will also be useful due to its corollary
below.

Theorem 1. Let BitSLP be the following problem: given a constant-free arith-
metic circuit computing an integer N , and given i ∈ N in binary, decide whether
the i-th bit of the binary representation of N is 1. Then BitSLP is in CH.

Corollary 1. If (fn) ∈ VP0
nb

then it can be evaluated in CH/poly at integer
points.
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The results of this paper rely on the following link between Valiant’s classes
and the counting hierarchy, [6, Lemmas 2.5 and 2.12].

Lemma 2. If VP0 = VNP0 then CH/poly = P/poly.

In particular, Lemma 2 was used to show that big sums and products are com-
putable in the counting hierarchy, [6, Theorem 3.7]. As already mentioned, the
context is not exactly the same as in [6] because we use a unary encoding. We
now give a version of this result which is just an easy “scaling up” of [6, Theo-
rem 3.7] (it is enough to define a′(2p(n), k) = a(n, k) and to apply the result of
Bürgisser).

Theorem 2. Let p(n) be a polynomial and suppose a = (a(n, k))n∈N,k≤2p(n) is
definable in CH/poly. Consider the sequences

b(n) =

2p(n)
∑

k=0

a(n, k) and d(n) =

2p(n)
∏

k=0

a(n, k).

Then (b(n))n∈N and (d(n))n∈N are definable in CH/poly.

Suppose now that (s(n))n∈N and (t(n))n∈N are definable in CH/poly. Then the
sequence of products (s(n)t(n))n∈N, and, if t(n) > 0, the sequence of quotients
(⌊s(n)/t(n)⌋)n∈N, are definable in CH/poly.

3 Interpolation

We now begin the main technical developments.

3.1 Coefficients

The following lemma is Valiant’s criterion [20], see also [4, Prop. 2.20] and [12,
Th. 2.3].

Lemma 3. Let a : (1n, i) 7→ a(1n, i) be a function of GapP/poly, where n is
given in unary and i in binary. Let p(n) be a polynomial and define the following
sequence of polynomials:

fn(x1, . . . , xp(n)) =
2p(n)−1

∑

i=0

a(1n, i)xi1
1 · · ·x

ip(n)

p(n) ,

where ij is the j-th bit in the binary expression of i.

Then (fn) ∈ VNP0.

Here is a “scaled up” generalization of [6, Th. 4.1(2)] to multivariate poly-
nomials.
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Lemma 4. Let

fn(x1, . . . , xn) =
∑

α(1),...,α(n)

a(n, α(1), . . . , α(n))xα(1)

1 · · ·xα(n)

n ,

where the integers α(i) range from 0 to 2n − 1 and a(n, α(1), . . . , α(n)) is a se-
quence of integers of absolute value < 22n

definable in CH/poly.
If VP0 = VNP0 then (fn) ∈ VP0

nb.

Proof. Expand a in binary: a(n, α(1), . . . , α(n)) =
∑2n

i=0 ai(n, ᾱ)2i. Let hn be the
following polynomial:

hn(x1,1, x1,2, . . . , x1,n, x2,1, . . . , xn,n, z1, . . . , zn) =

2n

∑

i=0

∑

ᾱ

ai(n, ᾱ)zi1
1 · · · zin

n x
α

(1)
1

1,1 x
α

(1)
2

1,2 · · ·x
α(1)

n

1,n x
α

(2)
1

2,1 · · ·x
α(n)

n
n,n .

Then we have:

hn(x20

1 , x21

1 , . . . , x2n

1 , x20

2 , . . . , x2n

n , 220

, 221

, . . . , 22n

) = fn(x1, . . . , xn).

Since VP0 = VNP0, by Lemma 2 the nonuniform counting hierarchy collapses,
therefore computing the i-th bit ai(n, ᾱ) of a(n, ᾱ) on input (1n, ᾱ, i) is in
GapP/poly (and even in P/poly). By Lemma 3, (hn) ∈ VNP0. By the hypothesis
VP0 = VNP0, (hn) ∈ VP0 and thus using repeated squaring for computing big
powers yields (fn) ∈ VNP0

nb
. ⊓⊔

3.2 Interpolation

Let us now state two lemmas on interpolation polynomials.

Lemma 5 (multivariate Lagrange interpolation). Let p(x1, . . . , xn) be a
polynomial of degree ≤ d. Then

p(x1, . . . , xn) =
∑

0≤i1,...,in≤d

p(i1, . . . , in)
n

∏

k=1

(

∏

jk 6=ik

xk − jk

ik − jk

)

,

where the integers jk range from 0 to d.

Proof. The proof goes by induction on the number n of variables. For n = 1,
this is the usual Lagrange interpolation formula: we have

p(x) =
d

∑

i=0

p(i)
∏

j 6=i

x − j

i − j

because both polynomials are of degree ≤ d and coincide on at least d+1 distinct
points.
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For n + 1, the induction case n = 1 yields

p(x1, . . . , xn+1) =

d
∑

in+1=0

p(x1, . . . , xn, in+1)
∏

jn+1 6=in+1

xn+1 − jn+1

in+1 − jn+1
.

