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Introduction

Motivation -The starting point of this paper is a question raised by Christos Papadimitriou in a personal communication to Erich Kaltofen 1 :

Question

(*) If a multivariate polynomial P can be evaluated by a (boolean) polynomial-time algorithm on rational inputs, does that imply that P can be computed by a polynomial-size arithmetic circuit? In such a circuit, the only allowed operations are additions, subtractions, and multiplications. This question can be interpreted in several ways: one should at least state in which ring the coefficients of P lie, and which constants can be used by the arithmetic circuits. Here we will focus on polynomials with integer coefficients, and most of the paper will deal with constant-free circuits. In Section 3.4 we study the case of circuits with rational constants computing polynomials with integer coefficients (as we shall see, this is more natural than it might seem at first sight).

As pointed out by Papadimitriou, Strassen's "Vermeidung von Divisionen" (see for instance [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF], chapter 7) shows that for evaluating a low-degree polynomial P , divisions would not increase exponentially the power of arithmetic circuits. It is indeed a natural question whether, more generally, all boolean operations can be replaced efficiently by additions, subtractions and multiplications. Questions of the same flavour (can "looking at bits" help for arithmetic computations?) have been studied before. In particular, Kaltofen and Villard have shown that looking at bits does help for computing the determinant [START_REF] Kaltofen | On the complexity of computing determinants[END_REF].

Discussion -It is not clear what the correct answer to question (*) should be. In this paper we will argue that answering it either way seems difficult.

A natural strategy for obtaining a negative answer to question (*) would be to exhibit a family of polynomials that are easy to evaluate on rational inputs but hard to evaluate by arithmetic circuits. Unfortunately, there seems to be a lack of candidate polynomials. Another difficulty is that a negative answer would imply the separation of the algebraic complexity classes VP 0 and VNP 0 . This observation is our main contribution to the study of question (*), and it is established in Theorem 8. The classes VP 0 and VNP 0 are constant-free versions of the classes VP (of "easily computable polynomial families") and VNP (of "easily definable polynomial families") introduced by Valiant (precise definitions are given in the next section). The separation VP 0 = VNP 0 seems very plausible, but it also seems very difficult to establish. As explained at the beginning of the introduction, we study in Section 3.4 the case of circuits with rational constants computing polynomials with integer coefficients. Allowing rational constants makes the hypothesis that question (*) has a negative answer stronger than in the constant-free case. Accordingly, we obtain a stronger conclusion: we can now show that the hypothesis would imply a superpolynomial lower bound on the size of arithmetic circuits computing the permanent.

Obtaining a positive answer to question (*) also seems difficult since it would imply the following transfer theorem: FP = ♯P ⇒ VP = VNP (assuming that FP = ♯P, the permanent must be in FP; a positive answer to question (*) would therefore imply that the permanent is in VP, and that VP = VNP by completeness of the permanent). Unfortunately, in spite of all the work establishing close connections between the boolean model of computation and the algebraic models of Valiant and of Blum, Shub and Smale [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF][START_REF] Bürgisser | The complexity of factors of multivariate polynomials[END_REF][START_REF] Fournier | Are lower bounds easier over the reals?[END_REF][START_REF] Fournier | Lower bounds are not easier over the reals: Inside PH[END_REF][START_REF] Koiran | Valiant's model: from exponential sums to exponential products[END_REF][START_REF] Koiran | VPSACE and a transfer theorem over the complex field[END_REF][START_REF] Koiran | VPSACE and a transfer theorem over the reals[END_REF] no such transfer theorem is known. In fact, we do not know of any hypothesis from boolean complexity theory that would imply the equality VP = VNP (but transfer theorems in the opposite direction were established in [START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF]).

