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Abstract—Weierstrass-Mandelbrot functions are given a time-frequency in-

terpretation which puts emphasis on their possible decomposition on chirps

as an alternative to their standard, Fourier-based, representation. Examples

of deterministic functions are considered, as well as randomized versions for

which the analysis is applied to empirical estimates of statistical quantities.
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1 The Weierstrass-Mandelbrot Function

In 1872, Weierstrass introduced a function defined by a semi-infinite su-

perposition of weighted “tones” (or Fourier modes) whose frequencies are

geometrically spaced, namely [22]:

W ∗(t) =
∞∑

n=0

λ−nH cos λnt, (1)

with λ > 1 and t ∈ R.

Assuming that the free parameter H, which governs the relative weights

of the different tones, is such that 0 < H < 1, the series given in (1) is

convergent and the corresponding function W ∗(t), referred to as the Weier-

strass function (WF), is a well-defined quantity. The point which has since

then received much attention is that this function, although continuous, is

nowhere differentiable: it is in fact Hölder continuous of order H everywhere

[13]. As such, it has been widely used as a paradigmatic example of a fractal

function, various measures of dimensions for its graph [3, 8, 16, 21] ending

up with the non-integer value 2 − H.

Despite its fractal structure, the WF is not truely H-self-similar since

we only have W ∗(λt) = λH [W ∗(t) − cos t] �= λH W ∗(t). This is so because

the WF (1) is defined as a semi-infinite sum starting with n = 0, an oper-

ation which consists in adding frequencies ω ≥ λ with no upper limit, but

also with no spectral contributions below the lowest frequency defined by λ.

The construction is therefore based on a finite larger scale which naturally

prevents any form of complete scale invariance. This observation prompted

Mandelbrot [16] (see also [17]) to modify the original definition (1) by adding

in some suitable way the “missing” lower frequencies ω < λ. His proposal
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was to generalize and complete (1) according to:

W (t) =
∞∑

n=−∞

λ−nH
(
1 − eiλnt

)
eiϕn , (2)

so as to maintain convergence, with the extra degree of freedom of arbitrary

phases ϕn.

From (2), it is immediate to examine the way this Weierstrass-Mandelbrot

function (WFM) behaves under scale changing operations. If, e.g., ϕn = µn,

we have W (λkt) = e−iµk λkH W (t) and, in the special case where µ = 0

(which implies that ϕn = 0 for all n ∈ Z), this leads to

W (λkt) = λkH W (t) (3)

for any k ∈ Z. In this case, the WMF turns out to be exactly scale invariant,

but only with respect to the preferred scaling ratio λ (and any of its integer

powers): such a situation is referred to as “discrete scale invariance” (DSI)

[20]. If the ϕn’s are i.i.d. random variables uniformly distributed on [0, 2π],

we get a randomized version of the WMF which satisfies a companion form

of statistical DSI (in the sense of [5]):

{W (λkt), t ∈ R}
d
= {λkH W (t), t ∈ R} (4)

for any k ∈ Z, where the notation “
d
=” stands for equality of all finite-

dimensional distributions. A specific interest of such a stochastic version of

the WMF (and variations thereof, with Gaussian pre-factors) is that it can be

used for approximating H-self-similar processes such as fractional Brownian

motion [8, 18].

The specific form of the WMF given in (2) can itself be further generalized
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to:

Wg(t) =
∞∑

n=−∞

λ−nH (g(0) − g(λnt)) eiϕn , (5)

where g(t) can be any periodic function, provided that it is continuously

differentiable at t = 0 [21]. Scaling properties of WMF’s (2) carry over

to their generalized form (5), thereafter referred to as a generalized WMF

(GWMF).

Typical examples of (G)WMF’s are given in Figure 1.

2 Tones vs. Chirps

2.1 Scale invariance and periodicity

For the above-mentioned suitable choices of phases, the WMF (2) and its

generalization (5) are both characterized by two key properties: scale in-

variance and periodicity. The co-existence of these two properties is made

possible because they operate at different levels: periodicity refers to the na-

ture of the building blocks upon which the functions are constructed, whereas

scale invariance appears as a result of the superposition. In the stochastic

case, the (G)WMF is usually understood as a superposition of processes

(e.g., randomly phased tones) which are individually stationary, but whose

superposition is not, since it is H-self-similar (as is well-known (see, e.g.,

[19]), stationarity and self-similarity are mutually exclusive properties). In

the deterministic case, the periodicity of the individual building blocks is

equally broken by the superposition. This remark suggests that there should

exist alternative representations for (G)WMF’s, based upon scale invariant

building blocks rather than periodic or stationary ones. Results of this type
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can be found in [3, 12], but we would like here to adopt a general approach

based on a transformation capable of trading stationarity for self-similarity,

and vice-versa. Such a transformation exists: it is referred to as the Lamperti

transform.

