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On the construction of a family of transversal subspaces over
finite fields

Alexander Chistov∗ Hervé Fournier† Pascal Koiran‡ Sylvain Perifel‡

February 1, 2007

Abstract

Let k be a field. We are interested in the families of r-dimensional subspaces of kn

with the following transversality property: any linear subspace of kn of dimension n − r
is transversal to at least one element of the family. While it is known how to build such
families in polynomial time over infinite fields k, no such technique is known for finite
fields. However, transversal families in dimension n can be built when the field k is large
enough with respect n. We improve here on how large k needs to be with respect to the
considered dimension n.

1 Introduction

Let K be a field and F a family of r-dimensional linear subspaces of Kn. We say that F has
property Pn,r(K) if for every (n−r)-dimensional subspace E ⊂ Kn there exists an element F
of F which is transversal to E – i.e. such that E ∩F = {0}. Over infinite fields, it was shown
in [3] that families with “small coefficients” having this property and as small as r(n− r) + 1
do exist. There the question of efficient algorithms to build transversal families was raised
in relationship with the complexity of computing the rank of a matrix. This transversality
property has also been used recently for instance in computational algebraic geometry [8] over
an infinite field, and in complexity theory [1] over finite fields.

In the case of an infinite field K, explicit constructions of families of size nO(1) with
property Pn,r(K) were given in [4]. In this paper, we address the same problem over finite
fields. Although no polynomial time algorithm is known to solve this problem, the previoulsly
mentionned algorithm allows to build in polynomial time transversal families over Kn when
|K| is large enough with respect to n. The main results we present here are polynomial-time

∗St.-Petersburg Department of Steklov Mathematical Institute of the Academy of Sciences of Russia,
Fontanka 27, St.-Petersburg 191023, Russia. Email: alch@pdmi.ras.ru
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algorithms that work on fields of size linear in the dimension n instead of quadratic as was
previously known.

Let us now generalize the notion of family of transversal subspaces. Let k ⊂ K be two
fields. An r-dimensional subspace V of kn defines in the natural way the subspace that
consists in the vector space of Kn spanned by V ; we shall denote it V̂ when the big field
K is clear from the context. Let F be a finite family of r-dimensional linear subspaces of
kn. We shall say that F has property Pn,r(k,K) if and only if for every (n − r)-dimensional
subspace W ⊂ Kn there exists an element V of F such that the linear subspaces V̂ and W
are transversal. For a field K the property Pn,r(K,K) is the property Pn,r(K) defined above.
We shall also say that a family of full rank n × r matrices over k has property Pn,r(k,K) if
the family of linear subspaces of kn spanned by the columns of each of these matrices has this
property – note that it does not depend on the chosen basis of kn.

As an example, it is easy to build a family of size
(n

r

)
with property Pn,r(k,K): given a

basis of kn, consider all the subspaces spanned by r basis vectors. This family is simple but
very large. Constructions of smaller transversal families in [4] are given for infinite fields (of
any characacteristic) but only allow to build families with the Pn,r(K) property as long as the
field K is large enough with regard to n. More precisely, we have the following. Consider the
n-dimensional space Fn

q over the field Fq and its linear subspaces. By [4], given 0 ! r ! n and
q = pν0 (where p is prime), if q > r(n − r) + 1 then one can construct a family F satisfying
property Pn,r(Fq) and of size |F| = r(n − r) + 1. The working time of this algorithm is
polynomial in n, p and ν0. In fact, this family even has property Pn,r(Fq, Fq) where Fq is the
algebraic closure of Fq – and we know that the size of the family is optimal with respect to
this property. Let us define τ(n, r) = r(n − r) + 1.

In the present paper we improve the inequality q > r(n− r) + 1. Namely, in section 3 we
show that for q " %n/2& we can build a family with property Pn,r(Fq) but with |F| ! τ(n, r)3.
Note that the size |F| is bigger (still polynomial in n, though) but now q is linear in n, i.e. less
than in [4] where it had to be quadratic. The proof uses techniques of traces in extensions of
finite fields. This leads to the construction of families of size nO(1/ε) with property Pn,r(Fq)
for q " εn. In section 4 using another approach of differentiations we get similar results
but for the property Pn,r(Fq, Fq). Although this result is stronger than the one of section 3
we decided to leave the construction of section 3 in this paper since its proof is simple and
instructive. Of course, we would like to have, for any prime power q, an algorithm that, given
n and r, would build a family F satisfying property Pn,r(Fq) (or even the stronger property
Pn,r(Fq, Fq)) in time nO(1) – this would of course imply that |F| = nO(1).