Summary of results -Most of our results are derived from Theorem 3, our main theorem: if the evaluation of a family of polynomials (f n ) at integer points is a problem that lies in the (non uniform) counting hierarchy, the hypothesis VP 0 = VNP 0 implies that (f n ) can be evaluated by polynomial-size arithmetic circuits. Theorem 8, which contains our main contribution to the study of question (*), follows immediately since polynomial-time problems lie in the counting hierarchy. The proof of Theorem 3 relies on techniques from [START_REF] Allender | On the complexity of numerical analysis[END_REF][START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF] and on Lagrange interpolation. Besides the application to question (*), we derive two additional results from Theorem 3:

-The elements of the complexity classes VP, VNP and of their constant-free versions are families of polynomials of polynomially bounded degree. We show in Theorem 5 that the collapse VP 0 = VNP 0 would imply the same collapse for the unbounded versions of VP 0 and VNP 0 . For fields of positive characteristic, the same result (and its converse) was obtained with different techniques by Malod [START_REF] Malod | The complexity of polynomials and their coefficient functions[END_REF][START_REF] Malod | Polynômes et coefficients[END_REF]. -Our third application of Theorem 3 is to the "P = NP?" problem in the Blum-Shub-Smale model of computation over C (or more generally, fields of characteristic 0). One natural strategy for separating P C from NP C would be to exhibit a problem A in NP C \ P C . Drawing on results from [START_REF] Koiran | Valiant's model: from exponential sums to exponential products[END_REF], we show that this strategy is bound to fail for a fairly large class of "simple" problems A, unless one can prove that VP 0 = VNP 0 . The class of "simple" problems that we have in mind is NP (C,+,-,=) . This is the class of NP problems over the set of complex numbers endowed with addition, subtraction, and equality tests (there is therefore no multiplication in this structure).

It contains many natural problems, such as Subset Sum and Twenty Questions [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Shub | On the intractability of Hilbert's Nullstellensatz and an algebraic version of "P=NP[END_REF], that most likely belong to NP C \ P C . As an intermediate result, we show in Theorem 5 that if exponential sums of easy to compute polynomials can be computed efficiently, then the same is true of exponential products.

Preliminaries

Valiant's Classes

In Valiant's model, one computes families of polynomials. A book-length treatment of this topic can be found in [START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF]. We fix a field K of characteristic zero. An arithmetic circuit is a circuit whose inputs are indeterminates x 1 , . . . , x u(n) together with arbitrary constants of K; there are +, -and ×-gates, and we therefore compute multivariate polynomials. The polynomial computed by an arithmetic circuit is defined in the usual way by the polynomial computed by its output gate. The size of a circuit is the number of gates.

Thus a family (C n ) of arithmetic circuits computes a family (f n ) of polynomials, [START_REF] Malod | Polynômes et coefficients[END_REF] is the set of families (f n ) of polynomials computed by a family (C n ) of polynomial-size arithmetic circuits, i.e., C n computes f n and there exists a polynomial p(n) such that |C n | ≤ p(n) for all n. We will assume without loss of generality that the number u(n) of variables is bounded by a polynomial function of n. The subscript "nb" indicates that there is no bound on the degree of the polynomial, in contrast with the original class VP of Valiant where a polynomial bound on the degree of the polynomial computed by the circuit is required. Note that these definitions are nonuniform.

f n ∈ K[x 1 , . . . , x u(n) ]. The class VP nb defined in
The class VNP is the set of families of polynomials defined by an exponential sum of VP families. More precisely, (f n (x)) ∈ VNP if there exists (g n (x, ȳ)) ∈ VP and a polynomial p such that |ȳ| = p(n) and f n (x) = ǭ∈{0,1} p(n) g n (x, ǭ). Similarly, the class VΠP is the set of families of polynomials defined by an exponential product of VP nb families. More precisely, (f n (x)) ∈ VΠP if there exists (g n (x, ȳ)) ∈ VP nb and a polynomial p such that |ȳ| = p(n) and

f n (x) = ǭ∈{0,1} p(n) g n (x, ǭ).
We can also define constant-free circuits: the only constant allowed is then 1 (in order to allow the computation of constant polynomials). In this case, we compute polynomials with integer coefficients. If f is a polynomial with integer coefficients, we denote by τ (f ) the size of a smallest constant-free circuit computing f . For classes of families of polynomials, we will use the superscript 0 to indicate the absence of constant: for instance, we will write VP 0 nb . For boundeddegree classes, we are to be more careful because we also want to avoid the computation of constants of exponential bitsize: we first need the following definition.

Definition 1. Let C be an arithmetic circuit. The formal degree of a gate of C is defined by induction:

-the formal degree of an input is 1; -the formal degree of a gate + or -is the maximum of the formal degrees of its inputs; -the formal degree of a gate × is the sum of the formal degrees of its inputs. Now, the formal degree of a circuit is the formal degree of the output gate.