2.2 The Lamperti transform

Definition 1 Given H > 0, the Lamperti transform LH operates on func-

tions {Y (t), t ∈ R} according to:

(LHY )(t) := tH Y (log t), t > 0, (6)

and the corresponding inverse Lamperti transform L−1
H operates on functions

{X(t), t > 0} according to:

(L−1
H X)(t) := e−Ht X(et), t ∈ R. (7)

This transform has been first considered by Lamperti in a seminal paper

on self-similar processes [14] and it has been later re-introduced indepen-

dently by a number of authors (see, e.g., [21] or the references quoted in

[11]). Whereas various extensions of the Lamperti transform have been re-

cently considered [6, 7], the key property of the Lamperti transform—the one

which indeed motivated its introduction—is that it allows for a one-to-one

correspondence between stationary and self-similar processes or, in an equiv-

alent deterministic context [21], between periodic and self-similar functions.

Periodic functions and stationary processes can naturally be expanded on

“tones” (or Fourier modes):

ef (t) := ei2πft, (8)
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whose Lamperti transform expresses straightforwardly as:

cH,f (t) := (LHef )(t) = tH+i2πf , t > 0. (9)

Such waveforms are referred to as (logarithmic) chirps [9], i.e., ampli-

tude and frequency modulated signals of the form a(t) exp{iψ(t)}, with

ψ(t) = 2πf log t. It thus follows that the derivative of the phase ψ(t) is

such that ψ′(t)/2π = f/t, supporting the idea of a time-varying (“chirp-

ing”) instantaneous frequency, in contrast with tones whose instantaneous

frequency is constant (see Figure 2). One can remark that logarithmic chirps

are a key example of functions exhibiting (discrete) scale invariance (in the

sense of (3)) without being fractal: their graph is a smooth function for t > 0.

Whereas the tones (8) are the elementary building blocks of the Fourier

transform, the chirps (9) are the elementary building blocks of the Mellin

transform [4] for which we will adopt the following definition:

Definition 2 Given H > 0, β ∈ R and cH,β(t) as in (9), the Mellin trans-

form of a function {X(t), t > 0} is defined by:

(MHX)(β) :=

∫ +∞

0

X(t) cH,β(t) dt/t2H+1, (10)

with the corresponding reconstruction formula:

X(t) =

∫ +∞

−∞

(MHX)(β) cH,β(t) dβ. (11)

2.3 Chirp decomposition of the GWMF

Based on the different tools that have been introduced, we can now enounce

the following Proposition, which is the central result of this Section:
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Proposition 1 The scale-invariant generalized Weierstrass-Mandelbrot func-

tion (5) admits the chirp decomposition:

Wg(t) =
∞∑

m=−∞

(MHG)(m/ log λ)

log λ
cH,m/ log λ(t), (12)

with (MHG)(.) the Mellin transform of G(t) := g(0) − g(t).

Proof—“Delampertizing” the GWMF (5) with ϕn = 0, we readily get that

(L−1
H Wg)(t) = (L−1

H Wg)(t + k log λ) (13)

for any k ∈ Z, thus proving (as expected) that the inverse Lamperti transform

of a scale-invariant GWMF is periodic of period log λ. As a periodic function,

it can thus be expanded in a Fourier series:

(L−1
H Wg)(t) =

∞∑

m=−∞

wm em/ log λ(t), (14)

with:

wm =
1

log λ

∫ log λ

0

(L−1
H Wg)(t) em/ log λ(t) dt.

Inverting (14) and using the fact that the Lamperti transform of a Fourier

tone is a chirp (see eq.(9)), we get

Wg(t) =
∞∑

m=−∞

wm cH,m/ log λ(t),
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with:

wm =
1

log λ

∫ log λ

0

[e−Hθ

∞∑

n=−∞

λ−nH G(λneθ)] em/ log λ(θ) dθ

=
1

log λ

∞∑

n=−∞

λ−nH

∫ λn+1

λn

G(u)
(
λ−nu

)
−H

em/ log λ(log u − n log λ) du/u

=
1

log λ

∞∑

n=−∞

∫ λn+1

λn

G(u) c−H,m/ log λ(u) du/u

=
1

log λ

∫
∞

0

G(u) cH,m/ log λ(u) du/u2H+1

=
(MHG)(m/ log λ)

log λ
,

whence the claimed result. �

One can deduce from this chirp decomposition that the Mellin transform

of the GWMF takes on a very simple form, since it reads:

(MHWg)(β) =
∞∑

m=−∞

(MHG)(m/ log λ)

log λ
δ(β − m/ log λ)

and thus consists in an infinite series of equispaced peaks. This is the Mellin

counterpart of the geometrical comb structure that holds for the Fourier

spectrum of the WMF.