By induction hypothesis, this is equal to

d
∑

in+1=0





∑

0≤i1,...,in≤d

p(i1, . . . , in)

n
∏

k=1

∏

jk 6=ik

xk − jk

ik − jk





∏

jn+1 6=in+1

xn+1 − jn+1

in+1 − jn+1

which is the desired result. ⊓⊔

Lemma 6. Let a(n) =
∏2n−1

i=0

∏

j 6=i(i− j), where j ranges from 0 to 2n − 1. Let
pi1,...,in

(x̄) be the following family of polynomials:

pi1,...,in
(x1, . . . , xn) =

n
∏

k=1

(

a(n)
∏

jk 6=ik

xk − jk

ik − jk

)

,

where the integers jk range from 0 to 2n − 1 and the integers ik are given in
binary and range from 0 to 2n − 1. Then the coefficients of pi1,...,in

are integers
definable in the counting hierarchy, as is a(n).

Proof. As a first step, note that the coefficient of the monomial xα1
1 · · ·xαn

n in pn

is equal to the product of the coefficients of the monomials xαk

k in the univariate

polynomials a(n)
∏

jk 6=ik

xk−jk

ik−jk
. Hence we just have to check that these different

coefficients of univariate polynomials are themselves definable in the counting
hierarchy. Let us first focus on the univariate polynomial

∏

jk 6=ik
(xk − jk), that

is, let us forget the multiplicative term b(n, ik) = a(n)/
∏

jk 6=ik
(ik − jk) for the

moment.

We use the same argument as [6, Cor. 3.9]. Namely, we remark that the

coefficients of this polynomial are bounded in absolute value by 22n2

. Therefore
in the univariate polynomial

∏

jk 6=ik
(xk − jk) we can replace the variable xk

by 22n2

and there will be no overlap of the coefficients of the different powers
of xk, thus we can recover the coefficients of the monomial from the value of
this product. By the first part of Theorem 2, we can evaluate in the counting

hierarchy the polynomial at the point 22n2

, because it is a product of exponential
size. So the coefficients are definable in the counting hierarchy.

It is now enough to note that the first part of Theorem 2 implies that a(n)
as well as b(n, ik) = a(n)/

∏

jk 6=ik
(ik − jk) are also definable in the counting

hierarchy. ⊓⊔

Remark that the sequence a(n) of Lemma 6 is introduced only so as to obtain
integer coefficients. We will then divide by a(n) in the next proofs.
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3.3 Main Results

Let us now state the main theorem.

Theorem 3. Let (fn(x1, . . . , xu(n))) be a family of multivariate polynomials.

Suppose (fn) can be evaluated in CH/poly at integer points. If VP0 = VNP0 then
(fn) ∈ VP0

nb
.

Proof. The goal is to use the interpolation formula of Lemma 5:

fn(x1, . . . , xu(n)) =
∑

0≤i1,...,iu(n)≤d

bi1,...,iu(n)
(x̄), (1)

where bi1,...,iu(n)
(x̄) = fn(i1, . . . , iu(n))

∏u(n)
k=1

∏

jk 6=ik

xk−jk

ik−jk
. We will show that

the coefficients of bi1,...,iu(n)
and fn are definable in CH/poly. The conclusion of

the theorem will then follow from Lemma 4.
In order to show that the coefficients of bi1,...,iu(n)

are definable in CH/poly,
we note that the polynomial pi1,...,in

and the sequence a(n) of Lemma 6 satisfy
the relation

bi1,...,iu(n)
(x̄) = a(u(n))−u(n)fn(i1, . . . , iu(n))pi1,...,iu(n)

(x̄).

By Lemma 6, the coefficients of pi1,...,iu(n)
(x̄) are definable in CH. By hypothesis,

(fn) can be evaluated in CH/poly at integer points. This implies by Lemma 1
that fn(i1, . . . , iu(n)) is definable in CH/poly. This is also the case of the product
fn(i1, . . . , iu(n))pi1,...,iu(n)

(x̄) by Theorem 2. Now, the same theorem enables us

to divide by a(u(n))u(n), thereby showing that the coefficients of bi1,...,iu(n)
(x̄)

are definable in CH/poly. It then follows from (1) and another application of
Theorem 2 that the coefficients of fn are definable in CH/poly. Therefore by
Lemma 4, (fn) ∈ VP0

nb under the hypothesis VP0 = VNP0. ⊓⊔

We now derive some consequences of Theorem 3.

Theorem 4. Let (fn(x̄, ǭ)) ∈ VP0
nb. Let

gn(x̄) =
∑

ǭ

fn(x̄, ǭ) and hn(x̄) =
∏

ǭ

fn(x̄, ǭ).

If VNP0 = VP0 then (gn) and (hn) are in VP0
nb

.

Proof. By Corollary 1 (fn) can be evaluated in CH/poly at integer points. Now,
using Lemma 1 before and after the first part of Theorem 2 shows that (gn) and
(hn) can also be evaluated in CH/poly at integer points. The result then follows
by Theorem 3. ⊓⊔

The following is now immediate.