Indeed, we do know that such small families with property Pn,r(Fq, Fq) exist: this is proved
by a probabilistic argument using known bounds on the number of zero-patterns of a set of
polynomials in section 5, where related questions are raised.
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2 Elementary properties

For vectors a, b ∈ Fn
q , a = (a1, . . . , an), b = (b1, . . . , bn), let ab = a1b1 + . . . + anbn ∈ Fq. For

an arbitrary (n − r)-dimensional subspace W of Fn
q let

W⊥ =
{

a ∈ Fn
q : ab = 0 ∀b ∈ W

}
.

The set W⊥ is an r-dimensional linear subspace of Fn
q . Let us state two simple lemmas related

to duality.

Lemma 1 Let F be a family with the Pn,r(k,K) property. Then F⊥ = {V ⊥, V ∈ F} has
the Pn,n−r(k,K) property.

Proof. Let V be a linear subspace of Kn of dimension r. Then there exists W ∈ F transversal
to V ⊥. Thus W⊥ ∈ F⊥ is transversal to V . !

Remark moreover that if F is given by matrices, F⊥ can be computed from F in a
polynomial number of operations over the field k.

Lemma 2 Let F be a family of matrices of size n× r over k. This family has the Pn,r(k,K)
property if and only if for all full rank matrix A of size r×n over K, there exists F ∈ F such
that det(AF ) )= 0.

Proof. Remember that the family F has property Pn,r(k,K) if and only if for all n× (n− r)
full rank matrix V over K, there exists F ∈ F such that det(F |V ) )= 0.

For the “if” part, take an n×(n−r) full rank matrix V over K. Then there exists an r×n
full rank matrix A over K such that AV = 0 (take for the rows of A a basis of Span(V )⊥)
as well as an (n − r) × n matrix B over K such that BV = I. Furthermore, by hypothesis

there exists F ∈ F such that AF has full rank. Since
(

A
B

)(
F |V

)
=

(
AF 0
BF I

)
, this

implies that (F |V ) has full rank.
For the converse, take an r ×n full rank matrix A over K. As before, take an n× (n− r)

full rank matrix V over K such that AV = 0 and an (n − r) × n matrix B over K such that
BV = I. Remark that

(A
B

)
has full rank. Now, as above, if F ∈ F is such that (F |V ) has full

rank, then AF also has full rank. !

Given F and G two families of linear subspaces of the same vector space, let us define

F · G = {F + G : F ∩ G = {0}, F ∈ F , G ∈ G}.

Lemma 3 Let F be a family with property Pn,r(k,K) and G be a family with property
Pn,s(k,K), with r + s ! n. Then F · G has property Pn,r+s(k,K).

Proof. Let V be a subspace of dimension n−(r+s). There exists F ∈ F such that V ∩F = {0}.
Now, V + F has dimension n − s therefore there exists G ∈ G transversal to V + F . The
subspace F + G ∈ F · G is then transversal to V . !
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We shall note Fn for F · F · . . . · F (n times).

Lemma 4 Let F = {Ai | i ∈ I} be a family of n × r matrices with property Pn,r(k,K). Let
m < n and A′

i be the submatrix of Ai composed of its first m rows. Then F ′ = {A′
i | i ∈ I }

has property Pm,r(k,K).

Proof. Let B be a full rank matrix of size m × (m − r) over K. Now let C =
(

0 B
In−m 0

)

where In−m is the (n − m) × (n − m) identity matrix. As C has full rank, there exists i ∈ I
such that det(C | Ai) )= 0. But det(C | Ai) = det(B | A′

i). !

3 Construction based on the trace

Let ν " 1 be an integer and Fqν be the field with qν elements. Then the Fq-linear mapping
of the trace

tr : Fqν −→ Fq, tr(a) =
∑

0!i!ν−1

aqi
,

is defined. It is known that tr(Fqν ) = Fq, i.e., the mapping of trace is nonzero. For an
arbitrary matrix B = (bi,j) with coefficients from Fqν we shall denote by tr(B) = (tr(bi,j))
the matrix consisting of traces of coefficients of B. So tr(B) is a matrix of the same size and
with coefficients from Fq.

Lemma 5 Let A = (ai,j) be a square nondegenerate matrix of size s " 1 with coefficients
ai,j ∈ Fqν (so det(A) )= 0). Assume that q " s. Then there exists an element t ∈ Fqν such
that the matrix tr(tA) is nondegenerate, i.e., det(tr(tA)) )= 0.