Example — As a special case, let us consider the standard WMF (2) with

ϕn = 0. We have in this case g(t) = eit and

wm =
1

log λ

∫
∞

0

(1 − eiu) u−s−1 du,

with s = H + i2πm/ log λ. An integration by parts leads to

wm =
e−iπ/2

s

∫
∞

0

eiu u(1−s)−1 du,
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with Re{1 − s} = 1 − H > 0, thus guaranteeing the convergence of the

integral. Making the change of variable v = ue−iπ/2, we finally end up with

the result given in [3]:

wm = −
1

log λ
exp{−i

π

2
(H + i2πm/ log λ)}Γ(−H − i2πm/ log λ), (15)

where Γ(.) stands for the Gamma function.

Time-frequency interpretation —The so-obtained decomposition can be given

a nice interpretation on the time-frequency plane. If we focus for instance on

the real part of the WMF, the chirp expansion deduced from (12) is comprised

of oscillating contributions associated to indexes m �= 0, superimposed to a

slowly-varying trend TW (t) which is captured by the index m = 0:

TW (t) =
Γ(1 − H) cos(πH/2)

H log λ
tH .

An example of the real part of a WMF and its associated detrended

graph, obtained from either the standard frequency representation (2) or its

chirp counterpart (12), are plotted in Figure 3, whereas Figure 4 displays the

corresponding time-frequency representations.

Without entering into algorithmic details, one can remark that, depending

on which expansion is used, discrete-time synthesis of WMF’s is faced with

different advantages and drawbacks. In both cases, only a finite number

of terms can be summed up in practice, and frequency limitations occur

due to sampling and finite duration effects. If we first think of the lower

frequencies, the chirp expansion is clearly favored since the trend is fully

taken into account by only one term (m = 0), whereas the Fourier expansion

would necessitate an infinite number of them (all negative m’s). On the
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contrary, if we think of the higher frequencies, sampling conditions are easily

dealt with in the Fourier expansion, whereas all chirps have a priori no built-

in frequency limitation. This explains why the two waveforms of Figure 3

are not fully identical.

For a sake of improved localization on chirps, we used as time-frequency

representations reassigned spectrograms [1, 2] which basically perform a

Fourier analysis on a short-time basis. As is well-known, a spectrogram

and its reassigned version are naturally equipped with a “time-frequency

window” whose dimensions are determined by the equivalent duration and

spectral width of some a priori chosen short-time window. Therefore, if we

superimpose the occupation area of this time-frequency window to the ideal-

ized WMF models of eq.(2) (which consists of geometrically spaced spectral

lines) and eq.(12) (which consists of chirps), we clearly see that different

regimes may be observed, depending on the way spectral lines and chirps are

“seen” through the window. Given a fixed spectral width for the window,

spectral lines will be considered as natural individual components as long as

their spacing will be large enough to not allow more than one line to enter

the window at the same time: this is what we observe for sufficiently high

frequencies. On the contrary, when many spectral lines are simultaneously

present in the window, what time-frequency analysis reveals in the result of

the superposition, i.e., chirps: this is what we observe at lower frequencies.

Reasoning along the same lines leads to the same result if we replace the

“tone model” (2) by the “chirp model” (12). In this case, the perspective

is reversed and spectral lines appear at high frequencies as the result of the

co-existence of multiple chirps within the time-frequency window, whereas
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the emergence of chirps is privileged at lower frequencies, where they are

dealt with individually.

2.4 The case of randomized WMF’s

The underlying chirp structure that has been evidenced for deterministic

GWMF’s can be viewed as a result of the fixed phase relationships which ex-

ist between the constitutive tones. In particular, in the simplest case where

ϕn = 0 for all n’s, all tones are in phase at time t = 0, with the consequence

that the time origin plays a very specific role. In the case where the phases

ϕn are i.i.d. random variables, the picture is drastically changed, and no

coherent phase organization can be expected to occur in individual realiza-

tions of randomized GWMF’s. However, this limitation does not prevent

from still identifying chirps in quantities related to ensemble averages, and

the task proves to be made easy by the fact that, while being nonstation-

ary processes, randomized GWMF’s (in particular, WMF’s) may turn out to

have stationary increments.