Theorem 5. The hypothesis VP0 = VNP0 implies that VP0
nb = VNP0

nb and
VP0

nb
= VΠP0.
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Remark 4. It is not clear whether the converse of the first implication in The-
orem 5 (VP0 = VNP0 =⇒ VP0

nb
= VNP0

nb
) holds true. This is related to the

issue of large constants in arithmetic circuits: it seems difficult to rule out the
possibility that some polynomial family in VNP0 (for instance, the permanent or
the hamiltonian) does not lie in VP0 but is still computable by polynomial-size
arithmetic circuits using integer constants of exponential bit size.

The converse does hold if arbitrary constants are allowed: we indeed have
VPnb = VNPnb =⇒ VP = VNP. But in this non-constant-free context, it is not
clear whether VP = VNP unconditionally implies VPnb = VNPnb: indeed, in this
context the generalized Riemann hypothesis would be needed to make the proof
of Lemma 2 work (see [6] for details).

As mentioned in the introduction, another corollary concerns a transfer the-
orem with classes of algebraic complexity in the BSS model. Blum, Shub and
Smale [2,3] have defined the classes P and NP over the real and complex fields.
It was extended to arbitrary structures by Poizat [18]. Here we use nonuniform
versions of these classes, hence the notations P and NP.

Theorem 7 below proves that, over a field of characteristic zero, if we separate
(the nonuniform versions of) P and NP thanks to a “simple” NP problem, then
we separate (the constant-free versions of) VP and VNP. The class of “simple”
problems here is NP where the multiplication is not allowed, i.e., the only oper-
ations are +,− and =. It contains in particular Twenty Questions and Subset
Sum. We will need a result from [13]:

Theorem 6. Let K be a field of characteristic zero. If VP0
nb

= VΠP0 then
NP(K,+,−,=) ⊆ P(K,+,−,×,=).

By Theorem 5, the following is immediate.

Theorem 7. Let K be a field of characteristic zero. If VP0 = VNP0 then
NP(K,+,−,=) ⊆ P(K,+,−,×,=).

At last, as a corollary of Theorem 3 again, we obtain the following result
concerning question (*), suggesting that it will be hard to refute. As pointed out
in the introduction, this result does not give any evidence concerning the answer
to question (*) since the separation VP0 6= VNP0 is very likely to be true.

Theorem 8. If question (*) has a negative answer then VP0 6= VNP0. More
precisely, let (fn) be a family of multivariate polynomials which can be evaluated
in polynomial time at integer points (in the sense of Remark 3). If VP0 = VNP0

then (fn) ∈ VP0
nb.

3.4 Arithmetic Circuits with Constants

In this section we investigate another interpretation of question (*): we still
consider polynomials with integer coefficients, but we allow rational constants
in our circuits (it turns out that the constant 1/2 plays a special role due to its
appearance in the completeness proof for the permanent). The hypothesis that
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question (*) has a negative answer is then stronger, and we obtain a stronger
conclusion than in Theorem 8. Namely, we can conclude that τ(PERn) 6= nO(1)

instead of VNP0 6= VP0 (see Remark 1). We recall that τ , the constant-free
arithmetic circuit complexity of a polynomial, is defined in Section 2.1.

Theorem 9. As explained above, we consider here polynomials with integer co-
efficients but circuits with rational constants. If question (*) has a negative an-
swer, then τ(PERn) is not polynomially bounded.

More precisely, let (fn) be a family of multivariate polynomials which can
be evaluated in polynomial time at integer points (in the sense of Remark 3). If
τ(PERn) is polynomially bounded, (fn) can be evaluated by a family of polynomial-
size arithmetic circuits that use only the constant 1/2.

It is easy to see that Theorem 9 follows from a slight modification of the
different lemmas above. Lemma 2 is replaced by the following stronger lemma,
from [6].

Lemma 7. If τ(PERn) = nO(1) then CH/poly = P/poly.

Then Lemma 4 is replaced by the following result, whose proof relies on an
inspection of Valiant’s proof [20] of VNP-completeness of the permanent, see [6].

Lemma 8. Let

fn(x1, . . . , xn) =
∑

α(1),...,α(n)

a(n, α(1), . . . , α(n))xα(1)

1 · · ·xα(n)

n ,

where the integers α(i) range from 0 to 2n − 1 and a(n, α(1), . . . , α(n)) is a se-
quence of integers of absolute value < 22n

definable in CH/poly.

If τ(PERn) = nO(1) then there exists a polynomial p(n) such that τ(2p(n)fn) =
nO(1).

Finally, Theorem 3 becomes the following.

Lemma 9. Let (fn(x1, . . . , xu(n))) be a family of multivariate polynomials (with
integer coefficients). Suppose (fn) can be evaluated in CH/poly at integer points.
If τ(PERn) = nO(1) then there exists a polynomial p(n) such that τ(2p(n)fn) =
nO(1).

Theorem 9 follows since the coefficient 2p(n) can be cancelled by multiplying by
the constant 2−p(n), which can be computed from scratch from the constant 1/2.
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