Proof. If s = 1 the assertion holds since the trace mapping is nonzero. So we shall sup-
pose without loss of generality that s > 1 and ν > 1. Let X be a variable and let
f = det(tr(XA)). Then f ∈ Fqν [X] is a polynomial of degree deg f ! sqν−1 ! qν . Let
us write f =

∑
0!i!qν fiXi, where all the fi are in Fqν . Obviously fs = det(A) )= 0. Set

g = f +fqν (X −Xqν ) ∈ Fqν [X]. Then deg g ! qν −1. The coefficient of Xs in the polynomial
g is fs since s > 1 and ν " 1. Hence g )= 0. Further, the polynomial X − Xqν vanishes on
Fqν . Therefore, g(t) = f(t) for every t ∈ Fqν . The polynomial g does not vanish on Fqν since
g )= 0, the degree deg g ! qν − 1 and the number of elements of the field is |Fqν | = qν . Thus,
there exists t ∈ Fqν such that g(t) )= 0. Now det(tr(tA)) )= 0. !

Remark 1 The inequality q " s in the statement of the lemma can not be improved by, e.g.,
q " s − 1. Indeed, let ν > 1. Then there exist two elements a, b ∈ Fqν linearly independent
over Fq. Let A be a square diagonal matrix of size q + 1 with the elements on the diagonal a,
b + λa, λ ∈ Fq. Then det(A) )= 0 but det(tr(tA)) = 0 for every t ∈ Fqν .

Theorem 1 Let q = pν0 " min{r, n − r} where 0 ! r ! n. Then one can construct a family
F satisfying property Pn,r(Fq) with |F| ! τ(n, r)3. The working time of the algorithm for
computing F is polynomial in n, p and ν0.
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Proof. By [4] we can assume without loss of generality that q ! τ(n, r). Also in what follows
1 ! r ! n − 1.

At first suppose that q " r. Let ν " 1 be the least integer such that qν > τ(n, r). Since
q ! τ(n, r), of course qν ! τ(n, r)2. First remark that we can efficiently work in the extension
of fields Fqν . Indeed, according to [2] and [9], one can construct in time polynomial in ν, ν0
and p an irreducible polynomial Φ of degree νν0 over the field Fp. Further, within the same
time one can factor Φ over the field Fq and construct an irreducible polynomial ϕ ∈ Fq[Z] of
degree degZ ϕ = ν. So one can construct the extension of fields Fqν = Fq[Z]/(ϕ) ⊃ Fq.

Now, the algorithm of [4] constructs a family F0 of matrices of size n × r satisfying
Pn,r(Fqν ). This family F0 has size τ(n, r).

Let F0 = {Bα}1!α!τ(n,r). Let

F =
{

tr(tBα) : rank(tr(tBα)) = r, 1 ! α ! τ(n, r), t ∈ Fqν

}
.

Obviously one can construct the family F in time polynomial in n, p and ν0. The size satisfies
|F| ! qν |F0| ! τ(n, r)3.

Let us show that the family F satisfies property Pn,r(Fq). We shall use the characterization
of Lemma 2. Let D be a full rank matrix of size r × n over Fq. There exists α such that
det(DBα) )= 0. Hence by Lemma 5 there exists t ∈ Fqν such that det(tr(tDBα)) )= 0. We
have tr(tDBα) = D tr(tBα) since the matrix D has coefficients from Fq and the mapping of
trace is Fq-linear. The theorem is proved for q " r.

Assume that q < r. Then q " n − r since q " min{r, n − r}. By the first part one can
construct a family F ′ satisfying property Pn,n−r(Fq). Let F ′ = {Vι}ι∈I . By Lemma 1 the
family F = {V ⊥

ι }ι∈I satisfies property Pn,r(Fq). Moreover, it can be computed in polynomial
time. !

Corollary 1 Let ε > 0 be a real number. Let 0 ! r ! n be two integers and q = pν0 "
ε · min{r, n − r}. Then one can construct a family F satisfying property Pn,r(Fq) with |F| !
(q(n−q)+1)3&r/q' = nO(1/ε). The working time of the algorithm for computing F is polynomial
in n1/ε, p and ν0.

Proof. One can suppose that q " εr (otherwise, apply the following construction to r′ = n−r
then apply Lemma 1). Now perform the Euclidean division r = aq + b. Note that a ! 1/ε.
By Theorem 1, one can build F1 with property Pn,q(Fq) and F2 with property Pn,b(Fq). Now
build F = (F1)a · F2. By Lemma 3 the family F has property Pn,r(Fq). The working time of
the algorithm is as announced. !

4 Construction based on differentiation

We now give two constructions of families with the Pn,r(Fq, Fq) property – while the fam-
ilies built in the previous section only had the Pn,r(Fq) property. The first construction is
straightforward. The second is more involved but yields much smaller families.
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Lemma 6 Let 0 ! r ! n and q = pν0 > (ν − 1)r. Let P be an irreductible polynomial of
degree ν over Fq, so that Fqν = Fq[X]/(P (X)). Let {Bα(X) : 1 ! α ! N} be a family of
matrices (where coefficients are polynomials of degree at most ν − 1 over Fq) with property
Pn,r(Fqν , Fq). Let F ⊂ Fq with |F | > (ν − 1)r. Then {Bα(x) : x ∈ F, 1 ! α ! N} has
property Pn,r(Fq, Fq).