We are now able to define constant-free degree-bounded Valiant's classes. A family of polynomials (f n ) belongs to VP 0 if it is computable by a family of circuits of size and formal degree bounded by a polynomial function of n. The class VNP 0 is then defined accordingly by a sum of VP 0 families, in the same way as VNP is defined from VP.

Remark 1. The hypothesis τ (PER n ) = n O(1) used in [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF] is implied by the hypothesis VNP 0 ⊂ VP 0 nb and hence by VP 0 = VNP 0 . As mentioned in [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF], the converse τ (PER n ) = n O(1) ⇒ VNP 0 = VP 0 is not known to hold, because the family (PER n ) is not known to be VNP 0 -complete in a constant-free context (the proof of completeness of Valiant [START_REF] Valiant | Completeness classes in algebra[END_REF] indeed uses the constant 1/2). We will mostly be concerned by the hypothesis VP 0 = VNP 0 , but we will come to the hypothesis τ (PER n ) = n O (1) in Section 3.4 when dealing with circuits with constants.

Counting Classes

In this paper we will encounter several counting classes, in particular the counting hierarchy defined below. Let us first see two classes of functions, ♯P and GapP. Definition 2. -The class ♯P is the set of functions f : {0, 1} * → {0, 1} * such that there exist a language A ∈ P and a polynomial p(n) satisfying

f (x) = #{y ∈ {0, 1} p(|x|) : (x, y) ∈ A}.
-A function f is in GapP if it is the difference of two functions in ♯P.

Returning to classes of languages we recall the definition of the counting hierarchy, introduced by Wagner [START_REF] Wagner | The complexity of combinatorial problems with succinct input representation[END_REF]. It contains all the polynomial hierarchy PH and is contained in PSPACE. It is defined via the "majority" operator C as follows.

Definition 3. -If K is a complexity class, the class C.K is the set of languages A such that there exist a language B ∈ K and a polynomial p(n) satisfying

x ∈ A ⇐⇒ #{y ∈ {0, 1} p(|x|) : (x, y) ∈ B} ≥ 2 p(|x|)-1 .
-The i-th level C i P of the counting hierarchy is defined recursively by C 0 P = P and C i+1 P = C.C i P. The counting hierarchy CH is the union of all these levels C i P.

Level 1 of CH, that is, C.P , is also called PP. Since Valiant's classes are nonuniform, we will rather work with nonuniform versions of these boolean classes, as defined now following Karp and Lipton [START_REF] Karp | Turing machines that take advice[END_REF]. Remark that the advice only depends on the size of x: it must therefore be the same for all words of same length.

Sequences of Integers

Our aim now is to introduce a notion of complexity of a sequence of integers.

In order to avoid dealing with the sign of integers separately, we assume that we can retrieve it from the boolean encoding of the integers. For example, the sign could be given by the first bit of the encoding and the absolute value by the remaining bits.

Definition 5. A sequence of exponential bitsize is a sequence of integers (a(n, k)) such that there exists a polynomial p(n) satisfying:

1. a(n, k) is defined for n, k ∈ N and 0 ≤ k < 2 p(n) ; 2. for all n > 1, for all k < 2 p(n) , the bitsize of a(n, k) is ≤ 2 p(n) .
From a(n, k), the following language is then defined:

Bit(a) = {(1 n , k, j, b)| the j-th bit of a(n, k) is b},
The reader should be aware that the above definition and the next one are not quite the same as in [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF]: we use a unary encoding for n instead of a binary encoding.

Definition 6. A sequence a(n, k) of exponential bitsize is definable in CH/poly if the language Bit(a) is in CH/poly.

Remark 2. We shall also meet sequences with more than two parameters (n, k), for example a(n, α (1) , . . . , α (n) ) for some integers α (i) . In order to see it as a sequence with two parameters, (α (1) , . . . , α (n) ) will be considered as the encoding of a single integer. The parameter n might also be given as a subscript, as in f n (k), which should better be written f (n, k).

Let us now propose a similar definition for families of polynomials.