More precisely, given θ > 0, we will introduce a θ-increment operator by

its action on a function X(t) according to:

(∆θX)(t) := X(t + θ) − X(t).

Assuming that the phases ϕn are i.i.d. random variables uniformly dis-

tributed on [0, 2π], it follows immediately from (5) that the corresponding

θ-increment process is zero-mean, i.e., that E∆θWg(t) = 0. Second-order

properties of ∆θWg(t) can be evaluated as well, leading to:

E(∆θWg)(t) (∆θWg)(s) =
∞∑

n=−∞

λ−2nH (∆λnθG)(λnt) (∆λnθG)(λns), (16)
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with G(t) = g(0) − g(t) as previously. In particular, the variance can be

simply expressed as

E|(∆θWg)(t)|
2 =

∞∑

n=−∞

λ−2nH |(∆λnθG)(λnt)|2. (17)

Further simplications can be obtained in the specific case of the WMF

W (t) for which g(t) = eit, since we then have |(∆λnθG)(λnt)|2 = |1 − eiλnθ|2

for all t’s, from which it follows that

E|(∆θW )(t)|2 = 2
∞∑

n=−∞

λ−2nH (1 − cos λnθ). (18)

As a function of time t, the variance of the θ-increments of randomized

WMF’s is therefore a quantity which is constant. As a function of the incre-

ment step θ, the same quantity (which can also be referred to as a variogram,

or a second-order structure function) is nothing but (twice) the real part of

the deterministic WMF (2), with exponent 2H and phases ϕn = 0. Since the

variogram is itself a WMF, it can be expanded on chirps and the results given

previously for deterministic WMF’s apply. Figure 5 gives an example of a

randomized WMF, together with an empirical estimate of its variogram. The

simulation consisting of a discrete-time approximation {Wg[n]; n = 1, . . . N},

the variogram estimate is simply given by:

V̂ [k] =
1

N − k

N−k∑

n=1

|W [n + k] − W [n]|2; k = 0, . . . K, (19)

with K ≪ N so as to guarantee a statistical significance to the estimation.

In theory, i.e., if the variogram was indeed evaluated via an ensemble aver-

age in place of the time average (19), a trend removal could be applied in

closed form, as in the deterministic case. When dealing with only one realiza-

tion, this is unfortunately no more possible but, based upon the reasonable
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assumption that the trend, yet different from one realization to the other,

has a significantly slower evolution than the oscillating chirp components, a

poorman’s substitute can be proposed by simply computing (∆1V )[k]. The

outcome of this crude simplification is plotted in Figure 5, together with the

corresponding time-frequency analysis, which can be compared with profit

to those of Figure 4.

Still restricting to the WMF case, the companion specification of the

two-point correlation function (16) gives

E(∆θW )(t) (∆θW )(s) = 2
∞∑

n=−∞

λ−2nH (1 − cos λnθ) eiλn(t−s), (20)

a function which only depends on the difference t−s, thus guaranteeing that

the θ-increments process (∆θW )(t) is second-order stationary for any θ.

Denoting by Rθ(τ) the real part of the corresponding stationary autocor-

relation function E(∆θW )(t) (∆θW )(t + τ), we do not get (for a fixed θ) a

quantity which would be exactly scale-invariant as a function of τ . However,

comparing the real part of (20) with (1), we observe that it corresponds to

a WF of a similar type, properly extended to negative n’s by weighting each

Fourier mode cos λnτ of amplitude λ−2nH by a regularizing term (1−cos λnθ):

we get therefore an approximate form of scale invariance which depends on

the increment step θ. For a fixed λ, a larger θ tends to increase the relative

contribution of negative n’s in the sum, i.e., to enhance lower frequencies. An

illustration of this fact is given in Figures 6 and 7 where, proceeding as for

the variance and noting that the autocorrelation function of Re{(∆θW )(t)}

and Im{(∆θW )(t)} are identical and both equal to Rθ(τ)/2, we used the
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empirical estimate:

R̂m[k] =
2

N − k

N−k∑

n=1

Re{W [n + m] − W [n]}Re{W [n + m + k] − W [n + k]}.