Proof. Let D be a full rank matrix of size (n − r) × n with coefficients in Fq. There exists
α such that det(D,Bα(X)) )∈ P · K[X]. In particular, this is a nonzero polynomial, and its
degree is at most (ν−1)r < q. Thus there exists x ∈ F which is not a root of this polynomial,
and Bα(x) satisfies det(D,Bα(x)) )= 0. !

Theorem 2 Let 0 < ε < 1/2 be a real number. Let q = pν0 " εn and let 0 ! r ! n be an
integer. Then one can construct a family F satisfying property Pn,r(Fq, Fq) with size

|F| = nO(1+(n log n)/(q log q)) = nO(ε−1 log(ε−1)).

In particular, if n " ε−1−a for some fixed a > 0 then this implies that |F| = nO(1/ε). Finally, if
n " ε−3 (it is the stable situation in some sense) then |F| = O((nq2/2)2r/(q−2)+1), q )= 2. Here
all the constants in O(...) are absolute. The working time of the algorithm for computing F is
polynomial in n, p, ν0 and the number of elements |F|; hence it is polynomial in nε−1 log(ε−1),
p and ν0.

Proof. By [4] one can assume that q ! τ(n, r). We begin with the case q " n. Then
q2 " τ(n, r), thus [4] gives a family G with property Pn,r(Fq2, Fq). Lemma 6 for ν = 2
and r ! n/2 (without loss of generality by Lemma 1) thus yields a family F with property
Pn,r(Fq, Fq) and of size (r + 1)τ(n, r).

If q < n, however, one cannot apply this method directly because Fq must contain more
than r elements, which might not be the case. Let us therefore suppose q < n.

Let ν be the least integer such that qν " n2. Note that ν > 2. Suppose q " ν. Let
s = % (q − 1)/(ν − 1) &. Then for every 1 ! s′ ! s using Lemma 6 one can construct a family
F ′ satisfying property Pn,s′(Fq, Fq) with |F ′| ! n2((ν−1)s′ +1). Applying Lemma 3 (see also
the case ε3n3 > τ(n, r) below), we get a family Fn,r(Fq, Fq) with |F| ! (n2((ν−1)s+1))(n+s)/s.
Note that s " (q−1)/2(ν−1) " q/(4ν) " q log q/(16 log n). Now the inequality q " εn implies

(n + s)/s ! 1 + 16n log n/(q log q) ! 1 + 16ε−1(1 + log(ε−1)/ log q) = O(ε−1 log(ε−1)).

Hence |F| = nO(ε−1 log(ε−1)). Remark that if n ≥ ε−1−a for a fixed constant a > 0, then
1/ log q ≤ 1/(a log(ε−1)), therefore in this case |F| = nO(1/ε).

Suppose q < ν. In this case put F to be a family of
(n

r

)
subspaces of Fn

q satisfying property
Pn,r(Fq, Fq). Obviously such a family can be easily constructed. We have |F| !

(n
r

)
! 2n.

As q < ν, we have qq < n2, and 2q/2 ! qq/2 ! n. It follows that εn ! q ! 2 log n. Thus
n ! (2/ε) log n, and it follows |F| ! 2n ! n2/ε. The first and second assertions of the theorem
are proved.

Suppose that n " ε−3. Then ε3n3 > τ(n, r). Choose ν = 3. Hence now qν > τ(n, r).
Let t = % q−1

2 &. Let us perform the Euclidean division r = at + b. Remark that a = O(1/ε).
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Thanks to [4] one can build two families G1 of size τ(n, t) with property Pn,t(Fqν , Fq) and G2

of size τ(n, b) with property Pn,b(Fqν , Fq). As ν = 3, one has q > (ν − 1)t and q > (ν − 1)b;
thus Lemma 6 allows to build F1 of size (2t + 1)τ(n, t) with property Pn,t(Fq, Fq) and F2 of
size (2b+1)τ(n, b) with property Pn,b(Fq, Fq). Then we can build F = (F1)a ·F2. This family
has property Pn,r(Fq, Fq) thanks to Lemma 3 and |F| = O((nq2/2)2r/(q−2)+1) = nO(1/ε).
Moreover, the time needed to perform this construction is polynomial in n, p, ν0 and the
number of elements |F|; hence it is polynomial in nε−1 log(ε−1), p and ν0. !

We now begin the second construction.