Definition 7. Let (f n (x 1 , . . . , x u(n)
)) be a family of polynomials with integer coefficients. We say that (f n ) can be evaluated in CH/poly at integer points if the following conditions are satisfied:

1. the number u(n) of variables is polynomially bounded; 2. the degree of f n as well as the bitsize of the coefficients of f n are bounded by 2 p(n) for some polynomial p(n);

3. the language {(1 n , i 1 , . . . , i u(n) , j, b)| the j-th bit of f n (i 1 , . . . , i u(n) ) is b} is in CH/poly.
Remark 3. The same definition can be made for other complexity classes than CH/poly. For instance, if we replace CH/poly by P we obtain the notion of "polynomial time evaluation at integer points". This notion will be useful for the study of question (*).

The following lemma is obvious from these definitions.

Lemma 1. The family (f n (x 1 , . . . , x u(n) )) can be evaluated in CH/poly at integer points if and only if the sequence of integers a(n, i 1 , . . . , i u

(n) ) = f n (i 1 , . . . , i u(n) ) is definable in CH/poly.
The following theorem of [1, Theorem 4.1] will also be useful due to its corollary below.

Theorem 1. Let BitSLP be the following problem: given a constant-free arithmetic circuit computing an integer N , and given i ∈ N in binary, decide whether the i-th bit of the binary representation of N is 1. Then BitSLP is in CH.

Corollary 1. If (f n ) ∈ VP 0 nb then it can be evaluated in CH/poly at integer points.

The results of this paper rely on the following link between Valiant's classes and the counting hierarchy, [6, Lemmas 2.5 and 2.12]. Lemma 2. If VP 0 = VNP 0 then CH/poly = P/poly.

In particular, Lemma 2 was used to show that big sums and products are computable in the counting hierarchy, [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF]Theorem 3.7]. As already mentioned, the context is not exactly the same as in [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF] because we use a unary encoding. We now give a version of this result which is just an easy "scaling up" of [6, Theorem 3.7] (it is enough to define a ′ (2 p(n) , k) = a(n, k) and to apply the result of Bürgisser). 

(n) = 2 p(n) k=0 a(n, k) and d(n) = 2 p(n) k=0 a(n, k).
Then (b(n)) n∈N and (d(n)) n∈N are definable in CH/poly.

Suppose now that (s(n)) n∈N and (t(n)) n∈N are definable in CH/poly. Then the sequence of products (s(n)t(n)) n∈N , and, if t(n) > 0, the sequence of quotients (⌊s(n)/t(n)⌋) n∈N , are definable in CH/poly.

Interpolation

We now begin the main technical developments.

Coefficients

The following lemma is Valiant's criterion [START_REF] Valiant | Completeness classes in algebra[END_REF], see also [START_REF] Bürgisser | Completeness and Reduction in Algebraic Complexity Theory[END_REF]Prop. 2.20] and [12, Th. 2.3]. Lemma 3. Let a : (1 n , i) → a(1 n , i) be a function of GapP/poly, where n is given in unary and i in binary. Let p(n) be a polynomial and define the following sequence of polynomials:

f n (x 1 , . . . , x p(n) ) = 2 p(n) -1 i=0 a(1 n , i)x i1 1 • • • x i p(n) p(n) ,
where i j is the j-th bit in the binary expression of i.

Then (f n ) ∈ VNP 0 .
Here is a "scaled up" generalization of [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF]Th. 4.1(2)] to multivariate polynomials.

Lemma 4. Let

f n (x 1 , . . . , x n ) = α (1) ,...,α (n) a(n, α (1) , . . . , α (n) )x α (1) 1 • • • x α (n) n ,
where the integers α (i) range from 0 to 2 n -1 and a(n, α (1) , . . . , α (n) ) is a sequence of integers of absolute value < 2 2 n definable in CH/poly.