3 Concluding Remarks

The results presented here were intended to shed a new light on alterna-

tive chirp decompositions that may be used for representing (generalized)

Weierstrass-Mandelbrot functions. Special emphasis has been put on a time-

frequency interpretation according to which both tones and chirps equally

exist as constitutive building blocks of GWMF’s, and can be revealed by an

adapted analysis. As such, time-frequency analysis appears as a powerful

tool which can be applied to other types of functions in order to evidence in

a simplified way the existence of a rich inner structure in a waveform (one

can, e.g., report to [10] for an application of the same technique to Riemann’s

function). One can also think of further extensions related directly to the ba-

sic formulation (2) (e.g., the “non-chiral” extensions pushed forward in [17]),

or to the chirp expansion (12) (for which it is worth stressing the fact that

a number of results have already been obtained about different behaviours

and their classification, depending on the structure of amplitude and phase

terms [12]). In the classical formulation (5), GWMF’s appear as an extension

of (2) in which tones are replaced by other functions whereas, in the chirp

formulation (12), the same extension relies in a simpler way on a modifica-

tion of coefficients, leaving room to additional manipulations on the chirps

themselves (e.g., by making use of a collection of different H’s). This may

pave the road to newly controlled variations on the WMF and its (old and
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new) generalizations.
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(a) (b)

(c) (d)

Figure 1: Examples of Weierstrass-Mandelbrot functions — Each graph dis-
plays 1000 points of a WMF over the interval [0, 1]. Subplots (a) to (c)
correspond to the classical WMF defined in eq.(2), whereas subplot (d) is a
generalized WMF as defined in eq.(5) with g(t) = cos2(t). Parameters are as
follows: (a) λ = 1.5, H = 0.2, ϕn = 0; (b) λ = 1.07, H = 0.3, ϕn = n/2; (c)
λ = 1.2, H = 0.5, ϕn i.i.d. over [0, 2π]; (d) λ = 1.15, H = 0.8, ϕn = n.
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Figure 2: Tones and chirps — The Lamperti transformation puts in a one-
to-one correspondence a tone with a constant amplitude (left column) and a
logarithmic chirp with a power-law amplitude (right column). The top row
displays examples of such waveforms, and the bottom row the correspond-
ing time-frequency images which evidence and contrast their “instantaneous
frequency” structures (constant for the tone and hyperbolic for the chirp).
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Figure 3: Tone and chirp models for the WMF — The top row displays 1000
points of a WMF over the interval [0, 1], with parameters λ = 1.1, H = 0.4
and ϕn = 0. The synthesis has been obtained either from the “tone model”
(2) with 185 terms (left column) or from the “chirp model” (12) with 20
terms (right column). The bottom row displays the corresponding detrended
waveforms.
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Figure 4: Time-frequency interpretation of WMF models — Idealized time-
frequency structures of the WMF models of Figure 3 are displayed in the
left column, together with actual time-frequency distributions in the right
column. For a sake of interpretation, one has also superimposed to the left
diagrams an ellipse whose dimensions give an indication of the time-frequency
window involved in the computation of the (reassigned) spectrograms used
for producing the diagrams of the right column. Given a fixed window, it
clearly appears that model components (either tones or chirps) are “seen”
as such when they enter individually the window. On the contrary, when
more than one component is simultaneously “seen” within the window, what
the analysis reveals is the result of their superposition: chirps emerge as
superimposed tones (top right diagram, lower frequencies), and tones emerge
as superimposed chirps (bottom right diagram, higher frequencies).
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Figure 5: Variogram of randomized WMF — In the case of a randomized
WMF, the ensemble averaged variogram is expected to be itself a WMF.
When dealing with one realization (top left diagram, in this case λ = 1.07,
H = 0.3 and ϕn = 0), one can estimate an empirical variogram from the 1000
observed data points (top right). Detrending this estimate by a first-order
differencing operator (bottom left) gives a function whose time-frequency
analysis (bottom right) reveals the mixed structure of tones and chirps ob-
served in deterministic WMF’s (see Figure 4).

22



process

1-increments

time

4-increments

Figure 6: WMF and increments — The top graph displays 1000 points of
a WMF over the interval [0, 1], with parameters λ = 1.07, H = 0.3 and
ϕn = 0. The two graphs below display the corresponding increment processes
obtained with increment steps 1 and 4, respectively. Both are stationary
processes.
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Figure 7: Autocorrelation of WMF increment processes — The left column
displays the empirical autocorrelation estimates for the (stationary) WMF
increment processes considered in Figure 6. The right column displays the
corresponding time-frequency images, supporting the expectation that such
quantities undergo an approximate self-similar behavior, close to that of a
WMF, with a relative contribution of lower frequencies which is reinforced
when the increment step is made larger.
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