Lemma 7 Let q = pν0. Let n " 1 and 1 ! r ! n − 1 be arbitrary integers. Let ν " 1 be the
least integer such that qν > τ(n, r). Suppose that ν " 2. Assume that 2q + 1 " ν − 1. Let

λ =
⌊

2q + 1
ν − 1

⌋
, σ =

⌈ r

λ

⌉
.

Then one can construct a family F satisfying property Pn,r(Fq, Fq) with size

|F| ! ( (q + 1)(λ+ 1) )σ τ(n, r).

The working time of the algorithm for computing the family F is polynomial in n, ν0, qσ and
λσ.

The idea of the proof is the following. Given an (n−r)×n full rank matrix D, the method
of [4] allows to build a transversal family in a sufficiently big extension. This gives a matrix G
with coefficients in that extension and such that det

(G
D

)
)= 0. We are able to find a sequence

of differentiations and substitutions which keeps the determinant nonzero while bringing back
the coefficients of the matrix in Fq. Now, this sequence of differentiations of the determinant
can be expressed as a big sum of determinants, in which at least one term must be nonzero.
It remains to take as our transversal family the set corresponding to all these terms.

Proof. Let us first give a couple of definitions. For 1 ! j ! σ, define the set Pj of polynomials
of Fq[Xj , Yj ] by Pj = { zYj+Xj : z ∈ Fq }∪{Yj}. For b ∈ Pj we let b̃ = (−z, 1) if b = zYj +Xj,
and b̃ = (1, 0) if b = Yj. Define the differentiation Dj,b = ∂/∂Xj if b )= Yj, and Dj,b = ∂/∂Yj

if b = Yj.
Consider now an arbitrary matrix A with rows a1, . . . , am and with coefficients from the

ring Fq[Xj , Yj ]. For an integer 1 ! w ! m, let us define the matrix Dj,b,w(A) as follows.
The rows of Dj,b,w(A) are a1, . . . , aw−1,Dj,b(aw), aw+1, . . . , am, i.e., the matrix Dj,b,w(A) is
obtained from A by the differentiation Dj,b of the w-th row of A.

We now describe the construction of the family F. Using the algorithms of [2]
or [9], construct a minimal polynomial of a primitive element ξ of the extension Fqν ⊃ Fq. So
Fqν = Fq[ξ]. With the method of [4], build a family F0 = {Bα }1!α!N satisfying property
Pn,r(Fqν , Fq) with N = τ(n, r), each matrix Bα being of size r × n. Write Bα as

Bα =
∑

0!i!ν−1

Bα,iξ
i,

7



where all matrices Bα,i have coefficients from the field Fq. Further, let

Bα,i =





Bα,i,1

Bα,i,2
...

Bα,i,σ




,

where every matrix Bα,i,j, 1 ! j ! σ− 1 has λ rows. Hence the number of rows of the matrix
Bα,i,σ is at most λ by the definitions of λ and σ.

Let Xj and Yj be variables for 1 ! j ! σ. Set

Gα,j =
∑

0!i!ν−1

Bα,i,jX
i
jY

ν−1−i
j , 1 ! α ! N, 1 ! j ! σ.

Hence the coefficients of the matrix Gα,j are homogeneous polynomials with respect to Xj , Yj .
Set

Gα =





Gα,1

Gα,2
...

Gα,σ




, 1 ! α ! N.

Hence Gα is a matrix with r rows and n columns and its coefficients are homogeneous poly-
nomials of the ring Fq[X1, Y1, . . . ,Xσ, Yσ ].

Let λ(j) be the number of rows of the matrix Gα,j . Let Wj = {+, 1, 2, . . . , λ(j)}. For
bj ∈ Pj and wj ∈ Wj, let us define Gα,j,bj ,wj = Gα,j if wj = + and Gα,j,bj ,wj = Dj,bj ,wj(Gα,j)
otherwise. Let P = P1 × . . . × Pσ and W = W1 × . . . × Wσ. For b = (b1, . . . , bσ) ∈ P ,
w = (w1, . . . , wσ) ∈ W and 1 ! α ! N , let us define the matrix

Gα,b,w =





Gα,1,b1,w1

Gα,2,b2,w2

...
Gα,σ,bσ ,wσ




.

Hence Gα,b,w is a matrix with r rows and n columns with coefficients from the ring Fq[X1, Y1, . . . ,Xσ , Yσ].
Let Hα,b,w = Gα,b,w|{(Xj ,Yj)=ebj , 1!j!σ}, i.e., Hα,b,w is a matrix of size r × n with coefficients

from Fq which is obtained by the substitution of (Xj , Yj) by b̃j in Gα,b,w (for 1 ! j ! σ). Let

F = {Hα,b,w : rank(Hα,b,w) = r, 1 ! α ! N, b ∈ P, w ∈ W } .