If VP 0 = VNP 0 then (f n ) ∈ VP 0 nb .
Proof. Expand a in binary: a(n, α (1) , . . . , α (n) ) =

2 n i=0 a i (n, ᾱ)2 i . Let h n be the following polynomial:

h n (x 1,1 , x 1,2 , . . . , x 1,n , x 2,1 , . . . , x n,n , z 1 , . . . , z n ) = 2 n i=0 ᾱ a i (n, ᾱ)z i1 1 • • • z in n x α (1) 1 1,1 x α (1) 2 1,2 • • • x α (1) n 1,n x α (2) 1 2,1 • • • x α (n) n n,n .
Then we have:

h n (x 2 0 1 , x 2 1 1 , . . . , x 2 n 1 , x 2 0 2 , . . . , x 2 n n , 2 2 0 , 2 2 1 , . . . , 2 2 n ) = f n (x 1 , . . . , x n ).
Since VP 0 = VNP 0 , by Lemma 2 the nonuniform counting hierarchy collapses, therefore computing the i-th bit a i (n, ᾱ) of a(n, ᾱ) on input (1 n , ᾱ, i) is in GapP/poly (and even in P/poly). By Lemma 3, (h n ) ∈ VNP 0 . By the hypothesis VP 0 = VNP 0 , (h n ) ∈ VP 0 and thus using repeated squaring for computing big powers yields (f n ) ∈ VNP 0 nb . ⊓ ⊔

Interpolation

Let us now state two lemmas on interpolation polynomials.

Lemma 5 (multivariate Lagrange interpolation). Let p(x 1 , . . . , x n ) be a polynomial of degree ≤ d. Then

p(x 1 , . . . , x n ) = 0≤i1,...,in≤d p(i 1 , . . . , i n ) n k=1 j k =i k x k -j k i k -j k ,
where the integers j k range from 0 to d.

Proof. The proof goes by induction on the number n of variables. For n = 1, this is the usual Lagrange interpolation formula: we have

p(x) = d i=0 p(i) j =i
x -j i -j because both polynomials are of degree ≤ d and coincide on at least d+1 distinct points.

For n + 1, the induction case n = 1 yields

p(x 1 , . . . , x n+1 ) = d in+1=0 p(x 1 , . . . , x n , i n+1 ) jn+1 =in+1 x n+1 -j n+1 i n+1 -j n+1 .
By induction hypothesis, this is equal to

d in+1=0   0≤i1,...,in≤d p(i 1 , . . . , i n ) n k=1 j k =i k x k -j k i k -j k   jn+1 =in+1 x n+1 -j n+1 i n+1 -j n+1 which is the desired result. ⊓ ⊔ Lemma 6. Let a(n) = 2 n -1 i=0 j =i (i -j)
, where j ranges from 0 to 2 n -1. Let p i1,...,in (x) be the following family of polynomials:

p i1,...,in (x 1 , . . . , x n ) = n k=1 a(n) j k =i k x k -j k i k -j k ,
where the integers j k range from 0 to 2 n -1 and the integers i k are given in binary and range from 0 to 2 n -1. Then the coefficients of p i1,...,in are integers definable in the counting hierarchy, as is a(n).

Proof. As a first step, note that the coefficient of the monomial

x α1 1 • • • x αn n in p n is equal to the product of the coefficients of the monomials x α k k in the univariate polynomials a(n) j k =i k x k -j k i k -j k .
Hence we just have to check that these different coefficients of univariate polynomials are themselves definable in the counting hierarchy. Let us first focus on the univariate polynomial j k =i k (x k -j k ), that is, let us forget the multiplicative term b(n, i k ) = a(n)/ j k =i k (i k -j k ) for the moment.

We use the same argument as [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF]Cor. 3.9]. Namely, we remark that the coefficients of this polynomial are bounded in absolute value by 2 2 n 2 . Therefore in the univariate polynomial j k =i k (x k -j k ) we can replace the variable x k by 2 2 n 2 and there will be no overlap of the coefficients of the different powers of x k , thus we can recover the coefficients of the monomial from the value of this product. By the first part of Theorem 2, we can evaluate in the counting hierarchy the polynomial at the point 2

2 n 2
, because it is a product of exponential size. So the coefficients are definable in the counting hierarchy.

It is now enough to note that the first part of Theorem 2 implies that a(n) as well as b(n, i k ) = a(n)/ j k =i k (i k -j k ) are also definable in the counting hierarchy.

⊓ ⊔

Remark that the sequence a(n) of Lemma 6 is introduced only so as to obtain integer coefficients. We will then divide by a(n) in the next proofs.