Obviously the number of elements satisfies |F| ! ( (q + 1)(λ+ 1) )σ τ(n, r). Moreover the
family F can be constructed in polynomial time in n, ν0, qσ and λσ.

We claim that F satisfies property Pn,r(Fq, Fq). Let D be a (n − r) × n full rank
matrix over Fq. Then there is 1 ! α ! N such that

det
(

Bα

D

)
)= 0.

8



Since substituting ξ for each Xj and 1 for each Yj in Gα gives Bα, we deduce that

∆ = det
(

Gα

D

)
)= 0.

We shall show the existence of some elements (b1, . . . , bσ) ∈ P and (r1, . . . , rσ) ∈ {0, 1}σ
such that

(Drσ
σ,bσ

. . . Dr2
2,b2

Dr1
1,b1

∆)|{(Xa,Ya)=eba, 1!a!σ} )= 0. (1)

This allows to conclude as explained now. Let us first recall the following well known fact.
Let A be a square matrix of size n with rows a1, . . . , an. Assume that the coefficients of the
matrix A are from a ring R and that D is a differentiation of R. Then

D (det(A)) = det





D(a1)
a2
...

an




+ det





a1

D(a2)
...

an




+ . . . + det





a1

a2
...

D(an)




. (2)

This property is useful in order to conclude as follows. Let W [r] = {(w1, . . . , wσ) ∈ W | wj =
+ if and only if rj = 0}. Applying (2) several times we get

Drσ
σ,bσ

. . . Dr2
2,b2

Dr1
1,b1

∆ =
∑

w∈W [r]

det
(

Gα,b,w

D

)
. (3)

If we substitute (Xj , Yj) by b̃j in (3) (for 1 ! j ! σ), we get

(Drσ
σ,bσ

. . . Dr2
2,b2

Dr1
1,b1

∆)|{(Xa,Ya)=eba, 1!a!σ} =
∑

w∈W [r]

det
(

Hα,b,w

D

)
. (4)

Since by (1) the left part of (4) is a nonzero element of Fq, at least one of the determinants in
the right part of (4) is nonzero. This implies immediately that the family F satisfies property
Pn,r(Fq, Fq).

It remains to show the existence of (b1, . . . , bσ) and (r1, . . . , rσ) satisfying equation
(1). Let ∆(0) = ∆. We shall show by induction on j the existence of rj ∈ {0, 1} and bj ∈ Pj

such that, if we define

∆(j) = (Drj

j,bj
. . . Dr2

2,b2
Dr1

1,b1
∆)|{(Xa,Ya)=eba, 1!a!j} ,

the polynomial ∆(j) in Fq[Xj+1, Yj+1, . . . ,Xσ , Yσ] is nonzero. This condition is obviously
satisfied at the starting step (for j = 0). Assume that b1, . . . , bj and r1, . . . , rj have been built.
First remark that ∆(j) is homogeneous with respect to Xa, Ya and that its degree degXa,Ya

∆(j)

in Xa, Ya is equal to degXa,Ya
∆ = da for every j + 1 ! a ! σ (indeed differentiations and

substitutions only occur on variables of index smaller than j + 1). Let b ∈ Pj+1 be such that
b2 does not divide ∆(j): such an element exists because dj+1 ! (ν − 1)λ < 2(q + 1) (since
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λ ! (2q +1)/(ν−1)). We set bj+1 = b and take b′ ∈ Fq[Xj+1, Yj+1] linearly independent with
b. Let

rj+1 =
{

1 if b divides ∆(j)

0 otherwise.

Since ∆(j) is homogeneous in Xj+1, Yj+1, it can be uniquely written as

∆(j) = (b′)dj+1−rj+1brj+1Φ + brj+1+1Ψ

where 0 )= Φ ∈ Fq[Xj+2, Yj+2, . . . ,Xσ , Yσ] and Ψ ∈ Fq[Xj+1, Yj+1, . . . ,Xσ, Yσ]. Remark now
that due to the definition of b̃, rj+1 and ∆(j+1), there exists 0 )= µ ∈ Fq such that ∆(j+1) = µΦ.
Hence ∆(j+1) )= 0. !

Theorem 3 Let 0 < ε < 1/2 be a real number. Let 0 ! r ! n be two integers and q =
pν0 " εn. Let n ≥ ε−3. One can construct a family F satisfying property Pn,r(Fq, Fq) with
size |F| = O(q2&r/q'τ(n, r)), where the constant in O(...) is absolute. The working time of the
algorithm for computing F is polynomial in n, p, ν0 and the number of elements |F|; hence
it is polynomial in nε−1, p and ν0.