Main Results

Let us now state the main theorem. Theorem 3. Let (f n (x 1 , . . . , x u(n) )) be a family of multivariate polynomials. Suppose (f n ) can be evaluated in CH/poly at integer points.

If VP 0 = VNP 0 then (f n ) ∈ VP 0 nb .
Proof. The goal is to use the interpolation formula of Lemma 5:

f n (x 1 , . . . , x u(n) ) = 0≤i1,...,i u(n) ≤d b i1,...,i u(n) (x), (1) 
where b i1,...,i u(n

) (x) = f n (i 1 , . . . , i u(n) ) u(n) k=1 j k =i k x k -j k i k -j k .
We will show that the coefficients of b i1,...,i u(n) and f n are definable in CH/poly. The conclusion of the theorem will then follow from Lemma 4.

In order to show that the coefficients of b i1,...,i u(n) are definable in CH/poly, we note that the polynomial p i1,...,in and the sequence a(n) of Lemma 6 satisfy the relation

b i1,...,i u(n) (x) = a(u(n)) -u(n) f n (i 1 , . . . , i u(n) )p i1,...,i u(n) (x).
By Lemma 6, the coefficients of p i1,...,i u(n) (x) are definable in CH. By hypothesis, (f n ) can be evaluated in CH/poly at integer points. This implies by Lemma 1 that f n (i 1 , . . . , i u(n) ) is definable in CH/poly. This is also the case of the product f n (i 1 , . . . , i u(n) )p i1,...,i u(n) (x) by Theorem 2. Now, the same theorem enables us to divide by a(u(n)) u(n) , thereby showing that the coefficients of b i1,...,i u(n) (x) are definable in CH/poly. It then follows from [START_REF] Allender | On the complexity of numerical analysis[END_REF] and another application of Theorem 2 that the coefficients of f n are definable in CH/poly. Therefore by Lemma 4, (f n ) ∈ VP 0 nb under the hypothesis VP 0 = VNP 0 .

⊓ ⊔

We now derive some consequences of Theorem 3.

Theorem 4. Let (f n (x, ǭ)) ∈ VP 0 nb . Let g n (x) = ǭ f n (x, ǭ) and h n (x) = ǭ f n (x, ǭ).
If VNP 0 = VP 0 then (g n ) and (h n ) are in VP 0 nb .

Proof. By Corollary 1 (f n ) can be evaluated in CH/poly at integer points. Now, using Lemma 1 before and after the first part of Theorem 2 shows that (g n ) and (h n ) can also be evaluated in CH/poly at integer points. The result then follows by Theorem 3.

⊓ ⊔

The following is now immediate.

Theorem 5. The hypothesis VP 0 = VNP 0 implies that VP 0 nb = VNP 0 nb and VP 0 nb = VΠP 0 .

Remark 4. It is not clear whether the converse of the first implication in Theorem 5 (VP 0 = VNP 0 =⇒ VP 0 nb = VNP 0 nb ) holds true. This is related to the issue of large constants in arithmetic circuits: it seems difficult to rule out the possibility that some polynomial family in VNP 0 (for instance, the permanent or the hamiltonian) does not lie in VP 0 but is still computable by polynomial-size arithmetic circuits using integer constants of exponential bit size.

The converse does hold if arbitrary constants are allowed: we indeed have VP nb = VNP nb =⇒ VP = VNP. But in this non-constant-free context, it is not clear whether VP = VNP unconditionally implies VP nb = VNP nb : indeed, in this context the generalized Riemann hypothesis would be needed to make the proof of Lemma 2 work (see [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF] for details).

As mentioned in the introduction, another corollary concerns a transfer theorem with classes of algebraic complexity in the BSS model. Blum, Shub and Smale [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Blum | On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines[END_REF] have defined the classes P and NP over the real and complex fields. It was extended to arbitrary structures by Poizat [START_REF] Poizat | Les petits cailloux[END_REF]. Here we use nonuniform versions of these classes, hence the notations P and NP.