Proof. We wish to apply Lemma 7: we have q3 " ε3n3 > τ(n, r) thus we can take ν ∈ {2, 3}.
Of course 2q+1 " ν and one can apply lemma 7 to build a family F with property Pn,s(Fq, Fq).
The size of this family is ((q + 1)(λ + 1))στ(n, r). As ν ∈ {2, 3} we have λ ! 2q + 1 and σ !
/r/q0. Thus |F| = O(q2&r/q'τ(n, r)). The time needed to build this family is as announced.
!

5 Existence of small transversal families over finite fields

A probabilistic argument shows that there exists a family of size O(τ(n, r)) that has property
Pn,r(Fq), where the constant in the big O is independent of q. In the following we show a
similar result for the stronger Pn,r(Fq, Fq) property.

Proposition 1 There exists a family of size O(n(n − r)r2) that has property Pn,r(Fq, Fq),
where the hidden constant is independent of q.

Proof. Let X be the set of all Fq-linear subspaces of dimension r of Fn
q . An element x ∈ X

defines a Fq-linear subspace x̂ of Fq
n. Let Y be the set of Fq-linear subspaces of dimension

n − r of Fq
n. For y ∈ Y , let us define Ty = {x ∈ X, x̂ ∩ y = {0}}. Let F = {Ty, y ∈ Y }.

A subset T ⊆ X is said to be transversal is it intersects all elements of F . The transversal
number of (X,F) is the minimum cardinal of a transversal subset; it is written τ(F) – see
chapter 10 of [6] about set systems and transversality. Of course the size of a minimal family
with Pn,r(Fq, Fq) property is given by τ(F). Our aim is now to obtain an upper bound on
τ(F).

The number of linear subspaces of dimension r of Fn
q is

|X| = Nn,r =
r−1∏

i=0

qn − qi

qr − qi
=

r−1∏

i=0

qn−i − 1
qi+1 − 1

!
r∏

i=1

qn−r+i

qi − 1
= qr(n−r)

r∏

i=1

1
1 − q−i

.
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Moreover, any F ∈ F satisfies

|F | " Tn,r =
r−1∏

i=0

qn − qn−r+i

qr − qi
= qr(n−r).

Indeed, for all Fq-linear subspace y of dimension k of Fq
n, y′ = y ∩ Fn

q is a Fq-linear subspace
of dimension at most k of Fn

q , and any e ∈ Fn
q \ y′ is transversal to y.

Thus for any F ∈ F

|F |
|X|

" Tn,r

Nn,r
"

r∏

i=1

(1 − q−i) "
∞∏

i=1

(1 − q−i) " 2−2/(q−1) =: θ(q).

Given a family of polynomials {Pi(X̄), i ∈ I} in n variables over the field F, we call a zero-
pattern of this family an element of s̄ ∈ {0, +}I such that there exists x̄0 ∈ Fn with Pi(x̄0) of
sign si – i.e. Pi(x̄0) = 0 if and only if si = 0.

For x ∈ X let Mx be a r×n matrix whose lines are a basis of the linear subspace x (in the
canonical basis). Let U be a n × r matrix filled with indeterminates. By lemma 2, the size
of F is bounded by the number of zero-patterns over the field Fq

n of the set of polynomials
{det(MxU), x ∈ X}. This family is made of |X| polynomials of degree r in the nr variables
of U . Applying the bounds given in [7] we obtain

|F| !
(

e · |X|
n

)rn

.

Thus log |F| = O(rn log |X|) = n(n − r)r2O(log q).
Using a probabilistic argument, we shall now give an upper bound on τ(F). Let X1, . . . ,Xt

be independent random variables with uniform distribution over X. The probability that
F ∈ F is not covered by {X1, . . . ,Xt} is upper bounded by (1− θ(q))t. By the union bound,
the family {X1, . . . ,Xt} is not transversal with probability bounded above by |F|(1 − θ(q))t.
Therefore, any t such that |F|(1 − θ(q))t < 1 yields the existence of a transversal family of
size t. Thus

τ(F) !
⌈

log |F|
− log(1 − θ(q))

⌉
= O(n(n − r)r2)

(where the hidden constant is independent of q), i.e. that there exists a family of size O(n(n−
r)r2) with property Pn,r(Fq, Fq). !

An intriguing question is the optimal size of families with Pn,r(Fq, Fq) or even Pn,r(Fq)
property. Of course a family with Pn,r(Fq, Fq) property has the property Pn,r(Fq) so its size is
Ω(τ(n, r)). On the other hand, we are not aware of any nontrivial lower bound on the size of a
family with Pn,r(Fq) property. Note however that the size of a family with Pn,r(Fq) property
can be smaller than τ(n, r) – the optimal size on algebraically closed fields – as shows the
following.

Remark 2 Over any finite field k, the optimal size of a family with property P4,2(k) is 4.
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Proof. Let k be a finite field and let P (X) = X2 + αX + β be an irreducible polynomial
of degree 2 over k – such a polynomial exists [5]. Consider the following family F of 4 × 2
matrices over k (

I
0

)
,

(
0
I

)
,

(
I
I

)
,

(
T
I

)

where I is the 2 × 2 identity matrix and T =
( α β
−1 0

)
. This family has property P4,2(k).

Indeed, any 2-dimensional subspace of k4 which has a non-trivial intersection with the first
two elements of F must be of the form V = Span{

(x
0

)
,
(0
y

)
}. A subspace of this form can

intersect non-trivially at most one of the remaining two elements of F . More precisely, if x
and y are colinear then the intersection with the last subspace is {0}, and if x and y are not
colinear then the intersection with the third subspace is {0}.

Now let K be an arbitrary field. Let us show that no family of three elements has the
property P4,2(K). Indeed let us suppose that F = {V1, V2, V3} has this property. Let us first
assume that V1 ∩ V2 )= {0}. Let a ∈ V1 ∩V2 with a )= 0 and then let b ∈ V3 with b )∈ Span{a}.
No element of F is transversal to Span{a, b}. Thus we can assume that Vi ∩ Vj = {0} for
i )= j. Let v3 ∈ V3 \ {0}. It can be written v3 = v1 + v2 with vi ∈ Vi for i ∈ {1, 2}. Of course
V = Span{v1, v2} is of dimension 2 (vi )= 0 because Vi ∩ V3 = {0}). Once again no element of
F is transversal to V . !

Although they do exist, we don’t know how to build in polynomial time families of poly-
nomial size with property Pn,r(K) for a finite field K. In what follows we slightly improve
the trivial bound O(n2) in the case r = 2 on an arbitrary field (e.g. F2).

Proposition 2 A family Fn with the following properties can be built in polynomial time:

• the elements of Fn are {0, 1}-matrices;

• the size of Fn is O(nlog2 3);

• the family Fn has property Pn,2(K) for any field K.

Proof. By Lemma 4, it is enough to build this family for n of the form 2m. The process is
recursive. For the base case n = 4, let F4 be the family of the

(4
2

)
full rank 4 × 2 matrices

with coefficients in {0, 1} built by putting (1 0
0 1) on a principal minor and 0 elsewhere. We now

build F2m+1 from F2m . If u is a vector of K of size 2m (i.e. u ∈ K2m), we denote by u0 the
vector of size 2m+1 whose 2m first components are those of u, and whose 2m last components
are 0. Similarly for 0u. More generally, uv is the concatenation of u and v. We will also write
them in column as in t(uv). Let ei denote the i-th vector of the canonical basis of K2m . Then
F2m+1 is the family of 2m+1 × 2 matrices with coefficients in {0, 1} defined by

F2m+1 = {(u0
v0)/(uv ) ∈ F2m} ∪ {(0u

0v )/(uv ) ∈ F2m}∪

{(uu
vv )/(uv ) ∈ F2m} ∪ {(ei0

0ei
)/1 ≤ i ≤ 2m}.

We now prove that this family is transversal. Let aa′ and bb′ be two independent vectors
of K2m+1 , where a, a′, b, b′ ∈ K2m . If rank(a, b) = 2 there exists (uv ) ∈ F2m such that (ab )(

tu|tv)
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is of rank 2. Then (aa′
bb′ )(

t(u0)|t(v0)) = (ab )(
tu|tv) is also of rank 2, hence (u0

v0) ∈ F2m+1 is
suitable for (aa′

bb′ ). The case where rank(a′, b′) = 2 is dealt with identically thanks to the
matrix (0u

0v ) ∈ F2m+1 . At last, the case where rank(a + a′, b + b′) = 2 is dealt with a matrix of
the form (uu

vv ).
It remains the case where rank(a, a′) = rank(b, b′) = rank(a + a′, b + b′) = 1. We can

furthermore suppose that one of the a, a′, b, b′ is zero, say a′ = 0: indeed, the subspace
spanned by aa′ and bb′ is equal to the subspace spanned by (a − αb)0 and bb′ provided that
a′ = αb′. Performing a second linear combination, we can in fact assume that the matrix is
of the form (a0

0b′). As rank(a + a′, b + b′) = 1, this means that a )= 0 and b′ = µa with µ )= 0.
Then (ei0

0ei
) ∈ F2m+1 is suitable as soon as ei.a )= 0.

Finally, we have to prove the claim on the size um of the family F2m . It satisfies the
relation um+1 = 3um + 2m, hence um = O(3m). It follows that the size of Fn is O(nlog2 3),
that is O(n1.59). !

Many existence vs. construction open problems are raised in [7]. It would be interesting
to relate one of these problems to the construction of transversal families over finite fields.
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