Theorem 7 below proves that, over a field of characteristic zero, if we separate (the nonuniform versions of) P and NP thanks to a "simple" NP problem, then we separate (the constant-free versions of) VP and VNP. The class of "simple" problems here is NP where the multiplication is not allowed, i.e., the only operations are +, -and =. It contains in particular Twenty Questions and Subset Sum. We will need a result from [START_REF] Koiran | Valiant's model: from exponential sums to exponential products[END_REF]: Theorem 6. Let K be a field of characteristic zero. If VP 0 nb = VΠP 0 then NP (K,+,-,=) ⊆ P (K,+,-,×,=) . By Theorem 5, the following is immediate. Theorem 7. Let K be a field of characteristic zero. If VP 0 = VNP 0 then NP (K,+,-,=) ⊆ P (K,+,-,×,=) .

At last, as a corollary of Theorem 3 again, we obtain the following result concerning question (*), suggesting that it will be hard to refute. As pointed out in the introduction, this result does not give any evidence concerning the answer to question (*) since the separation VP 0 = VNP 0 is very likely to be true. Theorem 8. If question (*) has a negative answer then VP 0 = VNP 0 . More precisely, let (f n ) be a family of multivariate polynomials which can be evaluated in polynomial time at integer points (in the sense of Remark 3). If VP 0 = VNP 0 then (f n ) ∈ VP 0 nb .

Arithmetic Circuits with Constants

In this section we investigate another interpretation of question (*): we still consider polynomials with integer coefficients, but we allow rational constants in our circuits (it turns out that the constant 1/2 plays a special role due to its appearance in the completeness proof for the permanent). The hypothesis that question (*) has a negative answer is then stronger, and we obtain a stronger conclusion than in Theorem 8. Namely, we can conclude that τ (PER n ) = n O(1) instead of VNP 0 = VP 0 (see Remark 1). We recall that τ , the constant-free arithmetic circuit complexity of a polynomial, is defined in Section 2.1.

Theorem 9. As explained above, we consider here polynomials with integer coefficients but circuits with rational constants. If question (*) has a negative answer, then τ (PER n ) is not polynomially bounded. More precisely, let (f n ) be a family of multivariate polynomials which can be evaluated in polynomial time at integer points (in the sense of Remark 3). If τ (PER n ) is polynomially bounded, (f n ) can be evaluated by a family of polynomialsize arithmetic circuits that use only the constant 1/2.

It is easy to see that Theorem 9 follows from a slight modification of the different lemmas above. Lemma 2 is replaced by the following stronger lemma, from [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF]. Then Lemma 4 is replaced by the following result, whose proof relies on an inspection of Valiant's proof [START_REF] Valiant | Completeness classes in algebra[END_REF] of VNP-completeness of the permanent, see [START_REF] Bürgisser | On defining integers in the counting hierarchy and proving lower bounds in algebraic complexity[END_REF].

Lemma 8. Let f n (x 1 , . . . , x n ) = α (1) ,...,α (n) a(n, α (1) , . . . , α (n) )x α (1)

1 • • • x α (n) n
, where the integers α (i) range from 0 to 2 n -1 and a(n, α (1) , . . . , α (n) ) is a sequence of integers of absolute value < 2 2 n definable in CH/poly.

If τ (PER n ) = n O(1) then there exists a polynomial p(n) such that τ (2 p(n) f n ) = n O (1) .

Finally, Theorem 3 becomes the following. Lemma 9. Let (f n (x 1 , . . . , x u(n) )) be a family of multivariate polynomials (with integer coefficients). Suppose (f n ) can be evaluated in CH/poly at integer points. If τ (PER n ) = n O (1) then there exists a polynomial p(n) such that τ (2 p(n) f n ) = n O (1) . Theorem 9 follows since the coefficient 2 p(n) can be cancelled by multiplying by the constant 2 -p(n) , which can be computed from scratch from the constant 1/2.

Definition 4 .

 4 If K is a complexity class, the class K/poly is the set of languages A such that there exist a language B ∈ K, a polynomial p(n) and a family of words (called advices) (a n ) n≥0 satisfying -for all n ≥ 0, |a n | ≤ p(n); -for all word x, x ∈ A ⇐⇒ (x, a(|x|)) ∈ B.

Theorem 2 .

 2 Let p(n) be a polynomial and suppose a = (a(n, k)) n∈N,k≤2 p(n) is definable in CH/poly. Consider the sequences b

Lemma 7 .

 7 If τ (PER n ) = n O(1) then CH/poly = P/poly.
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